
An Automated Model-based Testing Approach in

Software Product Lines Using a Variability Language

Boni García, Rodrigo García-Carmona, Álvaro Navas, Hugo A. Parada G.,

Félix Cuadrado, Juan C. Dueñas

Departamento de Ingeniería de Sistemas Telemáticos

ETSI Telecomunicación - Universidad Politécnica de Madrid

Avda. Complutense 30, 28040 Madrid, Spain

{bgarcia, rodrigo, anavas, hparada, fcuadrado, jcduenas}@dit.upm.es

Abstract. This paper presents the application of an automated testing approach

for Software Product Lines (SPL) driven by its state-machine and variability

models. Context: Model-based testing provides a technique for automatic

generation of test cases using models. Introduction of a variability model in this

technique can achieve testing automation in SPL. Method: We use UML and

CVL (Common Variability Language) models as input, and JUnit test cases are

derived from these models. This approach has been implemented using the

UML2 Eclipse Modeling platform and the CVL-Tool. Validation: A model

checking tool prototype has been developed and a case study has been

performed. Conclusions: Preliminary experiments have proved that our

approach can find structural errors in the SPL under test. In our future work we

will introduce Object Constraint Language (OCL) constraints attached to the

input UML model.

Keywords: Automated Testing, Model Checking, Variability, Software Product

Lines.

1 Introduction

Software Product Lines (SPL) refer to engineering techniques to create a set of similar

software systems from shared assets using common means of production. The

variability of a SPL means the state or characteristic of that SPL which can be

adjusted or changed in order to generate all the elements which composes the product

family. Testing is the most important method to ensure the quality of software.

Automation is desirable, because manual testing takes a lot of effort and is error

prone.

This article presents the application of an automated testing approach for SPL

driven by different models. The input in our method will be the state machine of the

System Under Test (SUT) in the form of an UML diagram and the variability model.

The variability model will be described using the Common Variability Language

(CVL), which is an initiative of SINTEF, University of Oslo, and the European

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148657057?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

project ITEA-MOSIS1. At the time of writing, CVL is in Request For Proposal (RFP)

phase by the OMG2 consortium since December 2009.

The remainder of this paper is structured as follows: Section 2 introduces the

context in which this work has been performed, i.e. Model-Based Testing (MBT) and

variability in Software Product Lines. Section 3 describes in detail the proposed

testing method. Section 4 discusses the validation of the work by means of a case

study. Finally, section 5 presents the reached conclusions and the future work.

2 Context

Our work has as main topics the Model-Based Testing paradigm for the testing of

software, and the Variability for addressing the challenges of Software Product Line

systems.

2.1 Model-Based Testing

Software testing is the main technique to ensure quality and finding bugs. Automation

is desirable, because manual testing is usually a complex and time-consuming task.

Model-Based Testing (MBT) is a testing method in which the test cases are

automatically generated from a model which describes the behaviour of the System

Under Test (SUT). MBT uses models of different nature to drive test generation.

Utting et al. [1] have identified four different MBT techniques: i) generation of test

data from a domain model; ii) generation of test cases from an environmental model;

iii) generation of test cases with oracle from a behaviour model; iv) generation of test

cases from abstract tests.

The first kind of MBT model is the information about the domains of the input

values. In this model, the test generation involves selection and combination of a

subset of those values to produce test input data. The second kind of MBT employs a

different meaning of model, which describes the expected environment of the SUT.

An example of this kind of MBT is described in [2], in which the model is a statistic

description of the expected usage of the SUT. The third meaning of model describes

the expected behaviour of the SUT, such as the relationship between its inputs and

outputs. The fourth meaning of MBT employs an abstract description of a test case,

such as an UML sequence diagram. That abstract test case is transformed into a low-

level executable test case.

Another key topic in MBT is the model checking. A model checker is a tool which

takes as input an automaton based model of a system and a temporal logic property,

and then explores the entire state space of the system in order to determine if the

model violates the property or not. The actual implementation of the model is

influenced by the environment, such as the platform, compiler, and so on. For this

reason, any kind of testing is required. The main challenge of testing with model

checkers is to force the model checker to systematically create sets of

1 http://itea-mosis.org/
2 http://www.omgwiki.org/variability/doku.php

counterexamples as test cases, which can then be used as a complete test suite.

Callahan et al. [3] and Engels et al. [4] initially proposed the use of model checkers

for the automated generation of test cases. The most commonly employed model

checkers are the explicit state model checker SPIN [5] (Simple Promela Interpreter),

the Symbolic Analysis Laboratory SAL [6], which supports both symbolic and

bounded model checking, and the symbolic model checker SMV [7] and its derivative

NuSMV [8], which both support symbolic and bounded model checking.

2.2 Software Product Lines and Variability

A Software Product Line (SPL) is a set of software-intensive systems sharing

common features and satisfying some specific needs, and developed from a common

set of domain artifacts. The domain is defined as the space of knowledge driven by

business requirements and characterized by some concepts and terminology

understood by specific stakeholders [9].

In a product line with a large number of products and requirements, managing

variability can become a problematic task. Consequently, the management of

variability plays a crucial role in successful Software Product Line engineering. A

solution to that problem is the variability modeling, which captures the essence of

how one product is similar, but still different from another. The competence of

domain experts of one or more product line can be synthesized into a Domain

Specific Language (DSL).

CVL (Common Variability Language) is a language for specifying variability in a

way that is common to DSLs [10]. The main concepts in CVL are substitutions.

Model elements are related by means of references. The CVL model points out model

elements of the base product line model and defines how these model elements shall

be manipulated to yield a new product model. There are three kinds of substitutions:

value substitution, reference substitution and fragment substitution.

CVL has been defined as a metamodel. The element root is named CVLModel. It

contains a variability specification, i.e. the variability model, and one or more

resolution models. The variability specification can be divided into two groups: i)

executable primitive, which specifies the CVL execution; ii) declaration, which

specifies elements on which the executable primitives work. The executable

primitives can also be divided in two groups: composite variability and iterator. While

all executable elements in a composite variability will be executed, the iterator

represents a choice, where the resolution model can make a selection of the contained

executable primitives.

The semantics of CVL is described by a model-to-model transformation that

relates to the actual base language through reflection mechanisms. This

transformation has been implemented in an extended version of MOFScript3 which, in

addition to model-to-text generation capabilities also supports model-to-model

transformations.

3 http://www.eclipse.org/gmt/mofscript/

3 Method

The aim of this paper is the application of a MBT approach for SPL driven by UML

and CVL models. This approach can be classified within the fourth kind of MBT

techniques described in section 2.1. This approach has been implemented by means of

a model checker tool prototype, which is composed of the following components, as

seen in Fig. 1:

Fig. 1. Tool chain components.

First of all, we create a UML state diagram, which models the behavior of the base

system. We also create, using CVL-Tool [11], a CVL model expressing the variability

that can be applied to the state diagram. The result of the combination of these two

models, again using CVL-Tool, is a set of UML state diagrams, each one of them

representing a product of the whole product line derived from the original UML state

diagram. The elements handled by the CVL-Tool are described in the following table:

Table 1. Summary of the CVL elements.

Element Symbol Description

CompositeVariability An ordered set of Variability Specifications.

Invocation Instantiation of a type, execution of the executable

primitives of its body, and yielding as result a

ReplacementFragmentReference.

Assignment Assign an instance of a replacement fragment to a

ReplacementFragmentReference.

AND Boolean operator AND.

OR Boolean operator OR.

IMPLIES Boolean operator IMPLIES.

NOT Boolean operator NOT.

ExecutablePrimitiveTerm Boolean ?

Choice Multiplicity, XOR, OR.

ReferenceSubstitution A substitution that will change a reference attribute in

the base model.

PlacementObject A fragment of the base model that will be replaced by

a ReplacementFragment during the variability

transformation.

ReplacementObject Model element that references attribute will denote

after a reference substitution.

FragmentSubstitution Substitutes a fragment of the base model with another

fragment of the base model.

PlacementFragment A fragment of the base model that will be replaced by

a ReplacementFragment during the variability

transformation.

ReplacementFragment A fragment of the base model that will be used as

replacement for some placement fragment of the base

model.

ValueSubstitution A substitution that will change the value of an attribute

of a base model element.

PlacementValue A placement value represents a value-typed attribute

of the model element denoted by targetObject, an

attribute that by a ValueSubstitution may get a new

value represented by a ReplacementValue.

ReplacementValue A value to replace the value of an attribute represented

by a PlacementValue.

After this step, we apply a transformation to these UML state diagrams and create

a GraphML4 model from each of them. GraphML is an XML-based file format for

graphs specified in [12]. The following stage generates the test listing from the finite-

state machine in GraphML format. This work is carried out by the MBT

implementation tool by Tigris5. A test listing is an ordered enumeration of the states

and transitions that are traversed in a particular execution of the modeled system.

Several listings can be produced by the MBT tool modifying the invocation

parameters. This way, each test listing can have a particular purpose. Examples of this

include a listing which traverses all the states of the diagram at least once, a listing

which crosses a particular state at least twice or a listing which does not to traverse a

set of transitions. Our tool prototype generates the test suite based on pluggable JUnit

templates. This suite contains a test case for each of the states of the diagram,

transitions, or both. The test case created is currently a simple skeleton that could be

filled by a human tester.

Finally, we take each of the listings and invoke the corresponding test cases for

each of the states and transitions contained in it in order. This execution is fully

carried out by our tool. A verdict for each listing is produced, informing if the tests

have been passed or failed.

This process has been automated with a set of Ant scripts. This way, the user does

not need to know the inner workings of all the components and only needs to provide

basic configuration parameters.

4 http://graphml.graphdrawing.org/
5 http://mbt.tigris.org/

http://graphml.graphdrawing.org/

4 Validation

To discuss the validity of our approach we have developed a tool chain prototype.

This prototype aims to provide at least some basic functionality that enables us to

study the consequences of using MBT with a product line. With this tool, we have

created a sample product line using a UML state diagram and a CVL model, and

generated and executed a set of tests for it.

With the tool developed, we can now generate and execute tests in a sample

scenario. This scenario is composed of a UML state diagram representing a call

processing system for a telecommunications company. This state machine has been

created using the UML2 modeling platform by Eclipse6. This diagram shows the basic

functionality of the system and is depicted in the following figure:

Fig. 2. State diagram of a call processing system.

6 http://www.eclipse.org/modeling/

To represent the different services that can be offered by the company, this

scenario is also composed of a CVL model (in Fig. 3) which represents the variability

that can be applied to the base model. The CVL model defines three variations of the

UML model. The meaning of the CVL icons can be checked in Table 1. The first

variation is basically the same that the original one but changing the name of one

state. The second one changes a fragment of the UML model. The fragment is defined

in CVL by a set of boundary elements. In this case study a fragment means a

collection of states: InProcces1 and Request_Close1. Finally the third variation of the

model changes an object of the UML, the Request_Close1 state. Therefore, with these

two models (UML and CVL) our SPL is fully defined.

Fig. 3. CVL model.

Using these models as input for our tool chain we generated and executed several

test listings for each product, experiencing a huge increment in efficiency from a

manual approach. Below is a fragment of one of the test listings produced in the case

study:

...

Pending1

Stop1

Stopped1

Close1

Closed1

e_fin

Start

Process1

PreProcess1

Error1

Exception1

Resolve1

PreProcess1

Error1

Exception1

Resolve1

PreProcess1

OK

Pending1

...

And here is the skeleton of the test case corresponding to the Stop1 state:

/**

 * This method implements the Edge 'Stop1'

 */

 public void testStop1()

 {

 log.info("Edge: Stop1");

 throw new RuntimeException("The Edge: Stop1 is not

implemented yet!");

 }

Although the test cases still needed to be completed manually, the process of

selecting the way in which each state diagram needs to be traversed was completely

automated. The manual definition of these paths to test certain requirements would

have taken a huge amount of time. Moreover, this time grows exponentially with the

number of states and transitions in the diagram, making it impractical without

automation for some situations.

In addition to these results, two important concerns have arisen from the execution

of this process. First we noticed that, during the test listing generation phase of the

process, in some cases an error prevented some test listings from being created. This

was due to the fact that after the variability has been applied, some of the produced

UML state diagrams were left with some states that were unreachable under some

conditions, from which no end state could be reached, or with other kind of structural

problems. Therefore, the generation of a test listing discovered errors in the structure

of some state diagrams. If instead of automating the traversing of each of the

produced diagrams a manual approach would have been used, the discovery of some

of these errors would have taken a huge effort. Or in some cases they might not even

be uncovered at all. This advantage is more noticeable the bigger the product line is.

The other concern is the test case reusability. Comparing the test executions for

different state diagrams we observed that the test cases of which they were composed

were the same in most executions. This way, although the order of the test cases and a

small amount of them are different from one product to another, a lot of effort in the

definition of them can be saved with the creation of these tests from the original UML

state diagram and the CVL model, instead from the UML state diagrams resulting

from the combination of the two.

5 Conclusions

In this paper we have proposed an approach to automate the generation and execution

of tests cases in software product lines. For this approach we have employed two

different methodologies: variability to express the differences between the products

instead of defining each one individually, and Model-Based Testing to automate the

generation and execution of tests. The gap between these two methodologies has been

filled with the CVL modeling language, which expresses variability by means of

models.

The final result of the presented work is two-folded. On one hand, we have

developed a method and a tool prototype for Model-Based Testing based on the usage

of UML plus CVL as inputs. This prototype tool chain produces and executes tests

from a UML state diagram representing the behavior of a system, and a CVL model

representing the variability. It is based on Eclipse technologies, using the UML2

plugins and the CVL-Tool. The output of this prototype is a set of JUnit test suites for

the UML family described by the input (UML plus CVL). On the other hand, we have

validated this approach by means of a case study (a call processing system) and found

that, on top of the reduced manpower that this approach needs compared to a

traditional one, other benefits can be gained from it. One of these benefits is an

improvement in the capability of detecting errors in the structural integrity of all the

products of the product line. The other is the possibility of reusing individual test

cases in several products and generating them from the original model plus the CVL

model instead of the models of the whole product line.

This benefit is particularly promising and should be developed further. Our future

work will be dedicated to extend this approach by introducing constraints within the

input model. These constraints will be implemented using the declarative language

Object Constraint Language (OCL) linked to the UML model [13]. Our prototype will

map the OCL constraints to different JUnit assertions.

Acknowledgements

This research project has been performed in the context of the European project

ITEA-MOSIS (project number 06035), under grant by Spanish Ministerio de

Industria, Turismo y Comercio in the PROFIT program.

References

1. Utting, M., and Legeard, B.: Practical Model Based Testing: A Tools Approach, Morgan

Kaufmann 1st ed., 2006. ISBN: 978-0123725011, 456p.

2. S. J. Prowell. JUMBL: A tool for model-based statistical testing. In Proceedings of the

36th Annual Hawaii International Conference on System Sciences, 331–345. IEEE, 2003.

3. Callahan, J., Schneider. F., Easterbrook, S. Automated Software Testing UsingModel-

Checking. In Proceedings 1996 SPIN Workshop, August 1996. Also WVU Technical

Report NASAIVV-96-022.

4. Engels, A., Feijs, L., and Mauw, S.: Test generation for intelligent networks using model

checking. In Ed Brinksma, editor, Proceedings of the Third International Workshop on

Tools and Algorithms for the Construction and Analysis of Systems. (TACAS’97),

volume 1217 of Lecture Notes in Computer Science, Enschede, the Netherlands, April

1997. Springer-Verlag.

5. Holzmann, G.J.: The Model Checker SPIN. IEEE Trans. Softw. Eng., 23(5):279–295,

1997. ISSN 0098-5589. doi: 10.1109/32.588521.

6. DeMoura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., and Tiwari, A. SAL

2. In Rajeev Alur and Doron Peled, editors, Computer-Aided Verification, CAV 2004,

volume 3114 of Lecture Notes in Computer Science, pages 496–500, Boston, MA, July

2004. Springer-Verlag.

7. K.L. McMillan. The SMV system. Technical Report CMU-CS-92-131, Carnegie-Mellon

University, 1992.

8. Cimatti, A., Clarke, E. M., Giunchiglia, F., and Roveri, M. NUSMV: A New

SymbolicModel Verifier. In CAV ’99: Proceedings of the 11th International Conference

on Computer Aided Verification, pages 495–499, London, UK, 1999. Springer-Verlag.

ISBN 3-540-66202-2.

9. Käkölä, T., Dueñas, J.C.: Software Product Lines: Research Issues in Engineering and

Management. Springer. 2006. ISBN: 3540332529

10. Franck, F., Øystein, H., Birger, M., Gøran, O., Andreas, S., Xiaorui, Z.: A Generic

Language and Tool for Variability Modeling. Cooperative and Trusted Systems.

University of Oslo. SINTEF. ISBN 9788214044676

11. Øystein, H., Møller-Pedersen, O., Svendsen, O.: Adding standardized variability to

domain specific languages”. In B. Geppert and K. Pohl, editors, Software Product Lines,

12th International Conference, (SPLC 2008) Proceedings, volume 1, pages 139–148,

September 2008, Limerick, Ireland.

12. Brandes U. et al. 2002. GraphML Progress Report: Structural Layer Proposal. Proceedings

of 9th International Symposium of Graph Drawing (GD '01). LNCS 2265, pp. 501-512.
Springer-Verlag.

13. Object Management Group (OMG); Object Constraint Language (OCL) Specification.

Version 2.0. June 2006.

