10 research outputs found

    Statistical assessment of eigenvector-based target decomposition theorems in radar polarimetry

    Get PDF
    © 2005 IEEE.Carlos López-Martínez, Eric Pottier and Shane R. Cloud

    The Performance Analysis Based on SAR Sample Covariance Matrix

    Get PDF
    Multi-channel systems appear in several fields of application in science. In the Synthetic Aperture Radar (SAR) context, multi-channel systems may refer to different domains, as multi-polarization, multi-interferometric or multi-temporal data, or even a combination of them. Due to the inherent speckle phenomenon present in SAR images, the statistical description of the data is almost mandatory for its utilization. The complex images acquired over natural media present in general zero-mean circular Gaussian characteristics. In this case, second order statistics as the multi-channel covariance matrix fully describe the data. For practical situations however, the covariance matrix has to be estimated using a limited number of samples, and this sample covariance matrix follow the complex Wishart distribution. In this context, the eigendecomposition of the multi-channel covariance matrix has been shown in different areas of high relevance regarding the physical properties of the imaged scene. Specifically, the maximum eigenvalue of the covariance matrix has been frequently used in different applications as target or change detection, estimation of the dominant scattering mechanism in polarimetric data, moving target indication, etc. In this paper, the statistical behavior of the maximum eigenvalue derived from the eigendecomposition of the sample multi-channel covariance matrix in terms of multi-channel SAR images is simplified for SAR community. Validation is performed against simulated data and examples of estimation and detection problems using the analytical expressions are as well given

    Studies of the Deepwater Horizon Oil Spill With the UAVSAR Radar

    Get PDF
    On 22- 23 June 2010, the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L band radar imaged the Deepwater Horizon oil spill and the effects of oil that was transported within the Gulf of Mexico. We describe the campaign and discuss the unique contributions of the UAVSAR radar to the study of the detection, migration, and impact of oil from the spill. We present an overview of UAVSAR data analyses that support the original science goals of the campaign, namely, (1) algorithm development for oil slick detection and characterization, (2) mapping of oil intrusion into coastal wetlands and intercoastal waterways, and (3) ecosystem impact studies. Our study area focuses on oil-affected wetlands in Barataria Bay, Louisiana. The results indicate that fine resolution, low-noise, L band radar can detect surface oil-on-water with sufficient sensitivity to identify regions in a slick with different types of oil/emulsions and/or oil coverage; identify oil on waters in inland bays and differentiate mixed/weathered oil from fresh oil as it moves into the area; identify areas of potentially impacted wetlands and vegetation in the marshes; and support the crisis response through location of compromised booms and heavily oiled beaches

    Statistical modeling of polarimetric SAR data: a survey and challenges

    Get PDF
    Knowledge of the exact statistical properties of the signal plays an important role in the applications of Polarimetric Synthetic Aperture Radar (PolSAR) data. In the last three decades, a considerable research effort has been devoted to finding accurate statistical models for PolSAR data, and a number of distributions have been proposed. In order to see the differences of various models and to make a comparison among them, a survey is provided in this paper. Texture models, which could capture the non-Gaussian behavior observed in high resolution data, and yet keep a compact mathematical form, are mainly explained. Probability density functions for the single look data and the multilook data are reviewed, as well as the advantages and applicable context of those models. As a summary, challenges in the area of statistical analysis of PolSAR data are also discussed.Peer ReviewedPostprint (published version

    PolSAR Time Series Processing With Binary Partition Trees

    Full text link

    Cloude, “Statistical assessment of eigenvector-based target decomposition theorems in radar polarimetry

    No full text
    Abstract-This paper concerns the analytical study of the eigen decomposition of hermitian, positive semidefinite matrices applied to PolSAR data analysis. Based on the Gaussian scattering assumption for multidimensional SAR data, the joint distribution of the sample eigenvalues of the coherency, or covariance, matrices is derived for a general case. The distribution is particularized for PolSAR data, and the moments of the sample eigenvalues, the entropy (H), and the anisotropy (A) are analyzed. SAR Polarimetry, target decomposition theorems, speckle noise, statistical characterization

    Multidimensional SAR data representation and processing based on Binary Partition Trees

    Get PDF
    English: A novel multidimensional SAR data abstraction is presented, based on Binary Partition Trees (BPT). This data abstraction is employed for different applications, as data filtering and segmentation, change detection, etc. The BPT can be contructed from a Polarimetric SAR (PolSAR) image or from a serie of coregistered acquisitions, conforming a tool that enables the systematic exploitation of PolSAR datasets simultaneously in the space and time dimensions.Castellano: na nueva abstracción de datos SAR multidimensionales es presentada, basada en Árboles de Partición Binaria (BPT). Esta abstracción de datos se emplea para distintas aplicaciones, como filtrado, segmentación, detección de cambios, etc. El BPT puede construirse a partir de una imagen SAR polarimétrica o de una serie temporal de imágenes, siendo una herramienta que permite la explotación sistemática de sets de datos PolSAR simultáneamente en espacio y tiempo.Català: Una nova abstracció de dades SAR multidimensionals és presentada, basada en Arbres de Partició Binària (BPT). Aquesta abstracció de dades s'empra per a diferents aplicacions, com filtrat, segmentació, detecció de canvis, etc. El BPT es pot construir a partir d'una imatge SAR polarimètrica o d'una sèrie temporal d'imatges, sent una eina que permet l'explotació sistemàtica de sets de dades PolSAR simultàniament en espai i temps

    Study of the speckle noise effects over the eigen decomposition of polarimetric SAR data: a review

    No full text
    This paper is focused on considering the effects of speckle noise on the eigen decomposition of the co- herency matrix. Based on a perturbation analysis of the matrix, it is possible to obtain an analytical expression for the mean value of the eigenvalues and the eigenvectors, as well as for the Entropy, the Anisotroopy and the dif- ferent a angles. The analytical expressions are compared against simulated polarimetric SAR data, demonstrating the correctness of the different expressions.Peer ReviewedPostprint (published version

    Coherent Change Detection Under a Forest Canopy

    Get PDF
    Coherent change detection (CCD) is an established technique for remotely monitoring landscapes with minimal vegetation or buildings. By evaluating the local complex correlation between a pair of synthetic aperture radar (SAR) images acquired on repeat passes of an airborne or spaceborne imaging radar system, a map of the scene coherence is obtained. Subtle disturbances of the ground are detected as areas of low coherence in the surface clutter. This thesis investigates extending CCD to monitor the ground in a forest. It is formulated as a multichannel dual-layer coherence estimation problem, where the coherence of scattering from the ground is estimated after suppressing interference from the canopy by vertically beamforming multiple image channels acquired at slightly different grazing angles on each pass. This 3D SAR beamforming must preserve the phase of the ground response. The choice of operating wavelength is considered in terms of the trade-off between foliage penetration and change sensitivity. A framework for comparing the performance of different radar designs and beamforming algorithms, as well as assessing the sensitivity to error, is built around the random-volume-over-ground (RVOG) model of forest scattering. If the ground and volume scattering contributions in the received echo are of similar strength, it is shown that an L-band array of just three channels can provide enough volume attenuation to permit reasonable estimation of the ground coherence. The proposed method is demonstrated using an RVOG clutter simulation and a modified version of the physics-based SAR image simulator PolSARproSim. Receiver operating characteristics show that whilst ordinary single-channel CCD is unusable when a canopy is present, 3D SAR CCD permits reasonable detection performance. A novel polarimetric filtering algorithm is also proposed to remove contributions from the ground-trunk double-bounce scattering mechanism, which may mask changes on the ground near trees. To enable this kind of polarimetric processing, fully polarimetric data must be acquired and calibrated. Motivated by an interim version of the Ingara airborne imaging radar, which used a pair of helical antennas to acquire circularly polarised data, techniques for the estimation of polarimetric distortion in the circular basis are investigated. It is shown that the standard approach to estimating cross-talk in the linear basis, whereby expressions for the distortion of reflection-symmetric clutter are linearised and solved, cannot be adapted to the circular basis, because the first-order effects of individual cross-talk parameters cannot be distinguished. An alternative approach is proposed that uses ordinary and gridded trihedral corner reflectors, and optionally dihedrals, to iteratively estimate the channel imbalance and cross-talk parameters. Monte Carlo simulations show that the method reliably converges to the true parameter values. Ingara data is calibrated using the method, with broadly consistent parameter estimates obtained across flights. Genuine scene changes may be masked by coherence loss that arises when the bands of spatial frequencies supported by the two passes do not match. Trimming the spatial-frequency bands to their common area of support would remove these uncorrelated contributions, but the bands, and therefore the required trim, depend on the effective collection geometry at each pixel position. The precise dependence on local slope and collection geometry is derived in this thesis. Standard methods of SAR image formation use a flat focal plane and allow only a single global trim, which leads to spatially varying coherence loss when the terrain is undulating. An image-formation algorithm is detailed that exploits the flexibility offered by back-projection not only to focus the image onto a surface matched to the scene topography but also to allow spatially adaptive trimming. Improved coherence is demonstrated in simulation and using data from two airborne radar systems.Thesis (Ph.D.) -- University of Adelaide, School of Electrical & Electronic Engineering, 202
    corecore