This perspective chapter briefly surveys: (1) past growth in the use of
Bayesian methods in astrophysics; (2) current misconceptions about both
frequentist and Bayesian statistical inference that hinder wider adoption of
Bayesian methods by astronomers; and (3) multilevel (hierarchical) Bayesian
modeling as a major future direction for research in Bayesian astrostatistics,
exemplified in part by presentations at the first ISI invited session on
astrostatistics, commemorated in this volume. It closes with an intentionally
provocative recommendation for astronomical survey data reporting, motivated by
the multilevel Bayesian perspective on modeling cosmic populations: that
astronomers cease producing catalogs of estimated fluxes and other source
properties from surveys. Instead, summaries of likelihood functions (or
marginal likelihood functions) for source properties should be reported (not
posterior probability density functions), including nontrivial summaries (not
simply upper limits) for candidate objects that do not pass traditional
detection thresholds.Comment: 27 pp, 4 figures. A lightly revised version of a chapter in
"Astrostatistical Challenges for the New Astronomy" (Joseph M. Hilbe, ed.,
Springer, New York, forthcoming in 2012), the inaugural volume for the
Springer Series in Astrostatistics. Version 2 has minor clarifications and an
additional referenc