62,704 research outputs found

    Towards Sampling and Simulation-Based Analysis of Featured Weighted Automata

    Get PDF
    International audienceWe consider the problem of model checking Variability-Intensive Systems (VIS) against non-functional requirements. These requirements are typically expressed as an optimization problem over quality attributes of interest, whose value is determined by the executions of the system. Identifying the optimal variant can be hard for two reasons. First, the state-explosion problem inherent to model checking makes it increasingly complex to find the optimal executions within a given variant. Second, the number of variants can grow exponentially with respect to the number of variation points in the VIS. In this paper, we lay the foundations for the application of smart sampling and statistical model checking to solve this problem faster. We design a simple method that samples variants and executions in a uniform manner from a featured weighted automaton and that assesses which of the sampled variants/executions are optimal. We implemented our approach on top of ProVeLines, a tool suite for model-checking VIS and carried out a preliminary evaluation on an industrial embedded system design case study. Our results tend to show that sampling-based approaches indeed holds the potential to improve scalability but should be supported by better sampling heuristics to be competitive

    Towards Statistical Prioritization for Software Product Lines Testing

    Get PDF
    Software Product Lines (SPL) are inherently difficult to test due to the combinatorial explosion of the number of products to consider. To reduce the number of products to test, sampling techniques such as combinatorial interaction testing have been proposed. They usually start from a feature model and apply a coverage criterion (e.g. pairwise feature interaction or dissimilarity) to generate tractable, fault-finding, lists of configurations to be tested. Prioritization can also be used to sort/generate such lists, optimizing coverage criteria or weights assigned to features. However, current sampling/prioritization techniques barely take product behavior into account. We explore how ideas of statistical testing, based on a usage model (a Markov chain), can be used to extract configurations of interest according to the likelihood of their executions. These executions are gathered in featured transition systems, compact representation of SPL behavior. We discuss possible scenarios and give a prioritization procedure illustrated on an example.Comment: Extended version published at VaMoS '14 (http://dx.doi.org/10.1145/2556624.2556635

    Automated analysis of feature models: Quo vadis?

    Get PDF
    Feature models have been used since the 90's to describe software product lines as a way of reusing common parts in a family of software systems. In 2010, a systematic literature review was published summarizing the advances and settling the basis of the area of Automated Analysis of Feature Models (AAFM). From then on, different studies have applied the AAFM in different domains. In this paper, we provide an overview of the evolution of this field since 2010 by performing a systematic mapping study considering 423 primary sources. We found six different variability facets where the AAFM is being applied that define the tendencies: product configuration and derivation; testing and evolution; reverse engineering; multi-model variability-analysis; variability modelling and variability-intensive systems. We also confirmed that there is a lack of industrial evidence in most of the cases. Finally, we present where and when the papers have been published and who are the authors and institutions that are contributing to the field. We observed that the maturity is proven by the increment in the number of journals published along the years as well as the diversity of conferences and workshops where papers are published. We also suggest some synergies with other areas such as cloud or mobile computing among others that can motivate further research in the future.Ministerio de EconomĂ­a y Competitividad TIN2015-70560-RJunta de AndalucĂ­a TIC-186

    Quantitative Analysis of Probabilistic Models of Software Product Lines with Statistical Model Checking

    Get PDF
    We investigate the suitability of statistical model checking techniques for analysing quantitative properties of software product line models with probabilistic aspects. For this purpose, we enrich the feature-oriented language FLan with action rates, which specify the likelihood of exhibiting particular behaviour or of installing features at a specific moment or in a specific order. The enriched language (called PFLan) allows us to specify models of software product lines with probabilistic configurations and behaviour, e.g. by considering a PFLan semantics based on discrete-time Markov chains. The Maude implementation of PFLan is combined with the distributed statistical model checker MultiVeStA to perform quantitative analyses of a simple product line case study. The presented analyses include the likelihood of certain behaviour of interest (e.g. product malfunctioning) and the expected average cost of products.Comment: In Proceedings FMSPLE 2015, arXiv:1504.0301

    An automated Model-based Testing Approach in Software Product Lines Using a Variability Language.

    Get PDF
    This paper presents the application of an automated testing approach for Software Product Lines (SPL) driven by its state-machine and variability models. Context: Model-based testing provides a technique for automatic generation of test cases using models. Introduction of a variability model in this technique can achieve testing automation in SPL. Method: We use UML and CVL (Common Variability Language) models as input, and JUnit test cases are derived from these models. This approach has been implemented using the UML2 Eclipse Modeling platform and the CVL-Tool. Validation: A model checking tool prototype has been developed and a case study has been performed. Conclusions: Preliminary experiments have proved that our approach can find structural errors in the SPL under test. In our future work we will introduce Object Constraint Language (OCL) constraints attached to the input UML mode

    Learning and Designing Stochastic Processes from Logical Constraints

    Get PDF
    Stochastic processes offer a flexible mathematical formalism to model and reason about systems. Most analysis tools, however, start from the premises that models are fully specified, so that any parameters controlling the system's dynamics must be known exactly. As this is seldom the case, many methods have been devised over the last decade to infer (learn) such parameters from observations of the state of the system. In this paper, we depart from this approach by assuming that our observations are {\it qualitative} properties encoded as satisfaction of linear temporal logic formulae, as opposed to quantitative observations of the state of the system. An important feature of this approach is that it unifies naturally the system identification and the system design problems, where the properties, instead of observations, represent requirements to be satisfied. We develop a principled statistical estimation procedure based on maximising the likelihood of the system's parameters, using recent ideas from statistical machine learning. We demonstrate the efficacy and broad applicability of our method on a range of simple but non-trivial examples, including rumour spreading in social networks and hybrid models of gene regulation

    Bayesian astrostatistics: a backward look to the future

    Full text link
    This perspective chapter briefly surveys: (1) past growth in the use of Bayesian methods in astrophysics; (2) current misconceptions about both frequentist and Bayesian statistical inference that hinder wider adoption of Bayesian methods by astronomers; and (3) multilevel (hierarchical) Bayesian modeling as a major future direction for research in Bayesian astrostatistics, exemplified in part by presentations at the first ISI invited session on astrostatistics, commemorated in this volume. It closes with an intentionally provocative recommendation for astronomical survey data reporting, motivated by the multilevel Bayesian perspective on modeling cosmic populations: that astronomers cease producing catalogs of estimated fluxes and other source properties from surveys. Instead, summaries of likelihood functions (or marginal likelihood functions) for source properties should be reported (not posterior probability density functions), including nontrivial summaries (not simply upper limits) for candidate objects that do not pass traditional detection thresholds.Comment: 27 pp, 4 figures. A lightly revised version of a chapter in "Astrostatistical Challenges for the New Astronomy" (Joseph M. Hilbe, ed., Springer, New York, forthcoming in 2012), the inaugural volume for the Springer Series in Astrostatistics. Version 2 has minor clarifications and an additional referenc

    White-box validation of quantitative product lines by statistical model checking and process mining

    Full text link
    We propose a novel methodology for validating software product line (PL) models by integrating Statistical Model Checking (SMC) with Process Mining (PM). Our approach focuses on the feature-oriented language QFLan in the PL engineering domain, allowing modeling of PLs with rich cross-tree and quantitative constraints, as well as aspects of dynamic PLs like staged configurations. This richness leads to models with infinite state-space, requiring simulation-based analysis techniques like SMC. For instance, we illustrate with a running example involving infinite state space. SMC involves generating samples of system dynamics to estimate properties such as event probabilities or expected values. On the other hand, PM uses data-driven techniques on execution logs to identify and reason about the underlying execution process. In this paper, we propose, for the first time, applying PM techniques to SMC simulations' byproducts to enhance the utility of SMC analyses. Typically, when SMC results are unexpected, modelers must determine whether they stem from actual system characteristics or model bugs in a black-box manner. We improve on this by using PM to provide a white-box perspective on the observed system dynamics. Samples from SMC are fed into PM tools, producing a compact graphical representation of observed dynamics. The mined PM model is then transformed into a QFLan model, accessible to PL engineers. Using two well-known PL models, we demonstrate the effectiveness and scalability of our methodology in pinpointing issues and suggesting fixes. Additionally, we show its generality by applying it to the security domain.Comment: Pre-print Special Issue on Managing Variability in Complex Software-Intensive Systems of the Journal of Systems and Softwar
    • 

    corecore