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Chapter 1

Introduction and objectives

Remote sensing allows the extraction of information about an object or phenomenon with-

out having direct contact with it. It is based on the matter interaction with the electro-

magnetic energy and it covers all the process of acquisition, processing and interpretation

of the data.

The utility and interest about remote sensing has experienced an unprecedented boom

in recent years, specially with the ability to gather information about the Earth from the

space at planetary scales, employing sensors on board satellites and spaceships. Remote

sensing can be very helpful to generate, for example, maps and digital terrain models,

being of great interest today, but the amount of information that can be extracted does

not end here and constantly new applications are appearing. Currently, remote sensing

can be employed to perform weather and ocean forecasting, to predict natural disasters, for

biological and biophysical monitoring, achieve forest inventory information and biomass

measures, desertification control, etc. It is also possible to monitor the vessel traffic, the

evolution of the urban areas and, in general, the environmental effects produced by the

human beings.

The different technologies employed in remote sensing can be classified according to

different criteria. On one hand, they can be classified depending on the electromagnetic

source employed for illumination; there are systems having their own illumination source,

also called active systems, while others are employing an external source to the system,

such as either the Sun or just measuring the radiation emitted by the target, which are

called passive systems. On the other hand, they can be classified according to the range

of the electromagnetic spectrum employed, as for instance, microwave, infrared or optical

systems. This master thesis deals with Synthetic Aperture Radar (SAR) systems, which
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4 CHAPTER 1. INTRODUCTION AND OBJECTIVES

can be classified, according to the previously defined criteria, as active systems working

at the microwave frequencies.

The SAR technology was born at the beginning of the ’50s, when an important improve-

ment in the spatial resolution of the radars was achieved in the flight direction through a

coherent registering of the returned radar echoes for being further processed. Since then,

SAR systems have become more popular over the years since they can monitor a great cov-

erage that can increase up to a planetary coverage if they are on board a satellite, and they

present a high spatial resolution. Additionally, since it is an active system operating at

the microwave wavelengths, it is independent of the weather and the night and day cycles,

since the atmosphere is almost transparent at these frequencies. At the beginning, SAR

systems only operated at one frequency and polarization state but, rapidly, the technol-

ogy has evolved greatly with the introduction of multidimensional sensors. These sensors

are capable of acquiring simultaneously different images of the scene by changing some

parameter, which has enabled the emergence of the SAR polarimetry and interferometry.

This thesis has been developed employing Polarimetric SAR (PolSAR) data.

The electromagnetic wave polarization makes reference to the vectorial nature of the

electric and magnetic fields conforming it. It is possible to generate waves having the

electric field moving over different planes and, thus, having a different interaction with

the targets depending in their physical structure and morphology. Polarimetric SAR

systems (PolSAR) obtain multidimensional images by combining different polarizations of

the incident and reflected waves.

In most of the cases in SAR systems, the size of the resolution cell is much larger

than the wavelength and, thus, the measured echo is a coherent combination of all the

individual targets within that cell. This coherent combination may be constructive or

destructive, and it appears over the SAR images with a characteristic granularity known

as speckle. Although the speckle is real electromagnetic measure, from the point of view

of the acquisition system it is considered as noise, since it can not be predicted accurately

and is contaminating the measure of the reflectivity of the resolution cell. The useful

information, then, may be extracted from the statistics of the speckle term.

There are a wide number of techniques to extract these statistics and eliminate, as far

as possible, the contaminant effect of the speckle term in SAR images. The most basic

technique is to average the image values over the image using a particular window, usually

a rectangular window, which is also known as the multilook filter. In fact, this estimation

corresponds to the Maximum Likelihood Estimator (MLE) of the reflectivity. Then, by

applying the multilook, the reduction factor of the speckle is proportional to the number

of samples averaged and inversely proportional to the resulting resolution. In this sense, it

is not a good technique, since it implies a resolution loss and it is one of the most valuable
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advantages of the SAR systems.

The latest speckle filtering techniques are focused in a different direction, since it only

makes sense to average pixels over the image having the same statistical distribution, that

is, over homogeneous regions. If it were possible to delimit correctly these homogeneous

regions over the image, then it would be possible to average over homogeneous regions

only, obtaining results with higher quality and also preserving the spatial resolution of the

original images. The latest techniques try to adapt to the image structure by employing

different methods, however this adaptation is extremely difficult due to the speckle noise,

then it seems the classical catch-22 situation, since to filter the speckle noise an adaptation

to the image structure is needed but to achieve this adaptation properly some speckle

filtering is needed.

Some state-of-the-art techniques try to achieve this adaptation by selecting between

different directed windows or by defining an adaptive homogeneous neighborhood around

each pixels, however they have some inconveniences in spatial structure adaptation or they

introduce some distortion over the estimated data. In this thesis a different technique is

proposed, based on generating an image abstraction based on a Binary Partition Tree

(BPT), representing the image structure at different scales. This technique has been

employed for image processing, achieving good results, but it needs an adaptation to be

able to process PolSAR data. This adaptation to the different PolSAR datasets will be

analyzed and described and it will be employed for different applications like the speckle

filtering, coastline segmentation or change detection.

Then, the objectives for this thesis are the design, implementation and evaluation of

different BPT based applications employing polarimetric SAR images. It includes the

adaptation and the PolSAR data modeling to be able to generate properly its BPT rep-

resentation, and the BPT exploitation for different applications. On this thesis, the BPT

representation has been employed to process single PolSAR images and also series of im-

ages acquired at different dates, to study also the temporal dimension of the data.

In this work, interesting and promising results have been obtained, demonstrating the

ability of the technique to adapt to the image structure at different detail levels. It has

improved the evaluated speckle filtering techniques by achieving a better estimation of the

scene reflection parameters while also having a good preservation of the spatial resolution.

Then, it opens the door to apply this technique to different applications, since the BPT

representation contains a lot of useful information about the image structure at different

scales, making it very useful for other purposes than the ones analyzed in this thesis, as,

for instance, classification, information extraction, target location, etc.

This manuscript has been divided into seven different chapters that will be described

briefly.
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The first chapter, as an introduction, put the reader in position to the scope of this

work and its objectives. The second chapter makes a brief description of the concepts

related to SAR and PolSAR systems. The problem of the speckle noise is described more

elaborately, and some of the state-of-the-art speckle filtering techniques are defined.

In the third chapter, the BPT is presented as a data abstraction. Its structure is

defined in detail and all the concepts related to its construction process are presented and

described. All the algorithms employed for the BPT construction and its exploitation will

be presented and a generic BPT-based processing scheme is proposed. Finally, an analysis

of the processing scheme complexity is briefly described.

The fourth chapter particularizes the generic BPT processing scheme to the specific

case of the polarimetric SAR data. It presents a region model for this data and different

similarity measures that will be employed and analyzed for the BPT construction process.

The fifth chapter is devoted to the definition and analysis of different PolSAR im-

age applications based on the BPT exploitation. Different BPT pruning strategies are

proposed and compared and a detailed analysis es performed for the speckle filtering ap-

plication, by employing real and simulated data. This approach is compared with other

state-of-the-art speckle filtering techniques and some qualitative and quantitative analysis

are performed to state the performance of the technique. Additionally, the BPT will be

employed for a completely different application, that is, coastline segmentation. Although

it is not evaluated as in detail as the speckle filtering application, it can give an idea of

the BPT exploitation at completely different detail scales and its usefulness for different

applications.

The sixth chapter makes an extension of the previously defined approach to the tem-

poral dimension. A set of coregistered PolSAR images acquired at different dates are used

to generate a space-time BPT representation, detecting the structure of the dataset in

the space and time dimensions simultaneously. Speckle filtering application is considered

over this space-time dataset and it is compared with the two-dimensional filtering defined

in the previous chapter. Change detection application in the temporal dimension is also

considered, generating maps of the number of changes on this dimension, giving an idea

of the temporal stability of the different regions on the scene.

Finally, chapter 7 presents the most relevant conclusions after this research work and

some possible future research lines are mentioned.

Additionally, in the appendices, a compilation of all the publications related to the

subject of this master thesis can be found.



Chapter 2

SAR and PolSAR

This chapter is devoted to make an introduction of the main concepts referring to SAR and

PolSAR systems. In Section 2.1 the foundations of SAR will be presented. SAR imaging

systems will be presented and a statistical description of SAR data will be described,

including the analysis of the speckle term present in this data.

In Section 2.2 polarimetric SAR systems (PolSAR) will be introduced. The electro-

magnetic wave polarimetry and its exploitation by PolSAR multichannel systems will be

described. Under this new framework, the statistical description and modeling of the

polarimetric data will be addressed.

2.1 Synthetic Aperture Radar

SAR systems are based on a coherent imaging technique at microwave frequency to gen-

erate a high resolution images about the complex reflectivity of the Earth surface. The

main difference of the SAR systems in comparison with other remote sensing imaging

systems, like the optical imaging sensors, is that SAR systems are active systems, that is,

they produce their own illumination source. Thus, they are independent of most of the

natural processes, including night and day cycles and weather state, making SAR an all

condition imaging system. Additionally, since they are working at microwave frequency,

SAR systems can detect some physical phenomenon only seen at these frequencies. Then,

SAR technique may be seen as a valuable complement to other remote sensing techniques.
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8 CHAPTER 2. SAR AND POLSAR

2.1.1 Basic concepts

In a typical radar system, a pulse is generated and conducted to the transmitting antenna,

where it is emitted as an electromagnetic wave to the target. When the wave hits the

target, part of its energy is re-radiated backwards toward the transmitter. This reflected

electromagnetic wave, also known as radar echo, is captured again by the antenna and

conducted towards the receiver, where it can be detected and processed.

A SAR system is able to obtain a high resolution image of the observed scene reflectivity

by coherently processing the different radar echoes obtained at different positions. Thus,

SAR systems are typically onboard a moving platform, usually an airplane or a satellite.

In this context, the azimuth direction is defined as the flight direction, which defines the

movement of the radar. The radar beam is slanted from the nadir direction to a direction

perpendicular to the flight direction, known as range direction. Since the radar is moving,

a footprint is generated by the antenna beam, referred as swath.

The resolution δ of an imaging system can be defined as the minimum separation of

two targets to be detected and distinguished as two different targets at different positions.

In SAR systems, since they are two-dimensional imaging systems, different resolutions can

be achieved in range δr and azimuth δa dimensions. The range resolution δr is related with

the radar pulse duration τp or inversely related with the signal bandwidth B

δr = c
τp
2

=
c

2B
(2.1)

where c stands for the propagation speed of the electromagnetic waves in the medium.

To obtain a good quality in terms of the Signal to Noise Ratio (SNR) with a short pulse

duration τp high energy pulses must be generated. In practice, with real transmitters, it

is not possible to achieve short pulses having high energy at the same time. However,

pulse compression techniques can be employed to solve this problem, by transmitting a

long modulated pulse wich is processed afterwards by a matched filter [1] [2], compressing

it to a duration equivalent to 1/B. Employing this technique, the pulse energy can be

increased and simultaneously a good range resolution can be obtained.

In a classical radar, the azimuth resolution is defined the antenna angular beam width

θa, which is proportional to

θa ∝
λ

Da
(2.2)

where λ refers to wavelength and Da is the antenna length in the azimuth direction. Then,

the resolution in the azimuth direction δa will be

δa = r0
λ

Da
(2.3)

where r0 represents the range distance between the antenna and the target. Note that

for radars onboard a satellite platform, good azimuth resolution, in the order of meters,
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Figure 2.1: Synthetic aperture radar principle

can only be obtained with very large antennas, in the order of kilometers length in the

azimuth direction, which is completely unfeasible.

Azimuth resolution can be effectively increased by applying the concept of synthetic

aperture [3] [4] [5]. In fact, SAR is based on employing the movement of the platform in

the azimuth direction to build an antenna array with an effective length much larger than

the physical length of the receiver antenna. Each element of the array is the same receiver

antenna which is transported to all of its positions. Fig. 2.1 shows the synthetic aperture

principle for a SAR system geometry.

Then, similarly to a real aperture radar, the angular beam width θsa, corresponding

to a synthetic antenna of azimuth length Le would be

θsa =
λ

2Le
. (2.4)

The factor 2 is related to the phase difference produced by the two way travel from

the antenna to the target. Then, the azimuth resolution δa with this synthetic aperture

will be

δa = r0
λ

2Le
. (2.5)

The maximum length Le of the synthetic aperture for a target at a range distance r0

will be limited by traveled distance in the amount of time on which the target is illuminated

by the antenna. Then, this maximum length can be bounded

Le <
λro
Da

. (2.6)
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This limitation is also bounding the maximum azimuth resolution δa that can be

achieved by the synthetic aperture

δa =
Da

2
. (2.7)

Note that for a SAR system the azimuth resolution δa does not depend neither on

the distance to the target r0 nor th wavelength λ. The azimuth resolution only depends

on the antenna size in the azimuth dimension Da and, then, the smaller the antenna the

higher the resolution. This surprising result is caused by the fact that, the smaller the

antenna, the larger is the angular beam width θa, and also the time on which the target is

illuminated by the antenna is enlarged, making possible a bigger synthetic aperture. The

same can be applied to the distance of the target r0, having larger synthetic apertures for

farther targets.

2.1.2 SAR system impulse response

The SAR imaging process can be separated into two different stages: the data acquisition

and the data focusing. At the first stage, the data is acquired, by transmitting a set of

electromagnetic pulses that are reflected by the scene, then, the different radar echoes

reflected are captured by the system and are finally registered. This type of data is called

raw data and can not be directly related with the reflectivity of the scene. To obtain this

scene reflectivity data a focusing process has to be done over the raw data, by effectively

merging all the information referring to each target which is spread across the raw data.

A proper definition of the SAR imaging process can be obtained only if the impulse

response of the SAR system is known, that is, the response of the system to a single

point target, including both processes: the data acquisition and image focusing. This

type of target, assuming that there is only one small target producing only one radar

echo at a given resolution cell, is known as a point target or single target. When the

impulse response is known, the complete image can be interpreted as a combination of the

contributions of an arbitrary number of single targets.

The complex SAR image obtained to the output of the system for a point target at

coordinates (x0, r0) is

S(x, r) = σs(x0, r0) · exp

(
j

4π

λ
(r − r0)

)
· sinc

(
π(r − r0)

δr

)
· sinc

(
π(x− x0)

δa

)
(2.8)

where σs(xo, r0) refers to the complex Radar Cross Section (RCS) of the target [6] [7] [8].

From (2.8), it can be seen that the SAR system impulse response, including the acquisition

and focusing stages, is proportional to

h(x, r) ∝ exp

(
j

4π

λ
r

)
· sinc

(
πr

δr

)
· sinc

(
πx

δa

)
. (2.9)
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Scene

Resolution Cell Point scatterer

Figure 2.2: Resolution cell representation having multiple individual targets within

Then, from (2.9), the impulse response of the SAR system can be seen as a rectangular

filter with a bandwidth in range dimension equal to 2B/c and 2/Da in azimuth direction

[3] [9] [10]. Additionally, from (2.9) the phase term associated to the range delay can

be related to the scene, instead of to the SAR system, producing an impulse response

proportional to

h(x, r) ∝ sinc

(
πr

δr

)
· sinc

(
πx

δa

)
. (2.10)

2.1.3 SAR data statistical description

In the previous section, the SAR system impulse response has been obtained and, as stated

in (2.10), it can be seen as a low-pass filter over the scene reflectivity. The cell resolution

concept is tightly related with the impulse response area, which can be considered δa by

δr in size. Typically, in a real situation, the dimensions of this area, that is, the azimuth

and range resolution, are much larger than the wavelength λ and then, the resulting echo

is a combination of all the echoes produced by the individual targets present within the

resolution cell [8] [11], as shown on Fig. 2.2.

These small targets are randomly distributed within the resolution cell and then, the

signal received for each resolution cell can be considered as the coherent sum of all the

complex reflections for each target, as represented on Fig. 2.3.

Then, the received coherent sum for a given resolution cell, represented as r exp(jθ)
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Figure 2.3: The received echo for a resolution cell is the combination of the echoes of the individual

targets within this cell

and also known as the random walk, may be expressed as [12] [13]

r exp(jθ) =

N∑

k=1

Ak exp(jθk) (2.11)

<{S} =
N∑

k=1

Ak cos(jθk) (2.12)

={S} =
N∑

k=1

Ak sin(jθk). (2.13)

Most of geophysical media, as for instance: rough surfaces, vegetation, ice, snow, etc...

have a very complicated structure and composition. Consequently, the knowledge of the

exact scattered electromagnetic field, when illuminated by an incident wave, is only pos-

sible if a complete description of the scene was available. This type of information is

completely unattainable for practical applications. Then, a possible alternative to charac-

terize these scattering processes is through a statistical analysis [8] [14] [15]. These objects

are called distributed targets, as opposite to point targets, as defined in Section 2.1.2.

To obtain the statistical description of the complex SAR image S(x, r), some assump-

tions are taken related to the elemental targets Ak exp(jθk) [11] [16]:

• The amplitude Ak and phase θk of the k-th phasor are statistically independent from

each other and from the other phasors. This means that the scattering center of the

elemental targets are uncorrelated and that the amplitude is not dependent on the

phase.
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• The phase of each one of the individual targets are uniformly distributed in the

interval (−π, π].

The first assumption is true since the phase propagation delay is independent of the

intensity of the reflected wave. The second assumption is true, considering that the di-

mensions of the resolution cell δa, δr are much larger than the wavelength λ, as a wide

margin of phase center values is introduced for the different targets within the resolution

cell.

If, additionally, the number of individual point targets N within the resolution cell is

large enough, then Ak cos(θk) and Ak sin(θk) satisfy the Central Limit Theorem [17], and

<{S} and ={S} are following a normal zero-mean distribution [11] [16] [17] [18]. Their

mean value can be calculated as

E {<{S}} =
N∑

k=1

E{Ak cos(θk)} =

N∑

k=1

E{Ak}E{cos(θk)} = 0 (2.14)

E {={S}} =

N∑

k=1

E{Ak sin(θk)} =

N∑

k=1

E{Ak}E{sin(θk)} = 0 (2.15)

where E{·} refers to the expectation operator.

Similarly, the variance value for <{S} and ={S} can be obtained

E
{
<2{S}

}
=

N∑

k=1

E{A2
k}E{cos2(θk)} =

N

2
E{A2

k} (2.16)

E
{
=2{S}

}
=

N∑

k=1

E{A2
k}E{sin2(θk)} =

N

2
E{A2

k}. (2.17)

The correlation between them would be

E {<{S}={S}} =
N∑

k=1

N∑

l=1

E{AkAl}E{cos(θk) sin(θl)} = 0. (2.18)

Renaming x to <{S} and y to ={S}, their probability density functions can be ex-

pressed as

px(x) =
1√

2πσ2
exp

(
−1

2

(x
σ

)2)
x ∈ (−∞,∞) (2.19)

py(y) =
1√

2πσ2
exp

(
−1

2

( y
σ

)2)
y ∈ (−∞,∞) (2.20)

where σ2/2 = (N/2)E{A2
k}.

Then, p(x) and p(y) are zero-mean Gaussian distributions, also expressed asN(0, σ2/2).

The probability density function of the amplitude pr(r) and phase pθ(θ), where r =
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√
x2 + y2 and θ = arctan(y/x), can also be obtained

pr,θ(r, θ) =
r

2πσ2
exp

(−r2
2σ2

)
(2.21)

pr(r) =
r

σ2
exp

(−r2
2σ2

)
r ∈ [0,∞) (2.22)

pθ(θ) =
1

2π
θ ∈ (−π, π]. (2.23)

As it can be seen, the amplitude and phase distribution are separable. pr(r) is also

known as a Rayleigh distribution, whereas pθ(θ) is a uniform distribution. This means

that the phase θ of a target has no information about itself. For a Rayleigh distribution,

like pr(r), the mean value and its variance are

E{r} = σ

√
π

2
(2.24)

σ2r =
(

2− π

2

)
σ2. (2.25)

Another statistical parameter usually employed is the coefficient of variation (CV),

defined as the relation between the standard deviation and the mean [19]. From the

previously defined expressions, it can be derived as
√

4
π − 1.

Generally, the study of SAR data is interested in the intensity I, defined as I = r2,

which pdf can be expressed as

pI(I) =
1

σ2
exp

(−I
σ2

)
I ∈ [0,∞) (2.26)

and then, I is following an exponential distribution. Therefore, its mean value will be

E{I} = σ2 and its variance σ2I = σ4. The CV of the intensity, then, will be equal to 1.

2.1.4 Multiplicative speckle noise model

From (2.26), the probability density function of the SAR image intensity has been identified

as an exponential distribution. If the variable change

I = σ2z (2.27)

is introduced on (2.26), then the following distribution pz(z) is obtained

pz(z) = exp(−z) z ∈ [0,∞). (2.28)

From (2.27), the intensity of a SAR image pixel can be considered as a deterministic

value containing information about the incoherent reflected power (σ2) multiplied by the

speckle noise (z), having an exponential distribution (2.28) with a mean and variance
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values equal to one. This causes that the speckle noise is usually considered as a mul-

tiplicative noise respect to to the SAR image intensity [18] [20] [21] [3]. However, note

that the speckle noise is not a random process, since it is an electromagnetic measure of

the interactions of all the individual targets. Nevertheless, due to the complexity of the

reflection process, it can not be predicted for a given pixel and then, it is interpreted as a

random process degrading the deterministic component σ2.

Note that all the information about the scene reflectivity is contained in the term σ2,

and the phase has no information, as stated before. Then, the SAR image S(x, r) can be

described over an homogeneous area as

S(x, r) =
√
σ0n exp(jθ) (2.29)

where n denotes the multiplicative component of the speckle noise in amplitude, charac-

terized by E{n} = 1 and var{n} = 1. The information is contained in
√
σ0 and it is

independent of the noise n exp(jθ).

2.2 SAR Polarimetry

Polarimetric SAR (PolSAR) systems increase the amount of information extracted from

the scene by the acquisition of more than one SAR images referring to the same area. The

main feature of an electromagnetic wave is the vectorial nature of its electromagnetic field,

also known as polarization. Then, employing different combinations of the polarization

of the incident and reflected waves, the amount of information channels can be increased.

This option has also an important advantage, the polarization synthesis [22], allowing the

retrieval of the target response at any polarization by just knowing its response to two

orthogonal polarization states.

2.2.1 Wave polarization

From the Maxwell equations, the solution conforming the progressive waves can be ex-

tracted, representing the energy transportation from one plane to another [23]. Employing

the classical Cartesian coordinates [x̂, ŷ, ẑ] to describe the electric field of a wave propa-

gating on the Ẑ direction, it can be obtained

~E(~z, t) = Ex(~z, t)x̂+Ey(~z, t)ŷ = E0x cos(wt− kz− δx)x̂+E0y cos(wt− kz− δy)ŷ (2.30)

where δx and δy are two constant phase terms, E0x and E0y represent the electric field

amplitude at directions x̂ and ŷ and k is defined as

k = 2
π

λ
=
w

c
. (2.31)
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Figure 2.4: Generic polarization ellipse for an electromagnetic wave propagating on ẑ direction

The expression in (2.30) can also be expressed in vectorial form

~E(~z, t) =

[
Ex

Ey

]
=

[
E0x cos(wt− kz − δx)

E0y cos(wt− kz − δy)

]
. (2.32)

The components Ex and Ey are following the expression

(
Ex
E0x

)2

+

(
Ey
E0y

)2

− 2
ExEy
E0xE0y

= sin2(δ) (2.33)

where δ = δx − δy.
The equation (2.33) defines the geometric figure of the electric field vector ~E(~z, t) along

the time dimension for any value of z. This geometric figure, in the most general case, has

the shape of an ellipse, also known as polarization ellipse, which shape does not depend

neither the space nor the time. The polarization ellipse is shown in Fig. 2.4

A polarization state can be defined by the following parameters

• Orientation in the space of the plane containing the polarization ellipse. It is deter-

mined by its normal vector, which is the propagation direction of the electromagnetic

wave. On Fig. 2.4 it has been assumed as ẑ.

• Orientation angle φ of the major axis of the ellipse with respect to the x̂ direction.

The values for this parameters are in the interval [−π2 ,
π
2 ].
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Lineal horizontal Lineal vertical Circular clockwise Circular counter-clockwise

φ 0 π
2 [−π2 ,

π
2 ] [−π2 ,

π
2 ]

τ 0 0 −π
4

π
4

Table 2.1: Some typical polarization states and its associated parameters

• Ellipticity angle τ , representing the aperture of the ellipse and having values in the

interval [−π4 ,
π
4 ].

• Polarization direction, indicating the turning direction of the polarization ellipse. It

is expressed by the sign of the ellipticity τ . It is determined by the IEEE convention;

when looking to the wave towards the propagation direction, if the electric field vector

is rotating in clockwise direction then τ < 0, if it is rotating counter-clockwise then

τ > 0.

• The amplitude of the polarization ellipse A, defined as A =
√
a2 + b2, where a and

b are the amplitude of the major and minor axis of the ellipse, respectively.

• The initial phase α with respect to the phase origin for t = 0, defined in the interval

(−π, π].

Table 2.1 shows the polarization ellipse values for some typical polarization states.

2.2.2 The scattering matrix

To completely characterize the scattering process of a target when it is illuminated by

an electromagnetic wave, the scattering matrix may be employed. However, to define

properly the scattering matrix, it is necessary to define properly the global scenario on

which it will be described. A Cartesian coordinate system [x̂, ŷ, ẑ] will be assumed, with

the origin located over the target.

On the other hand, the SAR system can be considered as a system containing 2 anten-

nas, the transmitter and the receiver antennas, which can be located at any position in the

space. When these antennas are located at different positions, then the reflection process

is called bistatic, whereas if they are located at the same point it is called monostatic.

A particular case of the bistatic configuration is obtained when the receiver antenna is

located behind the target, over the same line from the transmitter to the target.

The electric field vector can be completely described by two orthogonal polarization

states [24]. In the following, these two orthogonal polarization states will be assumed as

the lineal horizontal ĥ and vertical v̂ polarization states, conforming the polarization basis

{ĥ, v̂}.
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Figure 2.5: Incident and scattered electric field coordinate reference conventions

Then, the incident electric field has two components Eih and Eiv over this basis, and

its coordinate system is centered on the transmitter antenna [ĥi, v̂i, k̂i]. For the scattered

electric field [ĥs, v̂s, k̂s] there are two different conventions depending on the SAR system

type. One convention is called Forward Scattering Alignment (FSA), which is referent

to the propagating wave. The other convention, called Backward Scattering Alignment

(BSA), is defined regarding the radar antennas. Fig. 2.5 shows both conventions for the

incident and scattered electric fields.

Then, the equivalence of the different conventions can be extracted for the incident

and scattered electric fields; for the FSA convention: ĥs = −ĥi, v̂s = v̂i and k̂s = −k̂i,
whereas for the BSA: ĥs = ĥi, v̂s = v̂i and k̂s = k̂i.

In the following, the BSA convention will be employed, since the incident and scattered

electric fields are expressed over the same coordinate system. Employing the selected

polarization basis {ĥ, v̂}, the incident and scattered waves can be expressed as

Ei = Eihĥi + Eivv̂i (2.34)

Es = Eshĥs + Esvv̂s. (2.35)

To relate the different components of the incident and scattered waves, assuming the

far field hypothesis, the 2 by 2 scattering matrix S can be employed. S is a complex

dimensionless matrix, characteristic of the target, and also known as scattering matrix
[
Esh

Esv

]
=

exp(−jkr)
r

[
Shh Shv

Svh Svv

][
Eih

Eiv

]
(2.36)

or, equivalently, in matrix notation

Es =
exp(−jkr)

r
SEi (2.37)
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where r represents the distance between the receiver antenna and the target. The expres-

sion (2.37) is also known as field equation. In the following, the term exp(−jkr)
r referring

to the wave propagation will be omitted since it is not affecting the polarimetric infor-

mation. Additionally, a monostatic SAR system case will be assumed, since it is the real

situation for most system, where the position of the transmitter and the receiver antennas

can be considered the same. Then, under this assumption and applying the reciprocity

theorem [25] [26], the following equivalences can be obtained

Svh = Shv (2.38)

for the BSA convention and

Svh = −Shv (2.39)

for the FSA case. Then, one of the off-diagonal elements of the S matrix is redundant. To

express the same information about the target reflectivity without any redundant param-

eter, the scattering vector k may be employed, containing the same relevant information

as the scattering matrix S

k3L = [Shh,
√

2Shv, Svv]
T . (2.40)

An important parameter of the scattering vector is its squared norm ‖k‖2, also known

as span, which is referring to the total reflected power by the target. This value must

be independent of the polarization basis employed for representation of the electromag-

netic waves. The term
√

2 appearing in (2.40) is intended to preserve this information

with respect to the scattering matrix. Another scattering vector, representing the same

information in a different polarization basis is the Pauli scattering vector

k3P =
1√
2

[Shh + Svv, Shh − Svv, 2Shv]T . (2.41)

which has the advantage of being easier to relate its components with the elemental phys-

ical mechanisms of scattering. Note that both vectors are in the C3 space.

2.2.3 Covariance and Coherence matrices

In the previous section the scattering matrix and vector have been defined. This infor-

mation is capable to describe the target scattering properties provided that it is a point

scatter. Generally, this is not true, as stated in Section 2.1.3, since within the resolution

cell a large number of independent targets are present randomly distributed and, then,

the reflected wave is the coherent sum of all these contributions.

Note that in polarimetric SAR images, each one of the elements of the S matrix can

be considered a individual SAR image. In Section 2.1.3 it has been shown that a SAR
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image can be modeled by N(0, σ2/2). Then, each one of the elements of the scattering

matrix can be modeled as a zero-mean complex Gaussian distribution with variance σ2/2.

Therefore, the useful information about the scene reflectivity, as in the single chan-

nel SAR images, is within the data statistics. Assuming that k is the scattering vector

containing all the information of the scattering mechanism in a particular resolution cell,

then k is following a multidimensional Gaussian distribution, which is zero-mean and can

be described by its covariance matrix C [27] [28] [29]

pk(k) =
1

πQ|C| exp(−kHC−1k) (2.42)

where Q = 3 for a monostatic configuration and H denotes hermitian transpose of complex

vectors and matrices. The zero-mean complex multidimensional Gaussian pdf, as shown

on (2.42) is denoted as N(0,C) and is completely determined by its covariance matrix C,

being an hermitian and positive semi-definite matrix [17]. This matrix can be defined as

C = E{k3Lk
H
3L} =




E{ShhS∗hh}
√

2E{ShhS∗hv} E{ShhS∗vv}√
2E{ShvS∗hh} E{ShvS∗hv}

√
2E{ShvS∗vv}

E{SvvS∗hh}
√

2E{SvvS∗hv} E{SvvS∗vv}


 . (2.43)

Note that E{k} = 0 and, then, no information can be extracted directly from the

scattering vector k or matrix S. All the information is contained in the higher order

statistics, that are completely characterized by C [17] [30] [31]. This matrix contains in

the diagonal elements the RCS value of the region in the polarimetric basis, that is, |σhh|2,
|σhv|2 and |σvv|2, but, additionally, in the off-diagonal elements it contains information

about the correlation between the different elements of the scattering matrix, that are

very useful for the PolSAR data interpretation.

Similarly, the coherence matrix T can be defined, by employing the Pauli scattering

vector k3P , defined in (2.41), instead of the conventional scattering vector k3L [32]

T = E{k3Pk
H
3P }. (2.44)

Again, the advantage of this coherence matrix is that its values can be easily related

with the physical scattering mechanisms. Anyway, since the conventional scattering vector

k3L and the Pauli vector k3P contains the same information, expressed in a different po-

larization basis, the covariance and coherence matrices also contain the same information.

In fact, they are related by the following expression [32]

T =
1

2




1 0 1

1 0 −1

0
√

2 0


C




1 1 0

0 0
√

2

1 −1 0


 . (2.45)
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2.2.4 Speckle noise in PolSAR data

For distributed targets, as stated in the previous section, the characterization of their

scattering process can only be done by the second order moments, since the scattering

vector is following a N(0,C) distribution. In this section, the covariance matrices C will

be referred, but the same may be applied for the coherence matrices T, since they are

related through expression (2.45).

The estimation process of the covariance matrix is performed by averaging the matrices

of n pixels, and is called multilook. In the following, the estimated covariance matrix,

also known as sample covariance matrix, will be denoted as Z, and can be expressed

as [19] [27] [28] [33]

Z = 〈kkH〉n =
1

n

n∑

i=1

kik
H
i . (2.46)

where a {ĥ, v̂} polarization basis is assumed and, then, k refers to k3L. This matrix Z

estimated over n samples is also referred as n-look PolSAR data.

The multilook estimator corresponds to the Maximum Likelihood Estimator (MLE)

of the covariance matrix. However, this estimator has some important drawbacks. On

one hand, the estimated covariance matrix Z depends on the number of averaged pixels

n, resulting in a better estimation as n increases [34]. Equivalently, the variance of the

estimator will be lower and the amount of speckle noise reduction will be better for larger

n. On the other hand, this estimation only makes sense over homogeneous areas, that

is, areas having the same distribution (with the same covariance matrix C), otherwise a

spatial resolution loss will be observed over the image.

The probability distribution of the sample covariance matrix Z, assuming the zero-

mean complex Gaussian distribution for the scattering vector k, can be expressed as a

complex Wishart distribution W (C, n) [33]

pZ(Z) =
nQn|Z|n−Q
|C|nΓ̃Q(n)

etr(−nC−1Z) (2.47)

where etr(X) is the exponential of the matrix trace and

Γ̃Q(n) = π
1
2
Q(Q−1)

Q∏

i=1

Γ(n− i+ 1). (2.48)

where Q is the dimension of the k vector and Γ is the gamma function. For a monostatic

SAR radar Q = 3.

Note that the determinant of the estimated covariance matrix |Z| appears in the nu-

merator of the expression (2.47) and, then, the matrix Z must be full-rank or the Wishart
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distribution pZ(Z) can not be defined. Then, a minimum averaging over at least Q different

pixels must be done to get a full-rank Z matrix.

From Section 2.1.4, each element of the scattering matrix can be defined as

Spq =
√
σpqnpq exp(jθpq) (2.49)

where n refers to the speckle noise, σpq is the local RCS and p and q refer to the orthogonal

polarization basis p, q ∈ {ĥ, v̂}. Then, for the estimated covariance matrix elements

〈SpqS∗rs〉 = 〈√σpqσrs exp(j(θpq − θrs))〉〈npqn∗rs〉. (2.50)

To recover all the useful information from the multilook, it is needed that 〈npqn∗rs〉 = 1

when pq = rs and zero otherwise. A Gaussian variable having this distribution will be

defined by a diagonal covariance matrix, producing the same speckle noise for all the SAR

images, which is not true [19].

In [35] a speckle noise model is proposed for multichannel SAR images based on the

study of the complex hermitian product of a pair of SAR images. Given two SAR images,

S1 and S2, the single-look covariance matrix Z is defined as

Z =

[
S1S

∗
1 S1S

∗
2

S2S
∗
1 S2S

∗
2

]
. (2.51)

Each element of this matrix can be expressed as

SkS
∗
l = |SkS∗l | exp (j(θk − θl)) = z exp(jφ) (2.52)

which amplitude z and phase φ are following the probability distributions [28]

pz(z) =
4z

ϕ2(1− |ρ|2)I0
(

2|ρ|z
ϕ(1− |ρ|2)

)
K0

(
2z

ϕ2(1− |ρ|2)

)
(2.53)

pφ(φ) =
1− |ρ|2

2π

(
β
(
1
2π + arcsin(β)

)

(1− β2)3/2 +
1

1− β2

)
(2.54)

where ρ is the complex correlation coefficient between the pair of images, ϕ represents

the average power from both channels, calculated as ϕ =
√
σ1σ2, being σ1 and σ2 the

backscattering coefficients of the images S1 and S2, β is defined as β = |ρ| cos(φ − φx)

with φx as the effective phase difference between the image pair, I0 is the modified Bessel

function of the first kind whereas K0 is the modified Bessel function of the third kind.

Introducing the speckle noise model of the difference phasor [36] [27] it can be seen

that real and imaginary parts of the hermitian product of a pair of SAR images can be

divided into three additive terms

z exp(jφ) = [zNc + (zv′1 + jzv′2)] exp(jφx). (2.55)
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Analyzing separately the contribution to the global noise of each one of the terms, a

speckle noise model can be defined for the hermitian product of a pair of SAR images

SkS
∗
l = ϕNcz̄nnm exp(jφx) + ϕ(|ρ| −Ncz̄n) exp(jφx) + ϕ(nar + jnai) (2.56)

where nm is a multiplicative noise component associated to the first term, nar and nai

are additive noise components associated to the real and imaginary parts of the hermi-

tian product, z̄n is the expected value of amplitude normalized of the hermitian product,

obtained for the case ϕ = 1, and Nc contains approximately the same information as the

coherence |ρ|. The terms of (2.56) can be classified as

SkS
∗
l = ϕNcz̄nnm exp(jφx)︸ ︷︷ ︸

Multiplicative term

+ϕ(|ρ| −Ncz̄n) exp(jφx) + ϕ(nar + jnai)︸ ︷︷ ︸
Additive term

. (2.57)

Then, the first term of (2.56) is called multiplicative term, since the useful signal is

multiplied by a multiplicative speckle term nm. The second and third terms are contami-

nated by the additive components of the speckle noise nar and nai.

Note that (2.56) may be seen as a generalization of the speckle noise models obtained

in Section 2.1.4, by making k = l, and, consequently, |ρ| = 1 and φx = 0 radians. Then

(2.56) is simplified to

SkS
∗
k = |Sk|2 = ϕnm (2.58)

where ϕ = E{|Sk|2}. As it can be seen, this result matches with the multiplicative speckle

noise model defined in Section 2.1.4.

2.2.5 H/A/ᾱ polarimetric decomposition

A wide number of different polarimetric decompositions are available, for the extraction

of useful information from PolSAR data as, for instance: Huynen [37], Krogager [38],

Cameron [39], Freeman-Durden [40] or TSVM [41]. In [42], Cloude and Pottier proposed

a decomposition based on the projection of the coherence matrix T in the polarization

basis formed by its eigenvectors. Then, a coherence matrix may be expressed as the sum

of three unitary matrices having rank equal to 1, that is, three pure scattering mechanisms

Ti

T =

3∑

i=1

λiviv
H
i =

3∑

i=1

λiT
i (2.59)

where λ1 > λ2 > λ3 are the ordered eigenvalues and vi are the corresponding eigenvectors.

Then, the entropy H and anisotropy A parameter can be defined as

H =
3∑

i=1

−Pi log3 Pi (2.60)

A =
λ2 − λ3
λ2 + λ3

(2.61)
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where the pseudo-probabilities Pi are defined as

Pi =
λi∑3
j=1 λj

. (2.62)

Note that the eigendecomposition of the covariance matrix may be interpreted as the

identification of the different pure scattering mechanisms, denoted by the eigenvectors,

and their associated reflected power, denoted by the eigenvalues. Then, the entropy H

parameter is related with the uncertainty associated with the different scattering mech-

anisms, being equal to 1 when all the mechanisms are equally probable, that is, all of

them have the same reflected power, and equal to 0 when only one mechanism is present.

Anisotropy A gives and idea of the dominance of the second pure mechanism, in terms of

reflected power (λ2), versus the third one (λ3), being equal to 0 when both have the same

power (λ2 = λ3) and equal to 1 if there is no reflected power for the third mechanism

(λ2 � λ3).

On the other hand, the ᾱ parameter is referring to the weighted average of the different

pure scattering mechanism angles αi

ᾱ =
3∑

i=1

Piαi (2.63)

where the angle αi refers to the type of reflection, from surface scattering αi = 0◦ to

volume scattering αi = 45◦ and double bounds in conductive surfaces αi = 90◦.

2.3 PolSAR speckle filtering techniques

As seen in previous sections, an initial averaging over the sample covariance matrix Z is

needed to obtain a well defined and full rank matrix. However, this averaging process

only makes sense when it is performed over homogeneous regions of the image, that is,

pixels having the same statistical distribution. This process of estimating the covariance

or coherence matrix from the PolSAR data is also known as speckle filtering, since the

effect of the speckle noise over the data is also diminished, enabling a better estimation of

the parameters of these matrices.

In this section, some of the state-of-the-art polarimetric speckle filtering techniques

will be presented.

2.3.1 Multilook and Boxcar filter

In Section 2.2.3 the multilook concept was introduced as the sample covariance matrix

estimation process from the data of n different pixels, as stated in (2.46). The Boxcar
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filter, also referred to as multilook filter by extension, is the application of this averaging

process over a rectangular window around a given pixel [34].

The Boxcar filter is the simplest filter and, since the multilook corresponds to the

MLE of the covariance matrix, it does not introduce systematically any bias or distortion.

However, as stated before, this filtering technique has some drawbacks, since this averag-

ing process should be done employing homogeneous pixels following the same statistical

distribution. When applying the Boxcar filter inside large homogeneous regions, the sam-

ple covariance matrix Z can be estimated properly, but, near region contours or for small

point targets, this is not the case. As a result, region contours will appear blurred and

point targets will be enlarged by the filter window size, which may be seen as a spatial

resolution loss. Then, in this kind of filtering there is always a compromise between the

amount of speckle filtering and the spatial resolution loss.

2.3.2 Lee adaptive filter

In [43] a polarimetric SAR data filtering technique was introduced, with an adaptive filter

to improve the precision of the estimated coherence. In order to overcome the drawbacks

of the multilook filter, as stated before, it tries to adapt to the image morphology and aver-

age only homogeneous pixels. To achieve this adaptation, 8 different directional windows

are defined, containing different neighborhoods for a given pixel, and the one containing

the most homogeneous pixels is selected for averaging. The most homogeneous window

selection is based on the average of the span, that is, the total received power calculated

as tr(Z). Then, only the information contained in the diagonal elements of the covariance

matrix is employed. The pixels within the most homogeneous directional window are em-

ployed for the estimation of the covariance matrix Z̃ employing the Local Linear Minimum

Mean Squared Error (LLMMSE)

Z̃ = Z̄ + b(Z− Z̄) (2.64)

where Z̄ refers to the sample covariance matrix averaged over the selected directional

window, Z refers to the value of the sample covariance matrix for the central pixel and

b ∈ [0, 1] is a weighting factor calculated with the degree of local stationarity.

Assuming a multiplicative noise

y = xn (2.65)

where y is the value of the central pixel, x is the value we want to estimate and n represents

the multiplicative noise, with an expectation equal to one and variance γ2n. Then, the

weighting factor b can be calculated as

b =
var(x)

var(y)
(2.66)



26 CHAPTER 2. SAR AND POLSAR

and

var(x) =
var(y)− ȳ2σ2n

1− σ2n
(2.67)

where ȳ = E{y}.
Over homogeneous areas var(x) = 0, then b = 0 and Z̃ = Z̄, corresponding to the

result for the multilook filter over the oriented window. On the contrary, for point targets

or very heterogeneous areas b = 1 and then Z̃ = Z. In this case, the intensity of the given

pixel is not affected and the original value is preserved.

The Lee adaptive filter tries to adapt to the image morphology with a set of predefined

directional windows, which increase the contour and details preservation with respect to

the multilook filter. However, the directional windows are fixed and the capabilities to

adapt and preserve the the image morphology are very limited.

2.3.3 IDAN filter

As stated before, the Lee adaptive filter tries to adapt to the image morphology by defin-

ing a set of directional windows, having, then, a very limited adaptation capability in this

sense. A new approach in the same direction is the Intensity Driven Adaptive Neighbor-

hood (IDAN) [44] which estimates an arbitrary homogeneous neighborhood for each pixel.

It defines an Adaptive Neighborhood (AN) around each pixel employing the Region Grow-

ing (RG) technique. Finally, the estimated covariance matrix Z is obtained by averaging

all the pixels within the homogeneous neighborhood.

The adaptive neighborhood concept was introduced in [45] for applications employing

medical images. For each pixel, called seed, a neighborhood is constructed employing the

region growing process, having a variable shape and dimensions and containing only pixels

with the same distribution than the seed. The seed is calculated by applying a median

filter to the adjacent pixels to the pixel of interest [44]. The median filter is employed

to avoid as much as possible the spatial resolution loss. The IDAN has the advantage of

being able to achieve a stronger filtering and a better adaptation to the image structure

than the Lee filter. However, since intensity SAR images are not following a symmetric

distribution, as stated in Section 2.1.3, it introduces an important bias over the estimated

values [46]. This bias makes impossible employing the IDAN filter for SAR applications

employing quantitatively the estimated information.

The IDAN employs only the information contained in the diagonal elements of the

coherence matrix

p(m,n) =




T11(m,n)

T22(m,n)

T33(m,n)


 =




p1(m,n)

p2(m,n)

p3(m,n)


 (2.68)

where m and n are the coordinates of the image pixels.
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Similarly to the Lee sigma filter [47], only are added to the AN the pixels differing less

than two times the coefficient of variation (CV) from the seed. Consequently, the interval

±2σ/µ ensures that the AN population is significant. This process is iterated for each

component until no more pixels can be added to the AN or a limit number of pixels is

achieved
‖pi(k, l)− p̂i(m,n)‖

‖p̂i(m,n)‖ ≤ 2
σ

µ
(2.69)

where pi(k, l) represents the pixel to add, p̂i(m,n) refers to the seed value and the subindex

i refers to each one of the three SAR intensity images, as defined in (2.68).

The CV σ/µ is a well-known parameter for SAR images, as shown on Section 2.1.3,

and is theoretically constant for homogeneous areas, taking the value 1/
√
Leq, where Leq

is the number of independent pixels averaged.

As a refinement, to avoid the excessive enlargement of the AN and the inclusion of

pixels having a different statistical distribution, the process of generating the AN has been

divided into two steps. In the first step only are added the pixels having This process is

iterated for each component until no more pixels can be added to the AN or a limit number

of pixels is achieved
‖pi(k, l)− p̂i(m,n)‖

‖p̂i(m,n)‖ ≤ 2

3

σ

µ
(2.70)

and in the second step the pixels fulfilling (2.69) are added to the AN. However, on the

second step only are evaluated the pixels that have been rejected previously by (2.70),

which will be neighbors of some pixel of the AN.

Once the neighborhood for each pixel is known, then the covariance matrix can be

estimated by averaging all the pixels within the AN or also applying the LLMMSE within

the AN, as described in Section 2.3.2.

Fig. 2.6 shows an example of a PolSAR image and the results obtained after applying

different speckle filters defined in this chapter. As it can be seen, Fig. 2.6a represents

the original PolSAR image and the effect of the speckle noise can be seen as a granular

texture over the image. On Fig. 2.6b the 7x7 Boxcar multilook filter has been applied and

an important reduction of the speckle noise can be seen. However, all the contours and

small details of the image appear blurred, resulting a spatial resolution loss. Figs. 2.6c and

2.6d show results after applying the adaptive Lee filter, defined in Section 2.3.2, and the

IDAN filter, defined in this section. These filter achieve a relatively good speckle reduction

while also maintain the spatial resolution better than the multilook filter. However, as it

will be seen, they may introduce some bias or distortion over the filtered images.
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(a) Original (b) Boxcar 7x7

(c) Lee filter (d) IDAN filter

Figure 2.6: PolSAR images filtered employing different speckle filters. The Pauli vector k3P is

represented, assigning its components to the RGB channels (|Shh + Svv|, |Shv + Svh|, |Shh − Svv|)



Chapter 3

Binary Partition Tree representation

3.1 BPT hierarchical data representation

The Binary Partition Tree (BPT) was introduced in [48] as a hierarchical region-based

image representation. In this manuscript, it will be presented as a general concept, con-

cerning the generic term data instead of image.

A BPT is a region-based and multi-scale data representation. This representation

contains all the information present in the original data plus additional information related

to the data structure. This information is conformed by aggregated regions at different

scales arranged into a hierarchical structure conforming a binary tree.

The BPT may be considered as an abstraction of the original data, making possible

its analysis at different scales to find meaningful information that can be very difficult to

extract by analyzing the data elements (e.g. the samples or pixels in a two dimensional

image) individually.

In this context, a region will be considered as a connected area of a dataset. Con-

sequently, a connectivity scheme has to be defined for every data element. Under this

assumption, a connected region is a region on which any pair of data elements contained

are connected through a path that lies completely within the region itself.

3.1.1 Graphs and trees

In Graph theory [49], a graph G is defined as a mathematical structure containing a set V

of vertices or nodes and a set E of edges or lines, and it is denoted as G = (V,E). The set

of edges E contains 2-element subsets of V , since an edge is related with two nodes. In this

work only undirected graphs will be employed, which means that the edges of the graph

29
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do not have a particular direction and then, the set E can be defined as an unordered pair

of vertices. Fig. 3.1 shown a representation of a simple graph with 4 vertices and 4 edges.

A

B

C

D

Figure 3.1: A graph G = (V,E) representation with V = {A,B,C,D} and E =

{{A,B}, {A,C}, {A,D}, {B,D}}

A weighted graph is a graph having a value (the weight) associated with each edge. A

representation of a wighted graph is presented in Fig. 3.2.

A

B

1

C
7

D

17

5

Figure 3.2: A weighted graph G = (V,E) representation, having V = {A,B,C,D} and E =

{{A,B, 1}, {A,C, 7}, {A,D, 5}, {B,D, 17}}

A tree is a special case of graph, in which every two nodes are connected by exactly one

path. This means that there are no cycles inside a tree, also known as closed paths, and

that a tree is a connected graph, having a path that connects any pair of nodes. Typically,

trees are represented hierarchically in a top-down scheme. Then, a root node has to be

defined, which is represented on top of the drawing. Recursively, the nodes connected to

each node are represented in a level below it and they are called its sons. The nodes of

the tree having no sons are called leaves. Fig. 3.3 shows a representation of a tree with 4

leaves and 6 nodes.

Property 3.1. A tree with n nodes has always n− 1 edges.

A binary tree is a special case of tree having exactly 2 sons per node except for the

tree leaves. In this case, the two sons can be named left and right sons. Fig. 3.4 represents

a binary tree with 4 leaves {A,B,C,D}.

Property 3.2. A binary tree with n leaves has 2n− 1 nodes and, applying Property 3.1,

2n− 2 edges.
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A

B F

C D E

Figure 3.3: A tree representation having 4 leaves {C,D,E, F}. The root node A has 2 sons {B,F}
whereas the node B has 3 sons {C,D,E}

A

G

B

E

F

C

D

Figure 3.4: A binary tree representation

3.1.2 Binary Partition Tree

As stated before, a BPT is a hierarchical data representation. This representation is

presented in form of a binary tree. Each node of the tree represents a region of the

original data. The leaves of the tree represent each one of the original data elements

whereas other nodes represent the merging of its two child nodes. Consequently, the root

node of the tree represents the whole data. Between the leaves and the root nodes there

are a wide number of nodes representing the data structure at different detail levels that

can be exploited for different applications. Fig. 3.5 represents a BPT generated from a 4

elements {A,B,C,D} dataset, corresponding to the tree leaves.

Note that the BPT is not balanced, and then regions with different sizes in terms of

the original dataset elements contained are merged. In the Fig. 3.5 BPT representation

this effect can be clearly seen by the fact that the leaves appear at different levels of the

tree.

Since each node of the tree represents a region of the original data, a region model is

introduced into every node. This region model should be complete enough to be able to

represent properly all the regions within the tree, ranging from single element regions (the

tree leaves) to the whole dataset (the root node). The definition of this region model can

be an arduous task but, in fact, a good region model is essential to obtain a good BPT
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A B

C D

(a) Original data ele-

ments

A

G

B

E

F

C

D

(b) BPT repre-

sentation

Figure 3.5: BPT representation of a dataset containing 4 elements {A,B,C,D}

data representation, as it will be seen on the following sections.

3.2 BPT construction process

In the previous section, the BPT data representation has been presented, but a construc-

tion process needs to be defined to generate a BPT from the original dataset, that is,

generate the structure presented in Fig. 3.5b from Fig. 3.5a. To define an efficient con-

struction algorithm an iterative approach is proposed by decomposing the whole process

into small steps corresponding to the inclusion of one hierarchical relation. Then, there

are two main approaches to construct the BPT structure in an iterative manner:

1. Focused on division, or top-down approach: at each construction step one region is

divided into two smaller ones, becoming the child nodes of the original region. Note

that these two regions must be connected and mutually disjoint to preserve the BPT

structure as it has been defined previously. The process is started from the root node

of the tree and ends when all the remaining regions are individual data elements,

that is, the tree leaves.

2. Focused on fusion, or bottom-up approach: at each construction step two regions are

merged conforming a new node of the tree which becomes their father. In this case,

the two regions merged must be neighboring regions to form a connected region.

This process starts from the tree leaves, that are the individual data elements of the

dataset and ends when the root node is generated.

However, for computational reasons, it is more feasible to address a bottom-up tree

construction algorithm since the number of possible different fusions is more limited

than the number of possible different divisions for a given construction step. In fact,
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an iterative BPT construction algorithm is defined in [48] in a bottom-up approach.

The complete sequence of regions that are merged during the construction process is

called merging sequence. For the example presented in Fig. 3.5 the complete merging

sequence will contain the initial regions and the sequence of regions merged at each step:

({A,B,C,D}, (B,D)|(E,C)|(A,F )). Note that the final BPT generated is completely

defined by the merging sequence.

A decision mechanism has to be defined to choose which two regions have to be merged

at each step. Since the ultimate goal is to represent within the BPT regions containing

data elements with similar structure, a similarity criterion is proposed. Then, at each

step, the two most similar regions are merged [48]. This measure is the centerpiece of the

tree construction process since it will define the merging sequence and then, the final BPT

representation generated.

A similarity-based measure d has to be defined on the region model space d : X×X 7→
<, where X represents the region model space. A mathematical distance on X can be

employed as a similarity-based measure for the construction process, merging at each

step the pair of regions A and B having the minimum distance, expressed as d(A,B).

However, for the construction process, only the ordering defined over the neighboring

regions is relevant, not the value of the measure itself, since two measures producing the

same merging sequence will produce the same BPT. Then, the mathematical properties

of d can be relaxed and, in the following, it will be called dissimilarity measure, as a more

general concept. The required properties for a dissimilarity measure d are [50]:

1. d(A,B) ≥ d0 (generalized non-negativity)

2. d(A,B) = d0 ⇔ A = B (identity of indiscernibles)

3. d(A,B) = d(B,A) (symmetry)

All the information about each data element neighborhood can be expressed in a

Region Adjacency Graph (RAG). In this graph every node represents a data element and

each edge represents a neighboring relation. This information can be enriched by the

dissimilarity measure value over each edge of the graph, conforming a Weighted Region

Adjacency Graph (WRAG). For every two neighboring data elements A and B, an edge

is added to the weighted graph, with the dissimilarity measure value d(A,B) over the two

nodes, as shown in Fig. 3.6.

Algorithm 3.1 describe an algorithm to construct the WRAG W from the original

dataset D. Note that a neighborhood has to be defined for each element of the dataset.

When the WRAG has been generated, the proposed BPT construction algorithm in [48]

can be applied. At each step, the edge e with minimum weight of the WRAG W is selected
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A B
d(A,B)

Figure 3.6: Weighted Region Adjacency Graph. An edge is added for every neighboring relation

weighted by the dissimilarity measure

Algorithm 3.1 WRAG generation algorithm

Require: dataset D, dissimilarity measure d

Ensure: WRAG W is generated

1: for each elem i ∈ data elems(D) do

2: I ← create node(i)

3: add node(W, I)

4: for each node K ∈ neighborhood(I) do

5: e← create weighted edge(I, K, d(I,K))

6: add edge(W, e)

7: end for

8: end for

and its two end nodes, A and B, are merged. The father node F is added to the BPT

B and the edges to its child nodes. At this point, W has to be updated to represent

the new state; the two nodes merged, A and B, are removed and the father F is added.

Additionally, all the edges involving A and B have to be removed and replaced with the

updated edges towards the new region F . Finally, this process is repeated until no more

edges are contained in W.

The complete sequence of states for the described algorithm during the BPT construc-

tion of the Fig. 3.5 is represented in Fig. 3.7 for the Algorithm 3.2. The BPT B structure,

the WRAG W and the remaining regions over the original dataset are shown for each

iteration. Over W the edge with the minimum weight is colored in blue. The nodes

corresponding to this edge are the regions merged at each step.

3.3 BPT pruning

On the previous section, the BPT has been defined as a representation of the original data.

The idea is to tackle a large number of data processing applications by performing an ini-

tial step of abstraction from the original dataset, which contains a wide number of data

elements, making difficult its direct interpretation. This abstraction step is performed by

computing the BPT representation of the data which makes possible the data interpre-

tation at different scales. This process has been detailed in Section 3.2. Note that this

abstraction step depends only on the dataset itself and, thus, it is completely application
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Algorithm 3.2 BPT construction algorithm

Require: WRAG W, dissimilarity measure d

Ensure: BPT B is constructed

1: B← ∅
2: for each node K ∈ nodes(W) do {Initialize B}
3: add node(B, K)

4: end for

5: while edges(W) 6= ∅ do {begin BPT construction}
6: e← min(edges(W))

7: A,B ← nodes(e)

8: F ← merge(A,B)

9: add node(W, F )

10: for each node K ∈ neighbors(W, A) ∪ neighbors(W, B) do

11: n← create weighted edge(F , K, d(F,K))

12: add edge(W, n)

13: end for

14: remove nodes(W, {A,B})
15: remove edges(W, edges from(A) ∪ edges from(B))

16: add node(B, F )

17: l← create edge(F , A)

18: r ← create edge(F , B)

19: add edge(B, l)

20: add edge(B, r)

21: end while

independent.

Once we have the BPT data abstraction, we need to exploit this representation to

extract useful information for a specific application. BPT exploitation can be challenging

since its internal structure is larger and more complex than the structure of the original

dataset. However, it also contains a large amount of additional information related with

the data structure at different detail levels, which is an opportunity to develop more

complex applications or to improve existing ones. Nonetheless, all the BPT structure is

arranged hierarchically, making easier its navigation and interpretation and empowering

the use of efficient algorithms for its exploitation.

In this manuscript, the BPT exploitation will be based on a BPT pruning process [48].

This process can be seen as a data simplification, by removing some branches of the

tree that represent small details of the data that are not interesting for the particular
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(j) Final BPT B generated

Figure 3.7: BPT construction process step-by-step. WRAG and regions for each step is also

represented. The edge for the two most similar regions is colored in blue

application. On the other hand, it can also be seen as a node selection of the tree; the

useful regions for our application are extracted from the tree.

Note that the BPT pruning process is completely application dependent, as opposed

to the BPT construction process. Then, the BPT data representation has to be generated

only once, and this abstraction can be employed multiple times for different applications

by applying different pruning strategies.

To apply a BPT pruning some pruning criterion, denoted as Υ, has to be defined. This

criterion can be evaluated for every region of the BPT, which will be fulfilled for interesting
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regions and not fulfilled otherwise. The BPT pruning process, then, will select each node

A from the tree if Υ(A) is fulfilled. Strictly speaking, to conform a valid tree pruning,

that is, the resulting graph is also a binary tree, only the biggest regions from each tree

branch that fulfill Υ will be selected. Consequently, within a node A selected from a BPT

pruning process can be other regions that fulfill Υ but region A is not contained within

any bigger region B that fulfills Υ(B).

A L

K B
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F E

G

C D

O

M N

J

(a) Original BPT

A L H

I G

O

M N

J

(b) Pruned BPT

Figure 3.8: BPT pruning process. Nodes that fulfill Υ are colored in blue whereas nodes that not

fulfill it are colored in red

Fig. 3.8 shows an example of BPT pruning. The nodes that fulfill the pruning criterion

Υ are colored in blue, whereas the nodes that not fulfill Υ are colored in red. As it can

be seen, inside a node (for example L) can be different nodes than fulfill Υ or not but, to

conform a valid tree pruning, only the biggest regions that fulfill Υ are selected, as shown

in Fig. 3.8b.

An algorithm to achieve this behavior can be efficiently implemented in a top-down

approach. Starting from the root R of the tree, the pruning criterion Υ is checked for every

node A. If Υ(A) is fulfilled the subtree below node A is pruned. If Υ(A) is not fulfilled,

then its two child nodes are checked. An implementation of this algorithm is presented in

Algorithm 3.3. The set of nodes to check are stored in Q whereas the nodes found that

fulfill Υ are stored in the set Θ. This set of pruned regions Θ fulfilling Υ corresponds to

the leaves of the pruned tree. For the example presented in Fig. 3.8 the Algorithm 3.3 will

compute Θ = {A,L,H, I,G}.

Note that a BPT pruning process is closely related with a data segmentation, as stated

in [48]. In fact, the set of pruned regions Θ generated by Algorithm 3.3 conforms a data

segmentation that can be governed by the pruning criterion Υ.
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Algorithm 3.3 BPT pruning algorithm

Require: BPT completely generated with root R, pruning criteria Υ

Ensure: The set Θ contains the pruned regions

1: Θ← ∅
2: Q← {R}
3: while Q 6= ∅ do
4: K ← get and remove first node(Q)

5: if Υ(K) or is leaf(K) then

6: Θ← Θ ∪ {K}
7: else

8: A,B ← sons(K)

9: Q← Q ∪ {A,B}
10: end if

11: end while

3.4 Data processing scheme based on BPT

The previous sections have described the BPT representation as a data abstraction, have

defined an iterative algorithm to generate this representation and have presented the BPT

pruning as a simple mechanism to exploit the BPT structure. In this section, the whole

scheme for a BPT-based application is outlined and a first analysis of the complexity [51]

of the presented algorithms is described.

The generic BPT-based processing scheme is presented in Fig. 3.9. As mentioned

before, the first step is to generate a Weighted RAG from the original data elements. This

step can be computed by the WRAG generation algorithm, described in Algorithm 3.1.

 3
7
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Data Data segmentation

WRAG generation BPT Construction BPT Pruning Region Selection

Application independent Application dependent

WRAG BPT

Pruned Tree

Figure 3.9: Typical BPT-based processing scheme, where a data segmentation is obtained. Note

that the whole BPT generation process is application independent, whereas the BPT exploitation

is application dependent
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To be able to apply Algorithm 3.1, it is assumed that the original data can be decom-

posed into individual data elements and that a neighborhood can be defined over them.

This term can also be referred as the element connectivity. The regions represented within

the BPT structure will be connected regions based on this element connectivity.

Algorithm 3.1 is a generation algorithm, containing only statements to create itera-

tively all the nodes and edges of the WRAG W. Assuming W = (VW,EW), where VW

and EW represent the set of nodes and edges of W, respectively, the complexity of the

algorithm should be in the order

O(|VW|+ |EW|) (3.1)

where |S| represent the number of elements into the set S. Note that the cost of computing

the dissimilarity measure d has been assumed to be constant.

The number of nodes in W, |VW| is directly the number of elements n within the

dataset. On the other hand, the number of edges |EW| depends on the element connec-

tivity defined. However, it can be assumed that, generally, the number of neighbors for

each data element does not depend on the dataset size, since it is a local property of each

data element. Then, the number of edges |EW| can be assumed as a constant factor k on

the number of edges |EW| = k|VW| = kn, and the complexity of the WRAG generation

Algorithm 3.1 can be expressed as

O ((k + 1)|VW|) = O ((k + 1)n) ≡ O(n) (3.2)

being linear on the number of data elements present on the dataset.

The next step on the processing chain presented in Fig. 3.9 is the BPT construction.

The proposed Algorithm 3.2 to construct a BPT representation is an iterative algorithm

that adds a new node to the BPT B at each iteration. The initialization of the BPT

B (lines 1-4) has a linear cost with the number of data elements O(n). By applying

Property 3.2 it can be easily seen that the number of iterations computed by the algorithm

are n − 1. However, inside the BPT construction main loop, lines 5-21, there is an inner

loop iterating over the neighbors of the two nodes A,B being merged. On the best case,

the total number of iterations will be a constant factor p of the number of iterations, and

then the total cost of Algorithm 3.2 will be

O (n+ (p+ 1)(n− 1)) ≡ O(n) (3.3)

which is also linear with the number of data elements. It has been assumed that all the

operations within the BPT construction loop can be executed in constant time, including

region merging and graph updates.
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However, within this loop the minimum edge of W is selected, which suggests that the

edges of this graph have to be stored within some sorted structure. Unfortunately, there

is no sorted structure having, at the same time, constant cost for finding the minimum

value and for insertion-deletion operations. Consequently, some of the operations within

the main loop can not be implemented with constant cost. This will lead to a logarithmic

factor on the number of edges in W and the cost will be:

O (n+ (p+ 1)(n− 1)log(kn)) ≡ O(n log n) (3.4)

The BPT pruning process, as described in Algorithm 3.3, at most traverses all the

BPT B nodes. If the pruning criteria Υ can be computed in constant time, the maximum

complexity of this algorithm will be equivalent to the number of nodes in B, that is 2n−1

O (2n− 1) ≡ O(n) (3.5)

which is again a linear cost on the number of data elements from the dataset.

The last step represented in Fig. 3.9 represents a node selection over the pruned tree

and its interpretation over the original dataset. In the proposed processing scheme it

corresponds to the selection of the leafs of the pruned tree, represented in red color, which

represent a data segmentation over the original dataset, as stated before.

As it can be seen, the BPT construction is the most computational expensive step of

the chain. Fortunately, this is an application independent process, since it depends only

on the data itself, not on the application. As a consequence, the BPT construction needs

to be computed only once. When it is generated, the same BPT can be exploited for

different applications, through different pruning processes, for example.
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PolSAR data BPT Representation

In the previous section, the BPT has been presented as a region-based and multi-scale

data representation. It may be seen as a data abstraction that can be employed to extract

useful information about data structure. As mentioned in Section 3.4, the BPT based

processing scheme can be separated basically into two steps: the BPT construction and

its exploitation.

As mentioned in Chapter 2, SAR images are strongly non-stationarity, as they reflect

the complexity of the scene. In this case, a BPT PolSAR image abstraction can be very

useful to identify homogeneous regions at different scales.

In this chapter, the generic BPT data representation presented in Chapter 3 will be

adapted to the concrete case of PolSAR images [52] [53] [54] [55]. All the elements needed

to be able to construct a PolSAR image BPT representation by employing Algorithm 3.1

and Algorithm 3.2 will be defined in the following sections.

4.1 Connectivity for PolSAR images

When dealing with PolSAR data, an image will be considered as a dataset and then, each

pixel of the image will be considered as a data element. The first concept that has to be

defined is the data connectivity or, in this case, the pixel connectivity. This decision will

define the shape of the regions represented within the BPT, since they will be connected

regions under the defined pixel connectivity.

Typically, in image processing two types of pixel connectivity are employed: 4-connectivity

and 8-connectivity, depending on the number of neighbors per pixel. They are represented

on Fig. 4.1. The 4-connectivity scheme, Fig. 4.1a, has the advantage of being simpler.

41
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However, the fact that diagonal pixels are not neighbors imposes a limitation on the pos-

sible connected regions represented by the BPT, since diagonal thin structures can not be

represented because their pixels are not connected. In this work, an 8-connectivity scheme

will be assumed, as represented in Fig. 4.1b, in order to avoid this limitation.

(a) 4-connectivity (b) 8-connectivity

Figure 4.1: Possible pixel connectivity schemes for a PolSAR image. Every image pixel, in blue,

has 4 or 8 neighbors, represented in red

4.2 Region model for PolSAR data

As mentioned in Section 3.1 each node of the BPT represents a region of the image with

a region model. A region model has to be selected capable of representing PolSAR image

regions. In Section 2.2, the structure and distribution of PolSAR data has been described.

Since it is affected by the speckle term, an statistical model is needed to represent a region.

Assuming the complex Gaussian scattering model, as presented in Section 2.2, an

homogeneous region can be completely defined by its complex covariance matrix C. Then,

an appropriate region model for a given region A will be estimated covariance matrix

Z [52] [53]

Z = 〈kkH〉nA =
1

nA

∑

i∈A
kik

H
i (4.1)

where nA represents the number of pixels within region A. Note that this equation is

very similar to the one defined in (2.46), the only difference is that the average is computed

over the pixels within region A.

The estimated covariance matrix Z is a good region model to characterize an homo-

geneous region of a PolSAR image, as described before. Unfortunately, this can not be

always true for all the nodes of the BPT, since it contains regions of the image at differ-

ent scales. The root node of the tree, for example, contains all the PolSAR image that,

probably, can not be properly represented by its estimated covariance matrix Z.

In this manuscript, the estimated covariance matrix Z, as defined in (4.1), will be

employed. This decision will have a negative effect on the upper nodes of the tree, that is,

the nodes closer to the root, that are strongly non-homogeneous. However, as it will be
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seen, if the applications for which this BPT representation will be employed are looking

for homogeneous regions over the tree, then the impact of this decision can be negligible,

since these regions can be appropriately modeled with Z.

Moreover, the estimated covariance matrix Z (4.1) has an additional inconvenient.

When calculating it over the single pixels i of the original PolSAR image, the resulting

covariance matrix Zi is rank-deficient. In fact, this issue will affect all the regions A of

the tree containing a number of pixels nA smaller than the covariance matrix Z size. This

circumstance can be a problem for some dissimilarity measures, resulting in the need for

an initial filtering process to get full rank covariance matrices as region models for the

individual pixels.

4.3 Dissimilarity measures

Once a region model has been selected to represent the regions of the PolSAR data, a

dissimilarity measure d has to be defined over the region model space. The dissimilarity

measure is the keystone of the BPT construction process. It defines completely the data

representation obtained and, depending on its ability to measure the similarity between

different regions, the resulting BPT will be able to represent and extract useful information

of the original dataset correctly.

Note that the dissimilarity measure is tied to the region model employed, in this

case the estimated covariance matrix Z. Consequently, as stated in the previous section,

all the limitations of this model representing the different regions will be transfered to

the dissimilarity measure. In this case, the dissimilarity measure will not be capable to

evaluate properly the similarity of strongly non-homogeneous regions, since they are not

accurately characterized.

Additionally, the estimated covariance matrix Z can be rank-deficient, which could

be a problem for some dissimilarity measures, as mentioned previously. In this direction,

the dissimilarity measures will be divided into two types: measures employing the full

covariance matrix Z and measures employing only the diagonal elements of Z [52] [53]

1. Dissimilarity measures employing the full covariance matrix Z have the advantage of

being sensitive to the complete polarimetric information, under the complex Gaus-

sian model assumption. This will lead to a more precise and powerful dissimilarity

measure. However, these measures need to have all the elements of the estimated co-

variance matrix well defined, that is, they need full-rank matrices. As stated before,

this will lead to the need for an initial filtering of the data which also may result in

a resolution loss.
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2. On the other hand, the dissimilarity measures that employ only the diagonal elements

do not need an initial filtering. They can deal properly with rank-deficient matrices

eliminating the need for an initial filtering. On the contrary, these dissimilarity

measures can not employ all the polarimetric information, since they are ignoring

the off-diagonal elements of Z, resulting in a poorer estimation of the similarity

between regions than the full matrix measures. Mathematically, they are assuming

uncorrelated data since all off-diagonal elements are assumed to be 0.

4.3.1 Full-matrix dissimilarities

This section will present some dissimilarity measures that employ the full estimated covari-

ance matrix Z. Then, it will be assumed that for two nodes A,B they have the estimated

covariance matrices ZA,ZB that are full-rank matrices.

• Symmetric revised Wishart dissimilarity dsw. This dissimilarity measure, defined

in [52] is based on a statistical test assuming a Wishart probability distribution [56]

over the estimated covariance matrix. It assumes that the two region models follow

a Wishart pdf and that one of them is known. Then, it tests if the other can be

considered as a realization of the same distribution. The problem of this measure

dw itself is that it is not symmetric, since it depends on which region is assumed to

have the known distribution. Hence, a modified symmetric version dsw is obtained

by applying dsw(A,B) = dw(A,B) + dw(B,A) and by introducing a term depending

on the region size

dsw(A,B) =
(
tr(Z−1A ZB) + tr(Z−1B ZA)

)
(nA + nB) (4.2)

where tr(.) denotes the matrix trace and nA denotes the number of pixels within the

region A.

• Geodesic dissimilarity dsg, defined in [53], is following a completely different ap-

proach. It is based on the positive definite matrix cone geometry [57], that is, the

geometry of the region model space. It measures the distance over the geodesic path,

instead of the euclidean path, that follow the curvature of the matrix cone space. A

modified version is generated by adding a term depending on the region size

dsg(A,B) = ‖log
(
Z
−1/2
A ZBZ

−1/2
A

)
‖F + ln

(
2nAnB
nA + nB

)
(4.3)

where ‖.‖F represents the Frobenius matrix norm, log(.) represents the matrix log-

arithm and ln(.) represents the natural logarithm.
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• Ward relative dissimilarity dwr, from Ward hierarchical clustering [58]. An error

measure based on the error sum-of-squares (ESS) was introduced to quantify the

amount of information loss when two clusters are joined. This measure can also

be used to measure the information loss when merging two neighboring regions. A

normalization matrix is introduced to tackle the multiplicative nature of the speckle

noise. Then, the Ward relative dissimilarity measure is defined as

dwr(A,B) = nA · ‖NH
AB(ZA − ZAB)NAB‖2F + nB · ‖NH

AB(ZB − ZAB)NAB‖2F (4.4)

where ZAB denotes the covariance matrix of the region A ∪ B, AH denotes matrix

A hermitian transpose, NA denotes the normalization matrix of ZA, defined as

NA =




√
ZA11 0 0

0
√
ZA22 0

0 0
√
ZA33


 , (4.5)

and ‖A‖F denotes the Frobenius matrix norm.

The term depending on the region sizes is required since during the BPT construction

regions of different sizes will be compared. The idea represented by this term is that it is

assumed that bigger regions will have less noisy estimations of the region model and then,

the dissimilarity over them may be more restrictive than with smaller regions.

To understand the geodesic dissimilarity dsg approach, an example with a simplified

space is presented to show its adaptation to the space geometry. The real symmetric 2 by

2 covariance matrix space will be assumed to be able to represent it graphically

C =

[
C11

√
C11C22ρ√

C11C22ρ C22

]
(4.6)

where −1 ≤ ρ ≤ 1 represent the correlation coefficient. Note that the real covariance

matrices are symmetric and, then, its three independent components C11, C12, C22 can be

represented graphically. This space is represented in Fig. 4.2. As it can be seen, the space

is confined within a cone, conforming the positive definite matrix cone.

To see the adaptation of the geodesic dissimilarity dsg to this space, it will be compared

with the euclidean distance ‖ZA − ZB‖F . In the following, only the first term of (4.3),

‖log
(
Z
−1/2
A ZBZ

−1/2
A

)
‖F , corresponding to the dissimilarity of the covariance matrix, will

be employed. The term corresponding to the region sizes will be ignored since in this

example we are comparing only covariance matrices, not regions of the image.

The euclidean path γe, which length is measured by the euclidean distance, can be

defined as

γe(t) = ZA + t(ZB − ZA) (4.7)
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Figure 4.2: The 2 by 2 real symmetric covariance matrix space cone

with 0 ≤ t ≤ 1.

On the other hand, according to [57], the geodesic path γg is defined by

γg(t) = Z
1
2
A

(
Z
− 1

2
A ZBZ

− 1
2

A

)t
Z

1
2
A (4.8)

for 0 ≤ t ≤ 1.

As an example, assuming the values for ZA and ZB

ZA =

[
2 −1

−1 1

]
, ZB =

[
1 1

1 2

]
(4.9)

then the euclidean path γe and geodesic path γg are represented in Fig. 4.3, in black and

magenta colors, respectively. The plot over the original space is presented in Fig. 4.3a

over the positive definite matrix cone bounds. As it can be seen, the euclidean path γe

follows a straight line from ZA to ZB but the geodesic path γg is following a curved line

adapted to the positive definite matrix cone. Since the geodesic dissimilarity dsg is based

on the Frobenius norm in the logarithmic space, the euclidean and geodesic paths γe γg

have been represented also in this space in Fig. 4.3b. Note that, as mentioned before,

the logarithm applied is the matrix logarithm, not the logarithm to each element of the
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matrix individually. In this space, the bounds of the positive definite matrix cone can not

be represented since when an eigenvalue tends to 0 the matrix logarithm tend its elements

to infinity. Then, the positive definite matrix cone is unbounded in the logarithmic space.

As it can be seen in Fig. 4.3b, in the logarithmic space the euclidean path γe appears as

a curved line whereas the geodesic path develop a straight line behavior.
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Figure 4.3: Euclidean (black) and geodesic (magenta) paths over the original and logarithmic

spaces

4.3.2 Diagonal dissimilarities

The dissimilarity measures presented in this section will employ only the elements in

the diagonal of the covariance matrix. The proposed measures are the same measures

presented in Section 4.3.1 but assuming that all the off-diagonal elements equal to 0, that

is, they are assuming uncorrelated data.

• Diagonal revised Wishart dissimilarity ddw is the same measure as (4.2) but assuming

that ZA and ZB are diagonal N by N matrices

ddw(A,B) =

(
N∑

i=1

(
ZA

2
ii + ZB

2
ii

ZAiiZBii

))
· (nA + nB) (4.10)

where ZAij and ZBij represent the (i,j)-th element of the estimated covariance ma-

trices ZA and ZB, respectively.
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• Diagonal geodesic dissimilarity ddg, as for the ddw case, is based on (4.3) but assuming

that ZA and ZB are diagonal N by N matrices

ddg(A,B) =

√√√√
N∑

i=1

ln2
(
ZAii
ZBii

)
+ ln

(
2nAnB
nA + nB

)
(4.11)

The fact that full matrix and diagonal dissimilarity measures are based on the same

principles will be very useful when comparing the benefit of employing the full matrix

information to employing only the diagonal information, assuming that all off-diagonal

elements equal to 0.

Additionally, the following diagonal dissimilarities can be defined, based on a relative

comparison of the matrix diagonal elements.

• Diagonal relative normalized dissimilarity ddn is based on the euclidean norm of

the normalized difference of the matrix diagonal vector. Then, the difference of the

diagonal vectors is normalized by their sum, which results in a result bounded in the

interval [−1, 1] for each diagonal element. The ddn dissimilarity measure is obtained

as the euclidean norm of the resulting vector. Finally, a term depending on the

region size is added

ddn(A,B) =

(
N∑

i=1

(
ZAii − ZBii
ZAii + ZBii

)2
)1/2

· (nA + nB). (4.12)

• Diagonal relative dissimilarity ddr, computed as the euclidean norm of the sum of

relative errors respect to to both regions. Note that this comparison, as opposite to

ddn is not bounded, taking values on the interval [0,∞). A term depending on the

region size is also added

ddr(A,B) =

(
N∑

i=1

(
ZAii − ZBii

ZBii
+
ZBii − ZAii

ZAii

)2
)1/2

· (nA + nB)

=

(
N∑

i=1

(
(ZAii − ZBii)2
ZAiiZBii

)2
)1/2

· (nA + nB). (4.13)



Chapter 5

PolSAR BPT-based applications

The previous chapter has defined all the necessary elements to generate a BPT repre-

sentation from a PolSAR image. At this point, a BPT can be generated by applying the

processes and algorithms described in Chapter 3. Now, some BPT exploitation mechanism

will be described for different applications. Note that, as stated in Chapter 3, the whole

BPT construction process is application independent and, thus, the same applies for all

the concepts defined in the previous chapter. On the contrary, the concepts introduced

in this chapter are focused on one concrete application and then, this Chapter is divided

into different subsections according to different applications.

In this Chapter some applications that exploit the BPT will be described: speckle

filtering and coastline segmentation. The speckle filtering application will be analyzed

in detail, defining different pruning methods and criteria and testing them with real and

simulated data. Finally, the coastline segmentation application will be described briefly.

As it will be seen, the two mentioned applications are completely different and they will

exploit distinct information contained within the same BPT.

5.1 Speckle filtering

SAR images are corrupted by the speckle noise and, due to its multiplicative nature, it

makes SAR image processing difficult. This effect is caused by the coherent essence of

radar images and it has been analyzed in detail in Chapter 2. Usually, any process of

information extraction from PolSAR data needs some speckle filtering. The main problem

for filtering over these data is that it is strongly non-homogeneous. Some state-of-the-art

techniques, refer to Section 2.3, tend to define an homogeneous neighborhood around a

49
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given pixel to avoid mixing non-homogeneous data.

As mentioned in Chapter 3, the BPT is a region-based and multi-scale data representa-

tion. This representation may be useful to identify homogeneous regions over the PolSAR

image and to be able to apply a speckle filtering without mixing non-homogeneous pixels.

Two BPT pruning processes are defined in the following sections, attempting to extract

homogeneous regions over the image. When the image is segmented into its homogeneous

regions, the filtering application comes out easily, since all the pixels within each region

can be represented by the estimated covariance matrix over the whole region that, indeed,

corresponds to the region model.

5.1.1 BPT pruning based on the number of regions

The first approach to extract homogeneous regions from the BPT is to extract a fixed

number N of regions corresponding to the N most different regions from the tree. To

apply this criterion, a measure needs to be defined to evaluate how different are two

given regions. However, as stated in Chapter 3, the dissimilarity measure is employed

exactly for this purpose and then, the same dissimilarity measure d employed for the BPT

construction process can be employed for pruning.

Note that when the same dissimilarity measure is employed for BPT construction and

for this tree pruning then, it is equivalent to construct the BPT up to a given number

of regions N is achieved. Then, there is no need to generate the full BPT nor to apply

the pruning process defined in Section 3.3, which may result in a faster processing chain.

However, if different tree pruning processes will be done over the same tree, or it will be

employed for different applications, then generating the full BPT only once may be faster.

Fig. 5.1 and Fig. 5.2 show examples of a 256 by 256 pixel PolSAR image crops, corre-

sponding to some agricultural fields and an urban area, respectively, processed with the

9x9 multilook and the mentioned BPT pruning based on the number of regions. Data,

acquired by the DLRs ESAR system at L-band, will be presented in detail in the following

sections devoted to analyze the obtained results in detail. Fig. 5.1a and Fig. 5.2a present

the original data crop whereas Fig. 5.1c to Fig. 5.1e and Fig. 5.2c to Fig. 5.2e show the

results for different number of regions N . As mentioned before, each region has been rep-

resented with its estimated covariance matrix employing a Pauli RGB composition. For

the BPT construction process and, hence, for the pruning process, the geodesic dissimi-

larity measure dsg described in (4.3) has been employed. Note that, since the dsg measure

is employing the full covariance matrix information, an initial filtering is needed. In this

case, an initial 3 by 3 multilook filtering has been employed.

As it can be seen in Fig. 5.1 and Fig. 5.2, the contour preservation of BPT processed

images is much better than with the 9x9 multilook. Since it is a region-based filtering, the
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(a) Original (b) 9x9 multilook

(c) N = 250 (d) N = 50 (e) N = 10

Figure 5.1: 9x9 multilook and BPT pruning based on the number of regions of an agricultural

fields image for different values of N . The BPT has been constructed employing the geodesic

dsg dissimilarity. Images are represented using Pauli RGB composition (|Shh + Svv|, |Shv + Svh|,
|Shh − Svv|)

region edges appear perfectly clear, instead of blurred, as for the multilook filter, which

is a linear filtering. Additionally, the regions obtained from the BPT respect the main

contours of the original image, unless the fixed number of regions N is established too

small. Increasing the number of regions N results in smaller regions and more details of

the original image preserved. However, it is difficult to establish the optimal N for the

images and this number will be completely different for images presented in Fig. 5.1a and

Fig. 5.2a since the urban environment is much more complex.

Fig. 5.3 presents the region size histograms for the pruned regions in the results shown

in Fig. 5.1 and Fig. 5.2, for the number of regions N = 250 and N = 50. Analyzing

the differences between the two environments, it can be seen that the dynamic range of

the pruned region sizes is much more narrow in the agricultural area than in the urban

area, mainly because the difference in complexity of both scenes. Additionally, it can be

seen that the region sizes obtained are very dependent on the pruning parameter N . For

N = 250 the maximum region size density for agricultural area is between 150-400 pixels,

with around 80% of total regions, whereas for N = 50 only 8% of regions are within

these values. One would expect that, since the structure of the image is the same, those

values should be more similar for both cases. However, the underlying problem is that
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(a) Original (b) 9x9 multilook

(c) N = 250 (d) N = 50 (e) N = 10

Figure 5.2: 9x9 multilook and BPT pruning based on the number of regions of an urban image

for different values of N . The BPT has been constructed employing the geodesic dsg dissimilarity.

Images are represented using Pauli RGB composition (|Shh + Svv|, |Shv + Svh|, |Shh − Svv|)

the number of regions is highly dependent on the image structure and then, it can not be

used as a pruning parameter when we want to obtain a segmentation that adapts to this

image structure.

Agricultural zone Urban zone

Number of regions N 250 50 10 250 50 10

Minimum region size 44 157 1693 1 45 45

Maximum region size 570 2539 12094 918 4948 40430

Table 5.1: Pruned regions and region sizes in pixels over urban and agricultural areas for BPT

pruning based on the number of regions with different N

The BPT pruning based on the number of regions has the advantage that it does not

need to introduce any new criteria, since the same dissimilarity measure employed for the

BPT construction is applied for tree pruning. Additionally, as stated before, it can be

simpler and faster if it is generated by stopping the BPT construction process when N

regions are achieved. On the other hand, fixing the number of regions N is its major

drawback, since this factor is strongly dependent on the image structure and it is not easy

to find a priori. Additionally, as shown in Section 4.3, the dissimilarity measures have

a strong dependence with the region sizes and thus, it will be difficult to obtain in the
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Figure 5.3: Region size histograms for N = 250 and N = 50 over agricultural and urban area

images presented in Fig. 5.1 and Fig. 5.2

same image regions with substantially different sizes, even if the original data presents

this structure.

Moreover, note that the dissimilarity measure employed for BPT construction is based

only on the region model. If it is also applied for BPT pruning then the pruning accuracy

will depend on the accuracy of the model to represent properly the region pixels. As men-

tioned in Section 4.2, the estimated covariance matrix Z defined in (4.1) is a good model

only for homogeneous regions, which means that the BPT pruning based on the number

of regions may not perform properly when N is small enough to obtain inhomogeneous

regions.

5.1.2 Homogeneity based pruning

The BPT pruning based on the number of regions has been defined in Section 5.1.1 and

some of its important drawbacks have been described. In order to overcome its inconve-

niences, the following guidelines should be accomplished

1. The pruning factor should be completely independent of the image structure, to

avoid the trouble of defining a different value for each image.

2. The pruning criterion should be independent of the region size, making possible that

regions with completely different sizes appear at the same tree pruning.

3. The pruning criterion should depend on all the pixel values contained within the

region, not only on the region model, to mitigate the problems induced when the

region model can not represent properly the whole region.
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A new BPT pruning criterion Υh is introduced based on the region homogeneity to

overcome the problems of the pruning based on the number of regions. Then, a homogene-

ity measure φ has to be defined to asses the homogeneity of a given node A. The biggest

nodes of the tree being more homogeneous than a given threshold δp will be pruned. Note

that, in this case, the BPT pruning Algorithm 3.3 should be used and it can not be simpli-

fied to avoid the whole BPT construction, since both processes have nothing in common.

Consequently, it can be slower than the BPT pruning based on the number of regions.

According to the previously defined guidelines, the following homogeneity measure φ

is defined

φ(A) =
1

nA

∑

i∈A

‖Zi − ZA‖2F
‖ZA‖2F

(5.1)

where Zi represents the covariance matrix of pixel i within region A, ZA represent its

estimated covariance matrix and nA its total number of pixels.

Note that (5.1) measures the homogeneity of a given region A, being independent of

the image structure and, since it is an average on all the pixels within the region A, it

does not depend on the region size or on the region model only. Then, this homogeneity

measure φ is following the previously defined guidelines.

The homogeneity measure φ can also be viewed as the relative Mean Squared Error

(MSE) when representing a region A by its model ZA. The only difference with the

traditional MSE is that it is divided by the squared norm of the region model ‖ZA‖2F .

This normalization is needed due to the multiplicative nature of the speckle noise.

The region homogeneity pruning criterion Υh can be defined, then, as the test for a

region having a homogeneity measure φ below the pruning factor δp

Υh(A) : φ(A) < δp. (5.2)

Usually, the pruning factor δp is expressed in dB, corresponding to the pruning criterion

Υh(A) : 10 · log10 (φ(A)) < δp(dB). (5.3)

Notice that employing this new pruning criteria Υh the number of pruned regions will

be automatically established. For complex images the number of regions will be higher

since all the regions pruned have to accomplish the pruning criteria (5.3).

Fig. 5.4 and Fig. 5.5 show the same images presented in Fig. 5.1a and Fig. 5.2a,

corresponding to agricultural and urban areas, respectively, filtered employing the defined

region homogeneity based pruning for different pruning factors δp.

As it can be seen, by comparing Fig. 5.4 and Fig. 5.5, employing the region homogeneity

based pruning, with Fig. 5.1 and Fig. 5.2, employing the pruning based on the number

of regions, the region sizes over an agricultural area can take more different values. Note
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(a) δp = −2dB (b) δp = −1dB (c) δp = 0dB

Figure 5.4: BPT homogeneity based pruning of an agricultural fields image for different values of

δp. The BPT has been constructed employing the geodesic dsg dissimilarity. Images are represented

using Pauli RGB composition (|Shh + Svv|, |Shv + Svh|, |Shh − Svv|)

(a) δp = −2dB (b) δp = −1dB (c) δp = 0dB

Figure 5.5: BPT homogeneity based pruning of an urban area image for different values of δp. The

BPT has been constructed employing the geodesic dsg dissimilarity. Images are represented using

Pauli RGB composition (|Shh + Svv|, |Shv + Svh|, |Shh − Svv|)

the small details on the bottom part of the image whereas big regions are obtained inside

the agricultural fields. Additionally, with the same pruning parameter values, the urban

area can be filtered preserving all the small details. To show this feature numerically,

Table 5.2 represents the number of regions and the region size dynamic range for each

pruning processes.

Agricultural zone Urban zone

δp −2dB −1dB 0dB −2dB −1dB 0dB

Number of regions 502 116 32 2652 1696 1043

Minimum region size 2 4 11 1 1 1

Maximum region size 3602 8697 8698 898 1403 3052

Table 5.2: Pruned regions and region sizes in pixels over urban and agricultural areas for homo-

geneity based pruning with different pruning thresholds δp



56 CHAPTER 5. POLSAR BPT-BASED APPLICATIONS

Analyzing Table 5.2, the number of regions over the urban area is much higher than

over the agricultural area. This is needed to obtain homogeneous regions having a similar

relative MSE (5.1) in both cases, since the structure of the urban area is much more

complex. Additionally, when comparing Table 5.2 with Table 5.1, the region size dynamic

range obtained is much higher than with number of regions based pruning, since the

homogeneity measure φ is independent on the region size.

Fig. 5.6 presents the region size histograms for different pruning thresholds δp over

agricultural and urban areas. It is worth to notice that for urban area, Fig. 5.6a, the

maximum density of region sizes is around 20 pixels for all the pruning factor values

whereas for the agricultural area, Fig. 5.6b, this value is around 100 pixels, but it is also

maintained for different δp values.
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Figure 5.6: Region size histograms for agricultural and urban area images presented in Fig. 5.1

and Fig. 5.2 with different pruning factors δp

The BPT homogeneity based pruning can improve all the disadvantages of the pruning

based of the number of regions. It can obtain a wider range of region sizes since it is

independent of the region size, generating bigger regions over homogeneous areas of the

image while, at the same time, it preserves the small details of the image. It does not

depend on the image complexity or size; fixing a pruning factor δp it will obtain the bigger

homogeneous regions that fulfill the pruning criterion (5.3). Additionally, it ensures that

the pruned nodes represent regions having a relative MSE below a given factor δp. On the

other hand, its main inconvenience of being more complex, since the full BPT construction

is needed, is not a major drawback when different pruning strategies are needed over the

same tree, since the BPT construction only has to be computed once. Note that the same

concept applies to the region homogeneity values φ(A) for each node A of the tree.
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An important point is that all the images presented in Fig. 5.2c to Fig. 5.2e and

Fig. 5.5a to Fig. 5.5c are generated from the same BPT through different pruning thresh-

olds and consequently, all this information is represented within the same BPT structure

of the urban area image (the BPT generated employing the dsg dissimilarity measure,

8-connectivity and the estimated covariance matrix Z as the region model, as described

previously in Chapter 4). The same can be applied to Fig. 5.1c to Fig. 5.1e and Fig. 5.4a

to Fig. 5.4c of the agricultural area. This can give an idea of the amount of information

present within a PolSAR image BPT representation and its usefulness.

5.1.3 Results with real data

In this section, the proposed BPT-based speckle filtering schemes will be analyzed in

detail with two real datasets, corresponding to two different Polarimetric SAR sensors:

the ESAR airborne system and the RADARSAT-2 spaceborne system.

The first dataset corresponds to a measuring campaign conducted by DLR in 1999 with

its experimental ESAR system over the Oberpfaffenhofen test-site, southern Germany.

Data were collected at L-band, with a spatial resolution of 1.5m x 1.5m in fully polarimetric

mode. The whole image has 2816 rows by 1540 columns and its Pauli RGB image is

presented in Fig. 5.7a.

Fig. 5.7b presents the filtered image obtained by applying the defined BPT region

homogeneity based pruning with a pruning factor δp = −2dB over a BPT constructed

employing the revised Wishart dsw dissimilarity, defined in (4.2). As it can be seen,

qualitatively the colors of the original image are maintained whereas the level of noise is

strongly reduced. The contours and the small details of the original image are preserved

and, due to the speckle filtering effect, they appear more clear in Fig. 5.7b.

The previous dataset has been processed, for comparison purposes, with a 7x7 mul-

tilook as a reference, the IDAN1 [44] filter, and the discussed BPT pruning approaches:

pruning based on the number of regions and region homogeneity based pruning. To per-

form a more detailed analysis of the filtering techniques, they will be studied over a 512 by

512 pixel crop of the full dataset, presented in Fig. 5.8a. The selected area contains large

agricultural fields at the bottom part of the image and a urban area with small details

in the center and right parts. Additionally, a forest area can be found at the top part of

the image. Fig. 5.8b and Fig. 5.8c present the same area filtered with the multilook and

IDAN filters, respectively.

The multilook filter can achieve a good speckle filtering results, however its spatial

resolution loss may be important, blurring the contours and enlarging point scatters to

1The PolSARPro [59] IDAN implementation has been employed for this work, with a maximum window

size parameter of 100 pixels.
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(a) Original (b) dsw, δp = −2dB

Figure 5.7: Pauli original and BPT-based filtered images of Oberpfaffenhofen. The revised Wishart

dissimilarity measure dsw has been employed for BPT construction and region homogeneity based

pruning with δp = −2dB (|Shh + Svv|, |Shv + Svh|, |Shh − Svv|)

the window size. On the other hand, the IDAN filter has a very good spatial resolution

preservation both in contours and in point scatters. However, the amount of speckle

reduction achieved by the IDAN filter is smaller when compared to the multilook filter.

Fig. 5.9 shows results over the same area processed with the BPT approach. The

figures on the left column (Figs. 5.9a, 5.9c, 5.9e) correspond to BPT pruning based on the

number of regions2 whereas the right column (Figs. 5.9b, 5.9d, 5.9f) show results of region

homogeneity based pruning. All the images have been generated by pruning over the

2Note that the results are shown over a detailed area of 512 by 512 pixel, but the whole image, presented

in Fig. 5.7a is processed. Then, the number of regions N refers to the whole image, and only a small subsets

of regions appear over the crop shown.
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(a) Original (b) 7x7 multilook (c) IDAN

Figure 5.8: Detail Pauli RGB images. (a) Original, (b) filtered with 7x7 multilook and (c) filtered

with IDAN (|Shh + Svv|, |Shv + Svh|, |Shh − Svv|)

same BPT, constructed with the revised Wishart dsw dissimilarity over the whole image,

presented in Fig. 5.7a.

The BPT-based speckle filtering results, shown in Fig. 5.9, exhibit their ability to

achieve strong filtering over large homogeneous areas, for example in the agricultural

fields on the bottom part of the image. It can achieve stronger filtering than the multilook

while also preserving the field contours. The same effect can be observed over the forest

zone, where large filtering can be attained. Additionally, the small details of the urban

area are preserved, specially with the region homogeneity based pruning, obtaining within

the same image regions with very different sizes. It can be seen also the effect of the

pruning factor for both pruning criteria. When decreasing the number of regions N or

increasing the homogeneity threshold δp larger regions appear over the image. Note that,

when increasing δp or decreasing N , the pruned regions change, but no new contours

appear, since within the BPT structure the new regions are always generated by merging

of two smaller ones.

Fig. 5.9 also shows the differences between the two pruning criteria defined. When

comparing both BPT pruning strategies, the disadvantages mentioned in Section 5.1.1 of

the pruning based on the number of regions appear clearer when processing the whole

dataset. It can be seen that it is not possible to fix an appropriate number of regions N to

obtain in the same image all the small details of the urban area and large regions over the

agricultural fields. This drawback is produced by the strong dependence of the dissimilarity

measures with the region sizes, which is necessary for a good BPT construction but makes

them not suitable as pruning criteria. The homogeneity based pruning can adapt better

to the spatial information and obtain regions with very different sizes, ensuring that they

have a relative MSE below the pruning factor δp.

To show the ability of the region homogeneity based pruning to preserve small details
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(a) dsw, N = 50000 (b) dsw, δp = −2dB

(c) dsw, N = 10000 (d) dsw, δp = −1dB

(e) dsw, N = 2000 (f) dsw, δp = 0dB

Figure 5.9: Detail Pauli RGB images. (a), (c), (e) filtered with pruning based on the number of

regions and (b), (d), (f) filtered with region homogeneity based pruning (|Shh + Svv|, |Shv + Svh|,
|Shh − Svv|)

of the original image and, at the same time, perform strong filtering over homogeneous

areas, an image crop containing five corner reflectors over an homogeneous field, near to

the main runway of the airport, is processed with different filtering techniques. The results
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are shown in Fig. 5.10.

(a) Original (b) 7x7 multilook

(c) δp = −2dB (d) δp = −1dB

(e) δp = 0dB (f) IDAN

Figure 5.10: Detail Pauli RGB images of corner reflectors preservation (|Shh + Svv|, |Shv + Svh|,
|Shh − Svv|)

The original crop image is shown in Fig. 5.10a, where the corner reflectors appear as

small bright dots. When processing the image with the 7x7 multilook filter, presented in

Fig. 5.10b, the corner reflectors appear more clear but, due to the spatial resolution loss,

they appear enlarged with the multilook window shape. The IDAN filter has a better

spatial resolution preservation, Fig. 5.10f, maintaining the original shape of the corner

reflectors. However, the amount of speckle filtering over the field is lower, when compared

with the multilook. BPT-based filtering is presented in Figs. 5.10c to 5.10e. The region

homogeneity based pruning has been employed over the previously BPT generated with

the revised Wishart dsw dissimilarity (4.2). As it can be seen, the corner reflectors are

preserved, almost with the same shape as in the original image, for all the values of δp

presented. The level of filtering on the field changes, from δp = −2dB where some regions

are detected inside showing its internal structure, to δp = 0dB where a big region covers

the whole field. Note that the level of filtering attained is then, much higher with the

BPT-based approach than with the other presented speckle filtering techniques, resulting

in a better estimation of the polarimetric information. This example illustrates the ability

of the region homogeneity based pruning to extract regions with very different sizes from
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within the tree, adapting to the data structure and preserving small details.

Fig. 5.11 shows different results obtained pruning different BPTs with the same pruning

mechanism: the region homogeneity based pruning with a pruning factor δp = 0dB. The

BPTs have been constructed employing different dissimilarities defined in Section 4.3 over

the original image Fig. 5.7a. An initial 3x3 multilook has been employed to be able to

apply the full matrix dissimilarities, as described before. Again, instead of representing

the full image, the 512x512 crop image presented in Fig. 5.8a is shown.

Although the BPTs have been constructed employing different dissimilarity measures

during the construction process, similar regions are obtained corresponding to the same

agricultural fields and representing the urban structure. This results can give an idea of

robustness of the BPT construction process respect to the dissimilarity measure employed.

Different dissimilarities have been employed, with completely different approaches; ones

are based on a statistical test, others on the covariance matrix cone geometry; ones em-

ploying the full covariance matrix, others only the diagonal information and the regions

obtained seem to adapt qualitatively to the image structure in all the cases. A more de-

tailed analysis of the results is much more complex by the absence of ground truth, but in

Section 5.1.4 a more detailed analysis will be done with simulated data to overcome this

inconvenience.

The morphology of the pruned trees for different dissimilarity measures are presented

in Fig. 5.12. However, to obtain a small enough tree to be representable, instead of

the full image, a small crop has been processed corresponding to an area of agricultural

fields, presented in Fig. 5.1a. As in the previous example, all the trees have been pruned

employing the region homogeneity based pruning with δp = 0. The pruned nodes are

colored in green if they are tree leaves, that is, single pixels of the image, or in red

otherwise.

The task to analyze and evaluate the BPT structure is a very difficult mission and

will not be addressed in this work. However, looking at the different pruned trees in

Fig. 5.12 it can be seen that typically diagonal dissimilarities obtain more linear trees,

whereas BPTs obtained by full matrix dissimilarities are more balanced and thus, their

representation appears wider. Additionally, the revised Wishart dissimilarity dsw, is the

only one having individual pixels, represented in green, being pruned and also they appear

in the upper nodes of the tree. This is not the desired structure, since one would expect

to get individual pixels not so close to the root node. However, these results are not very

significant since they are obtained from a small and simple image (Fig. 5.1a), having large

homogeneous regions. To obtain a representative pruned tree structure, the whole image

tree should be employed but, in this case, the resulting tree will be too large to be properly

represented.
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(a) ddg, δp = 0dB (b) dsg, δp = 0dB

(c) ddw, δp = 0dB (d) dwr, δp = 0dB

(e) ddn, δp = 0dB (f) ddr, δp = 0dB

Figure 5.11: Detail Pauli RGB images processed using region homogeneity based pruning with

δp = 0dB over different trees constructed employing various dissimilarity functions (|Shh + Svv|,
|Shv + Svh|, |Shh − Svv|)

In the previous examples, a qualitative analysis has been made of the proposed BPT-

based filtering schemes. However, although the BPT construction and pruning is taking

into account all the polarimetric information within the covariance matrix, only the di-
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(a) ddg (b) dsg (c) ddw (d) dsw

Figure 5.12: Pruned BPTs using region homogeneity based pruning with δp = 0dB over different

trees constructed employing various dissimilarity functions. Pruned nodes are colored in green if

they are leaves or in red otherwise

agonal elements have been represented, since the Pauli RGB composition has been em-

ployed to represent the data. To analyze the fully polarimetric information preservation,

some complementary analysis are needed. In the following analysis, the Entropy (H),

Anisotropy (A) and averaged alpha angle (ᾱ) decomposition will be employed, as defined

in Section 2.2. Note that these parameters can not be defined over the original image,

since their calculation needs full-rank matrices, then the 7x7 multilook filtered image will

be employed as a reference.

Fig. 5.13 presents the H/A/ᾱ decomposition parameters over the image crops employed

before. The entropy and anisotropy are represented from 0, in blue, to 1, in red colors;

the averaged alpha angle is represented from 0◦, in blue, to 90◦, in red. Results are shown

for the 7x7 multilook filter, as a reference, the IDAN filter and the BPT homogeneity

based pruning for δp = −2dB and δp = 0dB. An initial qualitative evaluation shows

that the colors are maintained for all the filtering processes, meaning that the H/A/ᾱ

parameters are maintained. However, when results are analyzed in detail some differences

are observed. The BPT-based filtering can take profit of estimating the covariance matrix

over large homogeneous areas, reducing the noise and estimation errors. This effect is

specially clear over agricultural fields, in the bottom part of the image. In the forest, at

the top part of the image, a similar effect can be observed; increasing the pruning factor
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(a) H, 7x7 multilook (b) A, 7x7 multilook (c) ᾱ, 7x7 multilook

(d) H, IDAN (e) A, IDAN (f) ᾱ, IDAN

(g) H,dsw, δp = −2dB (h) A,dsw, δp = −2dB (i) ᾱ, dsw, δp = −2dB

(j) H,dsw, δp = 0dB (k) A,dsw, δp = 0dB (l) ᾱ, dsw, δp = 0dB

Figure 5.13: H/A/ᾱ of processed images with multilook, IDAN and using region homogeneity

based pruning

to δp = 0dB results in a better estimation, where entropy H tends to 1 and anisotropy A
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Figure 5.14: Homogeneous zones selected over the original image (|Shh + Svv|, |Shv + Svh|, |Shh −
Svv|)

tends to 0, which fits with the theoretical response for a random volume scattering, as it

is supposed to occur over forest. On the other hand, the ability of the region homogeneity

BPT pruning to preserve small details can be clearly seen over urban areas, at the center of

the image, where the small structures corresponding to buildings and other human-made

targets are preserved. Note that, as a consequence, the proposed filtering scheme improves

the estimation of the polarimetric information both, in point as well as in distributed

scatters, with respect to the multilook filter.

To make a quantitative evaluation of the polarimetric information preservation, a set

of three homogeneous test regions have been manually selected over the original image,

presented in Fig. 5.14. Different parameters, covering the covariance matrix elements and

the H/A/ᾱ polarimetric decomposition, are estimated over these regions for the original

image and the images filtered employing different filtering strategies. The results over

these areas are presented in Table 5.3 for 7x7 multilook, IDAN filter and BPT-based

filtering.

Table 5.3 shows that the multilook and the region homogeneity BPT pruning estimate

the elements of the covariance matrix properly, obtaining results very similar to the original

ones. However, on some regions the BPT pruning employing δp = 0dB start to diverge

from the original values due to inhomogeneous region mixture. Then, probably fixing the

pruning factor to δp = 0dB can be an excessive value for the filtering application. On

the other hand, the IDAN filter introduces an important bias on the covariance matrix

elements. The presence of this bias has been discussed in [60] and compensated up to a

certain point by the authors [61]. The last three columns of Table 5.3 show the H/A/ᾱ
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Region Filtering C11 C22 C33 <(C13) =(C13) H A ᾱ

Original 28.27 16.06 18.34 5.242 5.504 - - -

ML 7x7 28.21 15.97 18.36 5.321 5.465 0.8012 0.3543 48.29

Z1 IDAN 18.73 9.661 12.03 2.471 2.595 0.8558 0.3050 49.48

5000 px BPT -2dB 28.15 16.10 18.17 5.466 5.605 0.8271 0.2873 48.27

BPT -1dB 28.20 15.20 18.08 5.558 5.612 0.8618 0.2036 47.91

BPT 0dB 27.76 14.47 16.96 5.813 5.211 0.8694 0.1630 47.74

Original 279.3 159.1 172.8 49.80 -14.37 - - -

ML 7x7 280.8 159.3 172.9 49.18 -15.27 0.8598 0.2907 49.06

Z2 IDAN 173.0 102.4 105.8 20.59 -7.978 0.9003 0.2501 51.29

5950 px BPT -2dB 278.1 158.4 171.5 48.05 -16.12 0.8475 0.2984 49.50

BPT -1dB 280.4 157.7 172.4 50.24 -15.42 0.8925 0.2269 49.41

BPT 0dB 292.2 160.8 177.0 50.74 -13.42 0.9305 0.1307 49.61

Original 10.70 2.782 13.13 2.644 5.599 - - -

ML 7x7 10.70 2.789 13.14 2.662 5.593 0.6781 0.4248 42.62

Z3 IDAN 7.123 1.864 8.678 1.433 2.896 0.7438 0.4505 44.39

18000 px BPT -2dB 10.33 2.713 12.94 2.498 5.255 0.7370 0.3755 43.32

BPT -1dB 10.36 2.799 13.23 2.434 5.136 0.7445 0.3881 43.60

BPT 0dB 11.76 3.405 13.59 2.556 5.351 0.7852 0.3471 44.34

Table 5.3: Mean estimated values over homogeneous areas for different filtering strategies

parameters. These parameters can not be calculated over the original data since they

need full-rank matrices and then, they not appear over the corresponding rows. The

values obtained for all the filters are similar, including the IDAN filter. In this case, the

bias over the covariance matrix is not so important over H/A/ᾱ parameters since they

have a relative nature, covering bounded intervals of [0, 1] for H/A and [0◦, 90◦] for ᾱ.

Note that, since these parameters are calculated indirectly from the covariance matrix,

their estimation is biased. This bias has been studied in detail in [62], depending on

the number of samples (looks) employed for the covariance matrix estimation. As stated

in [62], the entropy H and anisotropy A are always underestimated and overestimated,

respectively, and increasing the number of looks reduces the bias. This effect can be seen

on Table 5.3 while increasing the pruning factor δp means incrementing the number of

looks as regions obtained are larger and then, H and A are incremented and reduced,

respectively.

5.1.4 Results with simulated data

In the previous section, a qualitative analysis of the filtering results with real data has

been addressed. A quantitative evaluation has also been done by selecting manually some

homogeneous areas over the data and comparing estimated values over original and filtered

images. However, a more detailed analysis can not be done since the ground truth of the
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data is not known. In fact, the ground truth can not be obtained for a real image and

then, a new evaluation process is defined in this section, based on generating simulated

PolSAR images from a given synthetic ground truth.

To make a detailed assessment of the filtering process, a simulated 128x128 pixels

PolSAR image is proposed in Fig. 5.15 with four square regions of equal size. Simulated

data have been generated using the complex Gaussian polarimetric model presented in [63],

assuming a reflection symmetric target since most of natural targets follow this model, with

covariance matrix C of the form

C = σHH




1 0 ρ
√
γ

0 ε 0

ρ∗
√
γ 0 γ


 (5.4)

where ∗ denotes complex conjugate.

Three sets of images have been simulated according to (5.4) with γi = 1 and εi = 0.1

and variations for σHHi and ρi in different regions i = 1 . . . 4 as denoted in Fig. 5.15a

1. Variations in intensity: ρi = 0.5; σHH = {1, 9, 25, 49}

2. Variations in correlation: ρ = {0, 0.25ejπ, −0.5, 0.75e−jπ}; σHHi = 1

3. Variations both in correlation and in intensity: ρ = {0, 0.25ejπ, −0.5, 0.75e−jπ};
σHH = {1, 9, 25, 49}

(a) (b) (c)

Figure 5.15: Simulated PolSAR images with 4 equal size zones. Z11, Z22 and Z33 are assigned

to blue, red and green channels, respectively. (a) Zones shape and numeration, (b) and (c) one

realization of the image with intensity variations and image ground-truth, respectively

Some matrix measure is needed to asses numerically the accuracy of the filtered image

X with respect to the simulated ground truth Y . The matrix relative error ER measure

is proposed

ER(X,Y ) =
1

nh · nw

nh∑

i=1

nw∑

j=1

‖Xij −Yij‖F
‖Yij‖F

(5.5)

where nh and nw are the image height and width in pixels, respectively, Xij represents

the (i, j)th pixel value of image X and ‖ · ‖F denotes Frobenius matrix norm. Note that
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the relative error measure defined in (5.5) is based on the inverse signal to noise ratio

(SNR−1) averaged for all the pixels in the image.

Fig. 5.16 presents a filtering quality comparison, in terms of ER (5.5), of the BPT

pruning based on the number of regions, presented in Section 5.1.1, with some of the

dissimilarity measures defined in Section 4.3.2. The number of regions N is shown in the

upper horizontal axis with logarithmic scale. In the lower horizontal axis, the mean region

area in pixels is stated, calculated as (nh ·nw)/N . The plot also compares the BPT pruning

based on the number of regions with the multilook filter (2.46), for different window sizes.

In this case, the mean region size corresponds to the nominal window size, i.e. n in (2.46).

For the BPT based filtering, an initial 3x3 multilook has been applied in order to get full

rank matrices needed for dsw (4.2) and dwr (4.4) dissimilarities. The results have been

obtained averaging 25 different realizations of the simulated image. For the multilook

and the dsw cases the standard deviation values resulting from the 25 realizations are also

included. The rest of the curves present similar standard deviation values to the dsw case.

The aim to simulate synthetic images with variations on intensity and correlation is to

compare the behavior of diagonal and full matrix dissimilarity measure and to asses the

performance of the BPT-based speckle filtering in comparison with the multilook filter,

as a reference. When variations on intensity are present, Figs. 5.16a and 5.16c, for small

values of the average region size the results for the BPT pruning based on the number

of region are very close to the multilook filter, since the region mixture for the multilook

filter near the region contours is negligible. For larger values of region size, in the order of

50-100 pixels, equivalent to a 9x9 Boxcar filter, the ER measure starts to increase rapidly

for the Boxcar filter, as the region mixture near contours becomes noticeable. The BPT

based filtering, on the contrary, is able to adapt to the image spatial morphology, avoiding

the region mixture near contours and achieving a constant improvement on the ground

truth estimation as the region size increases, reflected by a decrease on the relative error

measure. The best value in terms of ER is achieved near the 4 regions for almost all the

dissimilarity measures, except the ddr measure, when reducing the region number implies

an unavoidable region mixture, since the ground truth is composed by exactly 4 square

regions.

When there are no variations on intensity, results are completely different, as shown on

Fig. 5.16b. Note that in this case only the dissimilarity measures employing the full matrix

information are sensitive to the region contours. Then, the regions generated employing

ddn (4.12), ddr (4.13) and ddw (4.10) rapidly start mixing non-homogeneous regions, since

they can not adapt to the spatial morphology, and never improve the multilook filter

performance. On the other hand, full matrix dissimilarities dsw (4.2) and dwr (4.4) can

adapt to the image spatial morphology, avoiding the region mixture effect, and achieving
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(c) Variations both in correlation and in intensity

Figure 5.16: Relative matrix error for simulated images with 4 equal size zones filtered with a BPT

pruning based on the region number. Results have been obtained averaging 25 realizations

better results than the multilook filter. Note that, in Fig. 5.16b, the intensity is constant

over the entire image. As a result, the mixing of different regions has not as a dramatic
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impact in ER as in Fig. 5.16a and 5.16c. This also explains why the minimum of the

Boxcar relative error occurs at region sizes about 400-500 pixels, equivalent to a 21x21

multilook filter.

Comparing the results obtained for the different dissimilarity measures over the three

plots, it can be seen that each dissimilarity measure has a different behavior respect to

the number of regions N . The Wishart based dissimilarities have an almost stable and

constant decrease in terms of ER as N increases, and achieving the best values of ER near

the ideal value N = 4. On the contrary, the ddn and ddr dissimilarities have a strong

decrease of ER before N = 4, achieving the best value far from its ideal value, although

they can achieve better performance in terms of ER. Ward relative dissimilarity dwr have

a poorer performance in terms of ER when compared to other dissimilarities, but it has

the advantage of presenting a clear minimum at exactly 4 regions for all the cases. When

there are no variations in intensity, the full matrix dissimilarities are the only ones that

can adapt to the spatial contours and improve the Boxcar filter, as shown on Fig. 5.16b.

Fig. 5.17 shows some examples of the results of the Boxcar filter and the BPT pruning

based on the number of regions for different N and different BPTs constructed employing

various dissimilarity measures. As it may be seen in Fig. 5.17a, 5.17b and 5.17c, as

the Boxcar filter size increases the amount of speckle noise reduction and the quality of

the estimation increases. However, the spatial resolution is degraded considerably as the

filter size increases, blurring completely the region contours. In Fig. 5.17d, 5.17e and

5.17f, the number of regions N is fixed to 100 and different dissimilarity measures for

BPT construction are compared. All of them are able to detect the main contours of the

four zones with this number of regions. The contours detected inside the main regions

are completely random and they are due to the speckle noise present on the image. In

Fig. 5.17g, 5.17h and 5.17i, the symmetric revised Wishart dissimilarity measure dsw (4.2)

has been employed and the results are shown for different number of regions. For N =

4, as it may be observed, there is a good preservation of the spatial resolution, but also

of the polarimetric information under the Gaussian hypothesis. A comparison between

Fig. 5.15c and Fig. 5.17i exhibits that the filtered image is quite close to the ideal one.

This similarity is also supported by the fact that the relative error function (5.5), which

is also sensitive to the polarimetric information, presents very low values. As detailed

previously, each region is represented by the average covariance matrix which is the MLE

under the Gaussian hypothesis [64]. Furthermore, as N decreases the number of contours

in the filtered image decreases, reducing the effect of the speckle noise, but new contours

never appear.

The same evaluation process with the simulated 4 region images presented before,

has been applied to the BPT region homogeneity based pruning strategy. In this case,
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(a) Boxcar 3x3 (b) Boxcar 9x9 (c) Boxcar 15x15

(d) ddn, N = 100 (e) ddw, N = 100 (f) dwr, N = 100

(g) dsw, N = 1000 (h) dsw, N = 100 (i) dsw, N = 4

Figure 5.17: Boxcar and BPT filtering (pruning based on the number of regions) in one of the

simulated PolSAR images with variations in both correlation and intensity employing different

dissimilarity measures. Z11, Z22 and Z33 are assigned to blue, red and green channels, respectively

the BPTs employing all the dissimilarity measures defined in Section 4.3 are compared.

Results are shown on Fig. 5.18, in terms of the same evaluation measure, the relative error

ER, defined in (5.5). As in the previous case, results have been obtained by averaging the

results of 25 different realizations of each simulated image. The values of the standard

deviations are shown for the revised Wishart dissimilarity dsw.

As it can be seen on Fig. 5.18, the behavior of the different curves on the plots is very

similar, independently of the image structure. There is always a clear minimum, for all the

BPTs employing different dissimilarity measures, at the same point, at about δp = −6dB.

Additionally, when there are variations on intensity, Figs. 5.18a and 5.18c, a wide range of

values for δp can be selected, approximately −6dB ≤ δp ≤ −4dB, having a near-optimum

behavior. This fact is caused since the region mixture produces a strong increase in the

region homogeneity measure and then, the pruning factor has to be substantially increased

to accept this non-homogeneous regions. When there are only variations on correlation,

Fig. 5.18b, there is not such a wide range of near-optimum values for δp, but there is also

a clear minimum located at δp = −6dB.

Comparing Fig. 5.16 and Fig. 5.18, the minimum values in terms of relative error
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(c) Variations both in correlation and in intensity

Figure 5.18: Relative matrix error for simulated images with 4 equal size zones filtered with a

region homogeneity based pruning. Results have been obtained averaging 25 realizations.

obtained in BPT pruning based on the number of regions are approximately preserved

in the region homogeneity pruning. However, since the homogeneity measure in which
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pruning is based on is sensitive to all the covariance matrix elements, a small improvement

can be observed when the dissimilarity measure is not sensitive to region changes, as

seen in Fig. 5.18b for diagonal dissimilarities ddn (4.12), ddr (4.13) and ddw (4.10), which

contributes making the region homogeneity based pruning more robust. From all the

curves presented in Fig. 5.18 employing different dissimilarities, it is clear that the BPTs

constructed employing the geodesic family of dissimilarity measures can achieve better

results in terms of ER, specially the dsg measure, since it is a full matrix measure and it

also obtains good results when there are only variations in correlation, in Fig. 5.18b.

Fig. 5.19 shows the results of applying the BPT homogeneity based pruning in one

realization of the simulated data with variations both in correlation and in intensity. In

Figs. 5.19a-5.19f the pruning threshold δp has been fixed to -6 dB, which is the optimum

value for all the simulated images, as seen in Fig. 5.18. With this pruning threshold,

the BPT homogeneity pruning employing all the dissimilarity measures obtain a filtered

image very close to the ideal one shown in Fig. 5.15c, obtaining a good preservation of the

polarimetric information under the Gaussian hypothesis. There are only small differences

in the detected contours, which are more accurate for dsw, dwr and dsg, since they are

sensitive to all the covariance matrix information. In Fig. 5.19g-5.19l, the full matrix

geodesic dissimilarity measure dsg has been employed and different pruning thresholds are

shown. Comparing it with the pruning based on the region number results for the same

image, in Fig. 5.17, they achieve similar results, specially for high pruning threshold values.

Additionally, the wide range of near-optimum values for δp can be seen on Fig. 5.19j-5.19l,

obtaining exactly the same result, corresponding to the 4 regions of the image, for values

−6dB ≤ δp ≤ −4dB.

Nevertheless, the most important benefits of employing the region homogeneity based

BPT pruning versus the pruning based on the number of regions is to overcome the

drawbacks stated in Section 5.1.2. These drawbacks appear clearly when homogeneous

regions having very different sizes want to be preserved from the image. This fact has been

observed evidently when processing real data, on Section 5.1.3. The simulated ground

truth, having 4 regions of equal size, does not present this kind of structure. Then, a new

simulated ground truth is proposed to reflect more accurately the spatial structure of a

real PolSAR image.

To obtain meaningful results, the simulated ground truth may be a realistic repre-

sentation of a PolSAR image. Ideally, it should contain large homogeneous areas, like

agricultural fields, and also small details, like the corner reflectors or the urban area seen

before. Additionally, the covariance matrix C for every region should represent realistic

values that can be found in real data. Then, to accomplish the previously mentioned

requirements, a ground truth will be generated by a segmentation of a real image. Since
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(a) ddn, δp = −6dB(b) ddr, δp = −6dB(c) ddw, δp = −6dB

(d) ddg, δp = −6dB(e) dsw, δp = −6dB(f) dwr, δp = −6dB

(g) dsg, δp = −9dB(h) dsg, δp = −8dB (i) dsg, δp = −7dB

(j) dsg, δp = −6dB (k) dsg, δp = −5dB (l) dsg, δp = −4dB

Figure 5.19: BPT homogeneity pruning filtering in one of the simulated PolSAR images with

variations in both correlation and intensity employing different dissimilarity measures and prune

thresholds. Z11, Z22 and Z33 are assigned to blue, red and green channels, respectively

a manual segmentation is not affordable, due to the large number of small regions and

details of a real image, a segmentation tool will be employed. In this case, the BPT region

homogeneity based pruning with a pruning factor δp = −1dB will be employed over the

tree constructed with the geodesic dissimilarity dsg presented in (4.3).

This BPT-based filtering has been applied to two different 512 by 512 pixel size image

crops presented in Fig 5.20 and Fig 5.21, corresponding to a region dominated by large

agricultural fields and a urban area, respectively. For the evaluation process, images

Fig 5.20b and Fig 5.21b will be employed as a ground truth and speckle noise will be

simulated over them. Note that these images do not correspond to the real ground truth

of the images Fig 5.20a and Fig 5.21a due to imperfections and limitations of the BPT-
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(a) Original crop (b) Filtered (dsg, δp = −1dB)

Figure 5.20: Original and filtered images of an agricultural area (|Shh+Svv|, |Shv+Svh|, |Shh−Svv|)

(a) Original crop (b) Filtered (dsg, δp = −1dB)

Figure 5.21: Original and filtered images of an urban area (|Shh + Svv|, |Shv + Svh|, |Shh − Svv|)

based filtering. However, they are a good choice to be used as a ground truth since they

have regions of different sizes and their values are realistic since they are estimated over

the original PolSAR image.

Note that the two selected crops as a ground truth represent completely different sit-

uations. The agricultural zone is dominated by large homogeneous regions corresponding

to fields, although a small zone of urban area can be found at the top of the image to

evaluate the ability to preserve regions with very different sizes. On the other hand, the
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urban area is dominated by a large number of small regions very contrasted. In fact, the

number of regions of the ground truth images are 1939 for the agricultural zone and 6869

for the urban zone.

With the synthetic ground truth established for the agricultural and urban areas,

several realizations can be generated by simulating speckle noise following the estimated

covariance matrix in every region. An example of a realization is shown in Fig. 5.22a

and Fig. 5.23a. In turn, these realizations can be filtered with the proposed BPT-based

technique, as presented in Fig. 5.22b and Fig. 5.23b. The availability of the ground truth

for these images (Fig 5.20b and Fig 5.21b) makes possible a precise quantitative evaluation

of the filtering process by comparing the results with the ground truth, similarly to the

synthetic 4 region images evaluation.

(a) One realization (b) Realization filtered (dsg, δp = −5dB)

Figure 5.22: Realization of the agricultural ground truth and the corresponding filtered image

(|Shh + Svv|, |Shv + Svh|, |Shh − Svv|)

The evaluation process scheme is presented in Fig. 5.24. Different realizations are

generated from a given ground truth image. These images are processed employing some

filtering technique, in this case the region homogeneity BPT pruning and the multilook as

a reference, and the filtered images are compared with the ground truth employing some

quality measure E(X,Y ). The evolution of this measure E can be evaluated over all the

simulated realizations and for different parameters of the filtering process. The proposed

measure to evaluate the similarity of the filtered image X with the ground truth image Y

is the relative error ER, defined in (5.5).

As in the previous synthetic images, the relative error measure ER has been calculated

averaging the outcome of 25 different realizations of the ground truth image. Table 5.4
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(a) One realization (b) Realization filtered (dsg, δp = −5dB)

Figure 5.23: Realization of the urban ground truth and the corresponding filtered image (|Shh +

Svv|, |Shv + Svh|, |Shh − Svv|)

BPT-Based

Filtering
Ev

Ground truth N Realizations

Y

X
E(X,Y)

Figure 5.24: Evaluation process scheme

shows this measure for the original realizations and the filtered images with different sizes

of square multilook filters.

Analyzing the results shown in Table 5.4 it can be seen that the best multilook filter size

is 5x5 for the agricultural area and 3x3 for the urban area. This difference can be explained

by the distinct composition of both zones. In the agricultural area, the effect of contour

blurring and region mixture is compensated by a stronger filtering within homogeneous
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Agricultural zone Urban zone

No filtering 1.451 1.565

3x3 multilook -1.911 -0.251

5x5 multilook -2.411 0.871

7x7 multilook -1.895 2.616

9x9 multilook -1.055 4.308

Table 5.4: Relative error ER (in dB) for original and multilook filtered realizations

regions whereas in the urban area, the small regions mixture is dominant since they can

not be properly filtered within a large window. It is worth to notice that the relative error

measure obtains similar values for both cases when no filtering is applied.

This simulation process has been employed to examine the region homogeneity BPT

pruning filtering. In this case, to simplify the evaluation process, only the region homo-

geneity based pruning strategy and the Wishart and geodesic families of dissimilarities

will be employed, since they presented the better results in the previous analysis with real

and simulated data. Fig. 5.25a shows the results obtained by the ER measure for different

pruning factors and for different trees, constructed with these dissimilarity measures.

As it can be seen, there is a clear minimum, located around δp = −5dB, that is

common for all the BPTs, independently of the dissimilarity measure employed for their

construction. Additionally, better results than the multilook, presented in Table 5.4, are

obtained for almost all values of δp, except for too high values of the pruning factor,

in this case δp > −2dB, where the region mixture becomes an important issue for the

filtering application. Comparing results with different trees, it seems that, according to

the ER measure, the BPTs constructed employing the geodesic family of dissimilarities

(dsg and ddg), obtain better results than the ones constructed with the Wishart based

dissimilarities (dsw and ddw). Moreover, the relative error ER for the trees employing

the diagonal dissimilarities is slightly better than the ones obtained by employing the full

matrix dissimilarities. This fact seems contradictory, since full matrix dissimilarities are

employing the full polarimetric information under the Gaussian hypothesis and thus, it

was expected that they could obtain better results. However, this fact can be related with

the relative error measure ER that is more sensitive to the power information, contained

in the diagonal elements of the matrices, than to the off-diagonal information. Note that

nowadays there is not a clear measure to evaluate properly the full matrix information

preservation and probably the relative error measure ER presents some limitations in this

sense. Despite this, the full matrix dissimilarities have some important advantages that

can be seen when analyzing other results shown in Fig. 5.25.
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(c) ER versus pruned regions

Figure 5.25: Parameter evolution for different values of δp and dissimilarity measures over the

agricultural zone

Fig. 5.25b shows the number of pruned regions, that is, the number of leaves of the

pruned tree, depending on the pruning factor δp. Note that the vertical axis, correspond-
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ing to the number of regions is represented in logarithmic scale. The BPTs constructed

with geodesic dissimilarities obtain a lower number of regions than the ones constructed

with Wishart based dissimilarities. The pruning factor δp fixes the relative MSE of the

pruned regions, as stated before, then this fact means that employing geodesic dissimilari-

ties larger regions, that are equally homogeneous, can be obtained. In fact, this means that

these dissimilarities can adapt better to the region contours by exploiting the off-diagonal

information of the covariance matrices. When comparing full matrix with diagonal dissim-

ilarity measures, that is dsg with ddg and dsw with ddw, a similar effect can be seen. Full

matrix dissimilarities obtain a lower number of regions for δp < −5dB when, presumably

there is not an important homogeneous regions mixture effect, and a larger number of

regions for δp > −5dB when, passed the minimum error point, the homogeneous regions

start to get mixed. As a consequence, dissimilarity measures employing the full matrix

information obtain regions more homogeneous resulting in a better contour detection.

Fig. 5.25c combines the results of Fig. 5.25a and Fig. 5.25b to show the relative error

versus the number of pruned regions. The values of ER obtained are the same as in

Fig. 5.25a, but it can be clearly seen that the number of regions for the minimum error

point is different for the two families of dissimilarities. The trees constructed employing

Wishart based dissimilarities obtain the best error values at about 5000 regions, but if

geodesic dissimilarities are employed then this point is achieved at about 3500 regions.

Remember that the number of regions of the ground truth for the agricultural zone is

1939. It can also be seen that the minimum point is attained at slightly lower number of

regions for full matrix dissimilarities than for diagonal ones.

When comparing results from Fig. 5.25 and results obtained in Section 5.1.3 with real

data, it can be seen that the values of δp differ substantially. Processing real data the

typical values for the pruning factor where −2dB < δp < 0dB and for the simulated data

in this section the best results are obtained in the range −6dB < δp < −4dB. This effect

can be related to additional region features in the real data that are not taken into account

into the region model, which can be considered as the region texture. Then, since they

are not properly modeled, the homogeneity threshold δp has to be increased to absorb

these modeling errors when processing real data. Note that in the simulated data this

region texture is not reproduced and then, it is not necessary to increase the pruning

factor δp to assimilate the modeling errors. This explains why similar results are obtained

for δp = −1dB and δp = −5dB in Fig. 5.20b and Fig. 5.22b, respectively.

Fig. 5.26 shows the results after processing 25 different realizations of the urban area

crop presented in Fig. 5.21. The same plots than in Fig. 5.25 are shown for this area.

Fig. 5.26a shows the ER measure versus the pruning factor δp. With respect to Fig. 5.25a,

there is a minimum for all the lines almost in the same position, at −6dB < δp < −5dB,
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Figure 5.26: Parameter evolution for different values of δp and dissimilarity measures over the

urban zone

but the values of these minimums in urban area are far in terms of ER from the values

over the agricultural area. Additionally, the difference between the value at δp = −10dB
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and the minimum point is not as large as in Fig. 5.25a. These differences are produced by

the distinct structure of both images. Since the urban area is formed by a wide number

of small homogeneous zones, there is no opportunity to achieve such a large filtering as in

the agricultural area, because a smaller number of samples are available for each region.

However, despite the minimum achieved is not so strong in the urban area as in the

agricultural area, the values obtained for ER are below those obtained for the multilook

filter, as shown in Table 5.4. When comparing the results obtained employing different

dissimilarity measures the same conclusions extracted for Fig. 5.25a apply, although over

urban area the differences in term of ER between diagonal and full matrix dissimilarities

are larger.

Fig. 5.26b shows very similar trends to Fig. 5.25b, having almost the same shape.

However, the vertical axis scale, corresponding to the number of regions, is different, since

the structure of the urban areas is much more complex, resulting in a higher number of

regions for a given pruning factor δp. The same effect can be seen on Fig. 5.26c: the best

results in terms of ER are achieved at about 15000 regions for the geodesic dissimilarities

and at about 20000 for Wishart dissimilarities. As it has been stated before, the ground

truth for the urban area contains 6869 regions, so there is approximately the same relation

between the regions for the minimum ER and the ground truth region number for the

agricultural and the urban areas.

5.2 Coastline segmentation

In Section 5.1 the exploitation of the BPT structure has been defined and analyzed for

the PolSAR speckle filtering application. However, as stated before, this representation

contains a lot of useful information about the image structure that may be exploited for

different applications. In this section a completely different application is introduced:

coastline segmentation.

Fig. 5.27a shows a 1500 × 2500-pixel cut of a C-band Pauli RADARSAT-2 image of

Barcelona, Spain, that was acquired in November, 18th 2008, in fine quad polarization

mode, with nominal resolution of 5.2m × 7.6m. The figure also shows a detailed area

corresponding to the Forum harbor of Barcelona. Fig. 5.27b shows a BPT-based coastline

segmentation result. In this case, the revised Wishart dissimilarity dsw (4.2) has been

employed and a completely different and simpler pruning strategy has been applied, since

the two most different regions, that is, the two child nodes of the root node, have been

selected. The entropy (H) of this two regions is represented on Fig. 5.27b.

As it can be seen, the two child nodes of the root node represent the regions corre-

sponding to the land and the sea. It is worth to notice that, due to the ability of the
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(a) Original Pauli (b) BPT based coastline segmentation

Figure 5.27: Pauli RGB image of Barcelona (a), and BPT-based coastline segmentation (b). The

revised Wishart dissimilarity dsw has been employed for the BPT construction

BPT representation to preserve small details of the image, the thin structures like the

breakwaters of the Forum harbor are preserved in the segmentation. These small details

are detected in the lower levels of the tree and, as a result, these features are transferred

to the higher nodes of the tree, as shown in Fig. 5.27b. Note that, in this application, the

higher nodes of the tree are employed, as opposite to the filtering application, focused on

the lower levels of the tree, corresponding to homogeneous regions. This example shows

the benefits of the multi-scale nature of the BPT PolSAR image representation.

In Section 4.2 it has been stated that the estimated covariance matrix Z is not a

good model to represent inhomogeneous regions. In the coastline segmentation example

presented in Fig. 5.27, the region corresponding to the land is strongly non-homogeneous,

containing urban areas, field, mountains, etc. However, in this case the BPT structure is

obtaining a meaningful image segmentation since the other region, in this case the sea,

is quite homogeneous at this detail level. Nonetheless, for a proper segmentation over

strongly non-homogeneous regions, more complex region models, capable of representing

properly these areas, should be employed to obtain meaningful regions.



Chapter 6

BPT Processing of PolSAR image se-

ries

In Chapter 3, the BPT has been defined as a region-based and multi-scale data represen-

tation and in Chapters 4 and 5 it has been employed to process a PolSAR image, including

different applications as speckle filtering and coastline segmentation. This representation

has demonstrated its usefulness for PolSAR data, since it can adapt to the spatial contours

of the image and it is able to separate the different homogeneous regions within the data.

In the last years, the presence of different PolSAR spaceborne systems has empowered

the construction of PolSAR image datasets containing different acquisitions of the same

scene at different times. In this chapter, this representation will be extended to the

space-time domain, by applying it to a set of coregistered images, acquired by the same

sensor at different dates. The idea is to obtain homogeneous regions in the space and

time dimensions simultaneously, by adapting to the spatial and temporal contours on

these dimensions. All the necessary concepts to construct a BPT representation with

these datasets will be described on this chapter and its exploitation will be based on two

different applications: speckle filtering and change detection.

6.1 BPT representation in the space-time domain

In this Chapter, the BPT data representation will be employed to process a three dimen-

sional dataset, containing different PolSAR images of the same scene acquired at different

dates. To simplify the processing of this dataset, it will be assumed that all the images

are corregistered, that is, a pixel at position (i, j) in image k refers to the same physical

85
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area in the scene that pixel (i, j) at image m,∀m 6= k.

The dataset that will be employed on this Chapter corresponds to a RADARSAT-2

Fine Quad-Pol images of a test-site in Flevoland, Netherlands. The dataset was acquired

during the ESA AgriSAR 2009 campaign, devoted to analyze the agricultural fields tem-

poral evolution with PolSAR. The scene is composed mainly by an area of agricultural

fields and some sea surface and urban areas. A subset of 8 images has been selected,

corresponding to different acquisitions with the same incidence angle (beam FQ13) and

ascending passes. The resulting subset is composed of images from April 4th, 2009 to

September 29th, 2009 with an acquisition every 24 days. Two crops of these images are

shown on Fig. 6.1, corresponding to two different acquisitions on April 14th, 2009 and

June 25th, 2009. Each PolSAR image corresponds to a crop of size 4000 x 2000 pixel,

thus, the full dataset corregistered contains 4000 x 2000 x 8 pixel, represented in Fig. 6.2.

In Chapter 3 the BPT construction process has been defined and separated into two

different parts: the generation of the initial WRAG, Algorithm 3.1, and the construction

of the BPT, Algorithm 3.2. As mentioned in Chapter 4, the following elements have to be

defined to apply these algorithms over the space-time data:

1. Data elements and connectivity: to generate the initial WRAG, representing all the

data elements and its relationships, the data has to be divided into data elements

and define a neighborhood or connectivity for each data element. As in the previous

chapters, devoted to process a single PolSAR image, the image pixels will be con-

sidered as the initial data elements, but a different neighborhood has to be defined

over them, taking into account neighboring pixels in space and time dimensions.

The 8-connectivity will be applied again over the space dimensions, but the two

neighboring pixels at the same position in the time dimension will be added to the

neighborhood, resulting in the 10 neighboring pixel scheme presented in Fig. 6.3.

Since it is assumed that the dataset is corregistered, a pixel will only be related to

the pixels in the same position, corresponding to the same physical area in the scene,

over the time dimension.

2. A region model: as in the PolSAR image case, the estimated covariance matrix Z

defined in (4.1) will be employed. This model will have the same advantages and

drawbacks mentioned in Chapter 4. For an homogeneous region, under the Gaussian

Polarimetric model, it will define completely the polarimetric behavior, but when

the region is not homogeneous, it will not be a proper region model.

3. A dissimilarity measure on the region model space: since the region model for the

space-time dataset presented is the same as for a single PolSAR image, all the
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(a) April 14th, 2009 (b) June 25th, 2009

Figure 6.1: Pauli RGB crop images from acquisitions on April 14th, 2009 and June 25th, 2009

(|Shh + Svv|, |Shv + Svh|, |Shh − Svv|)

dissimilarity measures presented in Section 4.3 can be employed for the construction

of the BPT in the space-time domain.

Once these elements have been defined, the BPT construction can be addressed directly

by the construction algorithms presented in Chapter 3. In the following sections, this

representation will be employed and analyzed for the speckle filtering application and also

for the change detection applications over the dataset presented in Fig. 6.2. It is worth to

notice that, due to the generic definition of the BPT-based processing scheme, only a new

connectivity has to be defined to adapt the BPT representation to the time dimension.
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Figure 6.2: Composition with the Pauli RGB images of the full space-time dataset

Figure 6.3: Pixel connectivity in the space-time domain. Each pixel, in blue, has 10 neighbors, in

red

6.2 Speckle filtering

In Section 5.1 the BPT representation of a PolSAR image has been employed for the

speckle filtering application. Two different tree pruning strategies were defined focused on

this application: the pruning based on the number of regions and the region homogeneity

based pruning. In this section, the region homogeneity based pruning will be employed

over the space-time BPT representation, since it has proven to achieve better results than

the pruning based on the number of regions with the only drawback of a larger complexity

and computing time on some situations.

The pruning criteria φ in this case can be exactly the same as for the PolSAR case,
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expressed in (5.1), since the same concept of homogeneity can be extended to the space-

time regions. Note that the pruning process is defined over the BPT representation and,

thus, it is not affected by the change of dimensionality of the underlying dataset, as shown

in Fig. 3.9. As mentioned in the previous section, this dimensionality change will affect

only the tree construction process. Once the BPT representation has been generated, the

same pruning process, that is, the region homogeneity based pruning, for example, can be

applied.

In fact, this advantage of the BPT-based processing scheme is related to an important

consideration related to the application conceptualization. The BPT-based applications

are defined over a data abstraction (the BPT) of the original data, by defining the in-

teresting or meaningful regions, as stated before, then, the application rationale can be

extracted from the particular data structure and layout to its most general and abstract

form. For the speckle filtering application, this generic rationale can be expressed as “ex-

tracting the largest possible homogeneous regions of the dataset”, in order to achieve the

best possible estimation or characterization of a region model. Note that this is the main

idea of the region homogeneity based pruning strategy.

After the tree pruning process, a set of regions Θ is obtained, corresponding to the

homogeneous regions of the data into the space-time domain. Due to the difficulties

in representing these tree dimensional regions, a cut of these regions at a specific time

instant is shown in Fig. 6.4, corresponding to a BPT construction employing the geodesic

dissimilarity measure dsg (4.3). Results shown represent the regions intersecting the first

image, that is, a cut of the tree dimensional regions over the first acquisition in time

dimensions are shown. However, note that these regions are obtained employing samples

of different acquisitions.

As a reference, the first image, corresponding to the acquisition on April 14th 2009, has

been filtered with the BPT-based PolSAR image filtering defined in the previous chapter.

Results are shown on Fig. 6.5 employing the same dissimilarity measure dsg and the same

pruning factors δp than on Fig. 6.4.

Comparing qualitatively the space-time PolSAR filtering over the first image, Fig. 6.4,

with the single PolSAR image filtering of the first image, Fig. 6.5, there are small differ-

ences when the pruning factor δp is small and these differences become more noticeable

as δp increases. This effect is produced by the region enlargement in the temporal dimen-

sion. It can be seen that the average region size increases in the spatial dimensions for

larger values of the pruning factor δp, then, the same behavior is expected in the temporal

dimension, generating more differences over both figures since the space-time filtering is

employing a greater number of pixels from other acquisitions.

To assess the gain obtained when filtering an image employing the space-time dataset
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(a) dsg, δp = −5dB (b) dsg, δp = −3dB (c) dsg, δp = −1dB

Figure 6.4: BPT three-dimensional space-time filtering over the first image for different pruning

factors δp (|Shh + Svv|, |Shv + Svh|, |Shh − Svv|)

with respect to a single PolSAR image dataset, the average region depth in the time

dimension is shown in Table 6.1. This parameter is calculated as the relation between

the number of pixels contained in all the regions intersecting the first acquisition and the

pixels contained in a single image. The same BPT has been employed than on Fig. 6.4,

constructed employing the geodesic dissimilarity dsg. Note that as the pruning factor

δp increases, the average region depth in the temporal domain increases, as shown in

Fig. 6.4 and Fig. 6.5 for the spatial domain. As it can be seen, when δp = −3dB the first

acquisition can be filtered employing approximately 4 times more samples than with a

single acquisition, which is an important gain in terms of the speckle filtering application.

It is worth to notice that, although regions are larger by means of including pixels from

different acquisitions, the homogeneity of the resulting regions is the same as for the single

image case, since the region homogeneity based pruning ensures that all the regions have

a relative MSE below the pruning factor δp, as stated before.

Fig. 6.6 shows the results after applying the same BPT pruning as in Fig. 6.4b over

other BPTs constructed employing various dissimilarity measures. As it can be seen, there

are small differences among them, making difficult a qualitative comparison over them.

To compare these results, Table 6.2 shows a detailed analysis of the pruned regions for
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(a) dsg, δp = −5dB (b) dsg, δp = −3dB (c) dsg, δp = −1dB

Figure 6.5: BPT PolSAR single image filtering over the first image for different pruning factors δp

(|Shh + Svv|, |Shv + Svh|, |Shh − Svv|)

δp Pruned regions ∩ 1st acquisition Average temporal depth

-5 dB 359371 2.067

-4 dB 223969 2.652

-3 dB 127957 4.068

-2 dB 52077 6.727

-1 dB 14660 7.758

0 dB 4666 7.921

Table 6.1: Number of regions intersecting the first acquisition and average region depth in time

dimension over those regions for different pruning factors

these different BPTs. As stated for the two-dimensional filtering, the pruning over BPTs

constructed employing the geodesic family of dissimilarities obtain a smaller number of

regions, resulting in a better adaptation to the data contours. However, for the tree-

dimensional filtering, it can be seen that employing the diagonal dissimilarities a smaller

number of pruned regions is obtained than employing the full matrix dissimilarities. This

behavior is completely different from the observed in the two-dimensional filtering, and it

may be due to a larger regions on the temporal dimension, since the average region depth,
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(a) dsw, δp = −3dB (b) ddw, δp = −3dB (c) ddg, δp = −3dB

Figure 6.6: BPT three-dimensional space-time filtering over the first image for different BPTs

constructed employing various dissimilarity measures (|Shh + Svv|, |Shv + Svh|, |Shh − Svv|)

shown on Table 6.2, is larger when employing the diagonal dissimilarities. Then, it seems

that the diagonal dissimilarities can adapt better to the temporal contours whereas the

full matrix dissimilarities achieve better adaptation in the spatial domain. The rationale

behind this fact is still an open question that may be studied further in the future.

Fig. 6.7 shows the temporal evolution of the entropy (H) and alpha (ᾱ) parameters

for two different agricultural fields of potatoes and onions. The results obtained with

the BPT for δp = 0dB and δp = −3dB are compared with those obtained with the 7x7

multilook. As it can be seen, qualitatively the evolution of the parameter is similar for all

the cases. Differences are produced by estimating the parameter over regions of different

sizes in space and time, and not only in space. The flat zones that appear with the BPT

based processing are produced when the same region appears over different acquisitions,

conforming an homogeneous region that spans various images in the time dimension.

6.3 Change detection

In the previous section, the space-time BPT representation has been employed for the

speckle filtering application, as defined in Section 5.1. It has been demonstrated that
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dsw ddw dsg ddg

δp = −5dB

Pruned regions 2776493 3179675 2431602 2347080

Regions ∩ 1st acquisition 397051 491433 359371 392471

Avg depth 1st acquisition 1.7398 2.4436 2.0669 2.8271

δp = −3dB

Pruned regions 603586 436332 495004 209970

Regions ∩ 1st acquisition 146202 147115 127957 83814

Avg depth 1st acquisition 3.4577 5.2418 4.0676 6.4275

δp = −1dB

Pruned regions 33722 10316 28998 6707

Regions ∩ 1st acquisition 16668 7673 14660 5243

Avg depth 1st acquisition 7.8231 7.9654 7.7576 7.9352

Table 6.2: Number of total pruned regions, pruned regions intersecting the first acquisition and av-

erage region depth of those regions for different pruning factors δp over different BPTs constructed

employing various dissimilarity measures
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Figure 6.7: Estimated entropy (H) and alpha (ᾱ) temporal evolution over two different agricultural

fields with 7x7 multilook and BPT homogeneity based pruning

the pruned regions obtained by the region homogeneity based pruning effectively contain

pixels of different acquisitions, conforming homogeneous regions in the space-time domain.
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Note that, as mentioned in Chapter 3, a BPT pruning conforms a segmentation of the

data. Then, another application that automatically arises when segmenting a space-time

dataset is the temporal change detection. In this case, the application is focused on the

temporal contours, rather than on spatial contours.

Fig. 6.8 represents the number of contours in the temporal dimension, ranging from

no changes, represented in blue, to 7 changes, represented in red color. Results are shown

for different pruning factors δp and for the BPT constructed employing the geodesic dis-

similarity measure dsg, as in the previous figures.

(a) dsg, δp = −5dB (b) dsg, δp = −3dB (c) dsg, δp = −1dB

Figure 6.8: Temporal changes detection for different pruning factors δp. No changes is represented

in blue and 7 changes in red.

As seen before, incrementing the pruning factor δp results in bigger regions also in

the temporal domain, represented by a smaller number of temporal changes on Fig. 6.8.

Analyzing the results closely, it can be seen that there are small blue dots over urban area

even for small values of the pruning factor, at δp = −5dB. These small dots correspond

to point scatters of the buildings or human-made structures that have no-change during

the different acquisitions. A detailed image of an urban area and the changes detected for

δp = −5dB is shown on Fig. 6.9.

As it can be seen, the agricultural fields area, at the top part of the image appears more

reddish, indicating a large number of temporal changes at this detail scale (δp = −5dB).
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(a) Original Pauli RGB (b) Temporal changes, dsg, δp = −5dB

Figure 6.9: Pauli RGB detailed image of an urban area and the changes detected with δp = −5dB

The urban areas, on the contrary, appears more yellowish, indicating a smaller number of

changes, and, within these areas, there are small structures in blue, indicating no change

in the whole sequence of acquisitions, as mentioned before.

When increasing the pruning factor to δp = −3dB, as shown on Fig. 6.8b, some other

areas appear also in blue, like closed water, which roughness is less affected in wind,

having a stable polarimetric behavior. With this pruning factor, the agricultural fields

also appear reddish and yellowish, having a large number of temporal changes. However,

if the pruning factor is increased to δp = −1dB, on Fig. 6.8c, then big differences in terms

of temporal changes can be seen over the fields of the agricultural areas. This information

can also be seen with the histogram of the region changes for different pruning factors,

shown on Fig. 6.10.

Fig. 6.11 shows the same temporal change detection image presented in Fig. 6.8b for

different BPTs constructed employing various dissimilarity measures. It can be seen, as

stated before, that the images from diagonal dissimilarity measures (Figs. 6.11b and 6.11c)
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Figure 6.10: Temporal changes histogram for different pruning factors δp and various dissimilarity

measures

appear slightly more yellowish than the ones from full matrix dissimilarities (Figs. 6.8b

and 6.11a). This is related with the fact that diagonal dissimilarities obtain larger regions
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in the temporal dimension, as shown in Table 6.2 and on Fig. 6.10. However, the benefits

of employing full matrix dissimilarity measures can be seen specially over the sea, which

appears as a more contrasted region with respect to the land, on Figs. 6.8b and 6.11a. In

fact, it is expected that the sea surface should have a more stable behavior than the earth

surface, in terms of its polarimetric response, but this fact can only be properly observed

when employing the full covariance matrix information.

(a) dsw, δp = −3dB (b) ddw, δp = −3dB (c) ddg, δp = −3dB

Figure 6.11: Temporal changes detection for different BPTs constructed employing various dissim-

ilarity measures. No changes is represented in blue and 7 changes in red

Note that, when employing full matrix dissimilarity measures, since the BPT construc-

tion process and the pruning strategy are exploiting all the polarimetric information in the

covariance matrix, the proposed mechanism to detect temporal changes is also sensitive to

all this information. Then, the concept of region temporal stability in terms of the whole

polarimetric information is automatically obtained by the technique.
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Chapter 7

Conclusions and future research lines

The objectives of this master thesis were the implementation and evaluation of the Binary

Partition Tree (BPT) as a dataset abstraction of Polarimetric SAR images (PolSAR) and

its exploitation for different applications. As a result, the BPT has proven its ability

to properly represent the image structure at different scales, being a very useful data

abstraction for different applications.

The BPT is a region-based and multi-scale data representation, containing information

related to the data structure at different detail levels. A BPT-based processing scheme is

proposed in Chapter 3, and it is divided into two main parts: the BPT construction, which

is application independent, and the BPT exploitation, which is application dependent.

The bottleneck of the whole process is the BPT construction, being the most time and

space consuming process of the chain. However, as it is application independent, it is

only necessary to do it once, since the BPT generated can be employed for different

applications. The BPT hierarchical structure, adapted to the image morphology, enables

the employment of fast and simple algorithms for its exploitation. The proposed strategy

is through a tree pruning process, searching for the most useful nodes of the tree for the

particular application. Moreover, another important property is that this data abstraction

allows a generic definition of the application rationale. As an example, the same BPT

pruning process, searching for the biggest homogeneous regions of the data, has been

employed over a PolSAR image and over a temporal image series dataset without any

change. In the same way, this property will allow in the near future the exploitation of the

BPT for other applications, like, for instance, region classification, directly over a single

image or a temporal image series without significant changes.

The speckle filtering application has been studied in detail, including a comparison

99
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with some other state-of-the-art filtering techniques as the multilook Boxcar and IDAN

filters. In this comparison, the BPT-based filtering has outperformed both filters being

able to achieve strong filtering over large homogeneous areas while also preserving contours

and small details of the data. Additionally, since the BPT construction process is based on

a dissimilarity measure, when it employs all the polarimetric information contained within

the covariance matrix, then a speckle filtering process sensitive to all this information may

be defined. This is a significant improvement over most of the speckle filters present in the

literature, like the IDAN filter, that only employ the information contained in the diagonal

elements of the covariance matrix to adapt to the image morphology. In this sense, different

dissimilarity measures, employing the full polarimetric information and only the diagonal

elements of the covariance matrix have been defined and compared, to analyze the benefits

of employing all this information. It has been stated that employing the full polarimetric

information results in bigger regions equally homogeneous than with only the diagonal

information, achieving, thus, a better adaptation and a more accurate representation of

the spatial information of the data. Moreover, the full matrix dissimilarity measures are

able to see contours in the off-diagonal elements, as seen in Chapter 5, being more robust

and sensitive to all the polarimetric information. From all the proposed dissimilarity

measures, the geodesic dissimilarity measure, based on the positive definite matrix cone

geometry, has achieved the most promising filtering results. The proposed BPT-based

filtering technique preserves all the polarimetric information without introducing any bias

or distortion over the data, which is an important property for applications requiring a

physical inversion of the covariance matrix.

On Chapter 6, this speckle filtering application has been employed over a dataset con-

taining different acquisitions of the same scene at different dates. The same BPT pruning

strategy previously defined has been applied directly over the BPT representation of this

dataset, which has been constructed by defining a new connectivity over the space-time

domain. In this sense, the extension of the BPT to the new domain has been very simple by

defining the new pixel relation and handling the temporal dimension in the same manner

as the space dimensions. In the speckle filtering context, the defined filter has improved

substantially the amount of filtering by employing samples of different acquisitions, while

preserving also the contours in the space-time domain. Furthermore, this representation

has been employed for the change detection application, by inspecting the contours in the

temporal dimension. Some maps representing the number of temporal changes have been

generated by this application, and it has been shown that some structures, corresponding

to buildings, within urban area are clearly detected as a stable regions by the BPT. On

the contrary, the agricultural fields and other areas having significant changes along the

temporal dimension appear as a less stable regions, with a large number of changes in this
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dimension.

As mentioned in Chapter 3, all the BPT construction and exploitation is closely linked

with the region model concept. The dissimilarity measures are defined over the region

model space and the same applies to the pruning strategy. Assuming the complex Gaussian

polarimetric hypothesis, the estimated covariance matrix has been employed as a region

model, but, as stated, this region model is incomplete when representing inhomogeneous

regions. Then, more complex region models could also be employed to obtain a better

representation of these regions, since the BPT definition is not tied to any particular

model.

In this thesis, two different BPT pruning strategies are proposed and evaluated: the

BPT pruning based on the number of regions and the region homogeneity based pruning.

However, only the region homogeneity based pruning effectively obtains good results in-

dependently of the image structure and the region sizes. In the future, more elaborated

BPT pruning strategies can be defined for the speckle filtering application and also for

different applications. In this sense, new applications can be developed by exploiting the

BPT structure, like, for instance, region classification, taking advantage of the multi-scale

nature of this data abstraction.

When generating the BPT structure of a space-time dataset, as seen on Chapter 6,

different behaviors have been observed in the space and time dimensions with respect to

employing the full covariance matrix or only the diagonal elements. This aspect needs a

further analysis and probably may be caused as a result of having a completely different

evolution in the temporal and the spatial dimensions of the data, that has to be taken

into account when generating the BPT structure.
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Filtering and Segmentation of Polarimetric SAR
Data Based on Binary Partition Trees

Alberto Alonso-González, Carlos López-Martı́nez, Senior Member, IEEE, and Philippe Salembier, Fellow
Member, IEEE

Abstract—In this work, we propose the use of Binary Partition
Trees (BPT) to introduce a novel region-based and multi-
scale Polarimetric SAR (PolSAR) data representation. The BPT
structure represents homogeneous regions in the data at different
detail levels. The construction process of the BPT is based, firstly,
on a region model able to represent the homogeneous areas,
and, secondly, on a dissimilarity measure in order to identify
similar areas and define the merging sequence. Depending on
the final application, a BPT pruning strategy needs to be
introduced. In this work, we focus on the application of BPT
PolSAR data representation for speckle noise filtering and data
segmentation on the basis of the Gaussian hypothesis, where the
average covariance or coherency matrices are considered as a
region model. We introduce and quantitatively analyze different
dissimilarity measures. In this case, and with the objective to
be sensitive to the complete polarimetric information under
the Gaussian hypothesis, dissimilarity measures considering the
complete covariance or coherency matrices are employed. When
confronted to PolSAR speckle filtering, two pruning strategies are
detailed and evaluated. As presented, the BPT PolSAR speckle
filter defined filters data according to the complete polarimetric
information. As shown, this novel filtering approach is able
to achieve very strong filtering while preserving the spatial
resolution and the polarimetric information. Finally, the BPT
representation structure is employed for high spatial resolution
image segmentation applied to coastline detection. The analyses
detailed in this work are based on simulated, as well as on real
PolSAR data acquired by the ESAR system of DLR and the
RADARSAT-2 system.

Index Terms—Binary Partition Tree, Polarimetry, Synthetic
Aperture Radar, Speckle Filtering, Segmentation.

I. INTRODUCTION

SAR Polarimetry (PolSAR) has demonstrated, specially
during the last decade, its significance for the analysis and the
characterization of the Earth surface, as well as for the quanti-
tative retrieval of biophysical and geophysical parameters. The
capability to explore the complete space of polarization states
represents one of the most important properties of PolSAR
data, as optimization procedures may be foreseen [1]. The
second important property of PolSAR data is its inherent
multidimensional nature that allows a more precise characteri-
zation of the scattering process at the resolution cell than single
polarization data and eventually, a better characterization of
the scatter or scatters within that resolution cell.

As a consequence of the coherent recording and process-
ing of the scattered radar echoes, SAR systems are able

The authors are with the Department of Signal Theory and
Communications, Technical University of Catalonia, Barcelona,
Spain, Email: alberto.alons@gmail.com, carlos.lopez@tsc.upc.edu,
philippe.salembier@upc.edu

to generate complex, high spatial resolution images of the
observed area, independently of the day-night cycle and with
little influence of atmospheric effects. The complex nature of
SAR data, together with the fact that the scattering process
in the resolution cell may be due to a certain number of
elementary echoes, are on the origin of the speckle term.
Despite speckle is determined by the scattering process itself,
its complexity makes necessary to consider it from a stochastic
point of view and then, to assume speckle as a noise term. The
characterization of speckle noise must be carefully addressed,
specially for PolSAR data, taking into account the nature of
the scatters within the resolution cell. In the case of point
scatters, as the scattered signal is only due to this single
scatter, recorded data are speckle free and the value of the
signal itself may be employed to characterize the scattering
process and the scatter itself. For distributed scatters, speckle
is said to be fully developed in the sense that it is produced
from the coherent addition of a large number of individual
echoes produced by the individual scatters in the resolution
cell. Consequently, in the later case, the information to retrieve
refers to the necessary knowledge to specify completely the
probability density distribution (pdf) of the acquired PolSAR
data. This information must be estimated from the recorded
SAR data. In other words, speckle should be filtered from data
to grant access to the information of interest.

SAR and PolSAR data are non-stationary as they reflect
the complexity of the environment. Assuming that all the
stochastic processes involved in the filtering process are er-
godic, PolSAR filters must adapt to this non-stationarity. Most
of the PolSAR speckle filters presented in the literature deal
with non-stationarity by considering locally stationary data.
Based on this hypothesis, two major questions arise. On the
one hand, the statistical model or pdf under which station-
arity shall be defined. On the other hand, the range of this
stationarity. With respect to the statistical model, most of the
filtering techniques, but also most of the techniques focused
on the extraction of quantitative physical parameters, consider
the multidimensional complex Gaussian speckle noise model.
Under this hypothesis, the covariance, as well as the equivalent
coherency or Muëller matrices, represent the most impor-
tant radar observables, which maximum likelihood estimation
(MLE) is the well-known boxcar or multilook filter. This filter
privileges estimation accuracy at the cost of spatial resolution.
However, the previous assumption of locally stationary data
may be violated resulting in a loss of spatial resolution or
a mixture of non-homogeneous areas. With the aim to avoid
the breaking of the assumption of locally stationary data, a
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linear minimum mean square error (LMMSE) approach has
been proposed in [3] where local statistics are estimated on
the basis of edge aligned windows. This idea has been pursued
in [4], where an adaptive neighborhood is constructed for every
single pixel of the image, taking into account the statistical
properties of the pixel itself.

Despite the techniques presented in [3] and [4] have been
proved to result into a proper filtering, several questions
must be answered in order to finally determine the filtering
capabilities. One of the major concerns of the previous ap-
proaches is the way they determine local stationarity. On the
basis of the Gaussian hypothesis, local stationarity is analyzed
only in terms of the diagonal elements of the covariance
matrix. Hence, they do not take into account the correlation
information determined by the off-diagonal elements of the
covariance matrix, despite it has been shown that if considered,
optimized filtering capabilities result [5]. In addition, the way
local neighbors are obtained in [4] does not guarantee that
adjacent and stationary pixels result into the same local area
of influence. A final aspect that must be also considered with
respect to the estimation of physical information is that a
minimum amount of independent samples are mandatory to
secure a correct estimation of the information of interest [6].

In order to tackle these issues, we propose the use of Binary
Partition Trees (BPT) [7] [22]. The BPT is an image repre-
sentation that is region-based and multi-scale. The leaf nodes
of the tree represent the pixels in the original image, whereas
the remaining nodes represent regions that are obtained by
the merging of the two neighboring regions represented by
two child nodes. The root node corresponds to the entire
image. The BPT can represent non-stationary signals because
it is region-based, that is, each region can represent a locally
stationary part of the signal. Moreover, it is a multi-scale
representation allowing, at the same time, the description of
very local information thanks to the nodes close the tree leaves
and the description of global behavior thanks to the nodes
close to the tree root as these nodes represent very large
regions. In order to construct and to analyze the BPT in the
context of applications, the tree nodes have to be described.
An interesting feature of the BPT approach is its flexibility
in the sense that it is not restricted to any particular model.
In the case of PolSAR data, virtually any model representing
the polarimetric information can be used. As it can be seen,
the BPT can be considered as a first abstraction step with
respect to the original image. The processing strategy involves
therefore first, a tree construction and then, a tree pruning to
extract either a simplified image for filtering applications or a
partition for classification or segmentation applications.

The organization of this paper is as follows: Section II
reviews the main characteristics of the PolSAR data and
discusses its representation and processing with BPT. Sec-
tion III analyses in details the tree construction process and
focuses in particular on the definition of the similarity between
regions used to define the merging order. Once the BPT has
been computed, it can be used for many applications. In this
paper we discuss filtering application in Section IV as well
as a specific segmentation application in Section V. Finally,
Section VI presents the conclusions.

II. PROCESSING POLSAR DATA WITH BPT

A. SAR Polarimetry

A PolSAR system measures, for every resolution cell, the
scattering matrix S. By means of the lexicographic orthog-
onal basis for 2 × 2 complex matrices [2], and considering
the backscattering direction under the BSA (Backscattering
Alignment) convention, S leads to the target vector k

k = [Shh,
√

2Shv, Svv]
T (1)

where h and v denote the horizontal and vertical wave po-
larization states, respectively and T indicates vector transpo-
sition. In those cases in which the resolution cell contains
only one scatter, or its scattering is largely dominated by
a principal one, (1) characterizes completely the scattering
process in the resolution, that is, (1) may be employed to
characterize the target under study. When the resolution cell
contains a certain number of single scatters, (1) corresponds
to a coherent combination of the different contributions of
this set of single scatters. This combination process receives
the name of speckle. As indicated previously, speckle must
be considered as a noise term. Under this hypothesis, the
information of interest acquires sense only from a stochastic
point of view, that is, this information refers to the set of
parameters necessary to determine completely the pdf of (1).

The statistical characterization of (1) in case of distributed
scatters involves the introduction of a particular pdf to describe
its stochastic nature. This process is normally performed under
certain simplifying approximations. Under the assumption that
the return from a particular resolution cell is due to the
coherent addition of the returns from a large number of
individual scatters, none of which is dominant, the Central
Limit Theorem applies [8], and k is distributed according to
a multidimensional, zero-mean, complex Gaussian pdf

pk(k) =
1

π3|C| exp(−kHC−1k) (2)

where H is the complex conjugate transpose of a vector and
C represents the covariance matrix

C = E{kkH}

=




E{ShhS
H
hh}

√
2E{ShhS

H
hv} E{ShhS

H
vv}√

2E{ShvS
H
hh} 2E{ShvS

H
hv}

√
2E{ShvS

H
vv}

E{SvvS
H
hh}

√
2E{SvvS

H
hv} E{SvvS

H
vv}


 (3)

where E{x} indicates the statistical expectation of the
stochastic process x. It is clear that the approximations that
led to (2) will limit its range of applications. Hence, (2) is
usually considered as a multidimensional SAR signal model
for homogeneous areas. Eq. (2) is not able to describe, for
instance, textured scenarios. In these cases, it is necessary to
increase the complexity of the statistical model in order to
accommodate the texture information.

The MLE of C, i.e., the multilook, under the assumption of
statistical ergodicity and homogeneity, is obtained by substi-
tuting the statistical expectation by a spatial averaging

Z = 〈kkH〉n =
1

n

n∑

i=1

kikHi (4)
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where n indicates the number of independent looks or samples
employed to estimate C and ki corresponds to the target vector
of the ith sample. The estimated covariance matrix Z receives
the name of the sample covariance matrix, which is statistically
determined by the Wishart distribution [9] [10] [11]

pZ(Z) =
n3n|Z|n−3

|C|nΓ̃3(n)
etr(−nC−1Z) (5)

where etr(X) is the exponential of the matrix trace and

Γ̃3(n) = π3
3∏

i=1

Γ(n− i+ 1). (6)

As given in (4), C is estimated from a finite number of samples
n. Note that (5) is only valid if Z is a full rank matrix, which
implies n ≥ 3, otherwise the Wishart distribution cannot be
defined. Since the estimated covariance matrix Z is itself a
multivariate random variable, it will present an error with
respect to the value to recover, i.e., C. This error might be
considered as being produced by a noise component. The
advantage of such a characterization is that an optimized
filtering might be envisaged.

B. BPT computation and processing strategy

We propose to tackle a large number of applications re-
lated to PolSAR data by performing initially a first step of
abstraction from the original pixel-based representation of the
image. This abstraction step is done through the computation
of a BPT and should be as generic or application independent
as possible. Once the BPT has been computed, its nodes are
characterized and analyzed depending on the application of
interest and the final result can generally be obtained through
an application dependent tree pruning.

In order to be able to construct the BPT structure in
an efficient manner, it would be interesting to decompose
the process into simple steps making possible to tackle the
process with an iterative algorithm. In this sense, the BPT
construction process may be viewed as the introduction of
all the hierarchical division-fusion relationships between the
image pixels. Hence, this process can be decomposed in the
inclusion of each hierarchical relationship, so the tree structure
can be constructed iteratively computing one new division-
fusion relationship between nodes per step.

In order to construct the BPT structure there are two main
approaches:

1) One focused on division or top-down approach: In each
construction process step a new division relationship is
added to the structure, so a selected region of the image
is separated into two connected and mutually disjoint
regions that will become the two child nodes of the one
containing the selected region.

2) One focused on fusion or bottom-up approach: Another
conceptualization of the construction process is to add a
fusion relationship between two neighboring regions of
the image at each step. The merging of these two zones
will produce a new bigger connected region represented
by their parent node.

2x2 image

A B

D

C

E

F

G

A B

DC

Binary partition tree

Fig. 1. Illustration of the BPT construction

For computational reasons, it is more feasible to address
a bottom-up tree construction algorithm, since the number of
possible new fusion relationships is more reasonable than the
number of possible new divisions for a given construction step.

The BPT should be created in such a way that the most
interesting or useful regions are represented. However, a pos-
sible solution, suitable for a large number of cases, is to create
the tree by keeping track of the merging steps performed by
a segmentation algorithm based on region merging, see [12],
[13] for example. In the following, this information is referred
to as the merging sequence. Starting from the initial partition,
where each pixel is considered as an individual region, the
algorithm merges neighboring regions following a similarity
criterion until a single region is obtained.

To completely define the merging algorithm, one has to
specify the region model and the merging order. The region
model defines precisely how the set of pixels included in the
regions are represented. As mentioned in the introduction,
almost any model can be employed to represent polarimetric
data. In this paper, we will use the average covariance matrix
of the pixels included within the region as the region model,
then assuming data to be distributed according to 2. The
merging order defines the order in which pairs of neighboring
regions are merged. In essence this criterion should assess the
similarity between regions. Section III will propose, discuss
and evaluate various families of criteria suitable for PolSAR
data.

Once the tree has been computed, it can be processed or
simplified by a pruning algorithm. This step is application
dependent. Assume, for example, that we would like to filter
the image to reduce the presence of noise. Then, the pruning
should remove portions of the tree branches that are close
to the original tree leaves in order to preserve as much as
possible the image details. By contrast, if the application is
based on segmenting or classifying the image, the pruning
strategy should analyze each node of the tree looking for
relevant segmentation or classification features and the result-
ing pruning may be much more severe. These cases will be
analyzed respectively in Sections IV and V, respectively.

An illustration of the construction process is given in Fig. 1.
The original 2x2 image involves four pixels: A, B, C and D.
They are considered as initial regions and are represented as
tree leaves. The algorithm merges the four regions in three
steps. In the first step, the pair of most similar regions, A and
B for example, are merged and create region E. Of course,
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once E is created, its similarity with respect to its neighboring
regions should be evaluated. Assume that after this evaluation,
the pair of most similar regions are D and E. They are
merged creating region F . Finally, region C is merged with
region F and this creates a region corresponding to the
region of support of the whole image. In this example, the
merging sequence is: ({A,B,C,D}, (A,B)|(D,E)|(C,F )).
This merging sequence defines the BPT as shown in Fig. 1.

III. MERGING CRITERIA FOR BPT CONSTRUCTION FOR
POLSAR DATA

A. Merging criteria and dissimilarity measures

As stated in Section II, the merging sequence determines the
BPT construction. Since this process is performed iteratively, a
merging criterion must be included in the construction process
step in order to select the best fusion to perform among all
the possible ones. The proposed criterion in Section II is to
merge the pair of most similar regions.

In order to evaluate the similarity between regions, a mea-
sure has to be defined in the region model space. Actually,
any distance in the region model space may be employed.
However, other measures than distances can be used and
the more general concept of dissimilarity measure will be
employed in the following. Mathematically, a dissimilarity
measure d is similar to a distance in concept, but it has less
restrictive properties [17]:

1) d(A,B) ≥ d0 (generalized non-negativity)
2) d(A,B) = d0 ⇔ A = B (identity)
3) d(A,B) = d(B,A) (symmetry)

where A and B are two region models and d0 represents
the absolute minimum value of the dissimilarity function
d. Traditionally, as explained in Section II, in PolSAR the
estimated covariance C or coherency T matrices are employed
to characterize the scattering process over an homogeneous
region, as defined in (4), then they may be employed as a
region model in the BPT nodes.

In this context, the measure d establishes the similarity
between each pair of adjacent regions. At each construction
step, the two adjacent nodes with the lowest dissimilarity
value are merged. Then, two dissimilarity measures d1 and
d2 are equivalent if they define the same merging sequence.
As a consequence, any monotonic function of the dissimilarity
measure will lead to the same merging sequence and then it
will produce the same BPT representation.

B. Dissimilarity measures

In this paper, five dissimilarity measures are proposed and
analyzed for the BPT construction process. These measures
are based on two region features: the polarimetric information,
contained in the Z matrix, as defined in (4), and the region
size. Nevertheless, more complex region models and the
corresponding dissimilarity measures between them can be
defined.

The proposed dissimilarity measures have been classified
into two different groups: those using only the information
contained in the diagonal elements of Z and those using the
full estimated covariance matrix.

1) Dissimilarity measures using full Z information: These
measures consider all the information contained in the es-
timated covariance matrix Z and thus require a complete
characterization of the matrix. Note that this fact will induce
the need for an initial filtering in order to get full rank matrices,
as seen in (5). The dissimilarities are defined between two
regions, X and Y , with average covariance matrices ZX and
ZY and sizes of nx and ny pixels, respectively.

• Symmetric revised Wishart dissimilarity (RW). The re-
vised Wishart dissimilarity measure was defined in [15],
and it is based on a statistical test assuming that the
two regions follow a Wishart pdf and that one pdf is
known. Thus, it is not symmetric as it depends on which
region pdf is assumed to be known. In order to generate
a dissimilarity measure, a modified symmetric version
is proposed using ds(X,Y ) = d(X,Y ) + d(Y,X) and
multiplying by the region size term

dRW (X,Y ) =
(
tr(Z−1

X ZY ) + tr(Z−1
Y ZX)

)
· (nx + ny)

(7)
where tr(A) denotes the trace of the A matrix and A−1

its inverse.
• Ward relative dissimilarity (WR). In Ward hierarchical

clustering [16], a measure based on the error sum-of-
squares (ESS) was introduced in order to quantify the
information loss when two clusters are joined. The same
measure can be employed as the information loss of
merging two neighboring regions. However, due to the
multiplicative nature of the speckle noise, a modified
relative version is proposed including a normalization
matrix. The Ward relative dissimilarity dWR (8) is then
defined as

dWR(X,Y ) = nx · ‖NH
XY (ZX − ZXY )NXY ‖2F +

ny · ‖NH
XY (ZY − ZXY )NXY ‖2F (8)

where ZXY denotes the average matrix of the region
X ∪ Y , AH denotes matrix A hermitian transpose, NA

denotes the normalization matrix of ZA, defined as

NA =



√
ZA11 0 0
0

√
ZA22 0

0 0
√
ZA33


 , (9)

and ‖A‖F denotes the Frobenius matrix norm.

2) Dissimilarity measures using diagonal Z elements:
These measures only employ the diagonal elements of the
estimated covariance matrix Z, corresponding to the power
received at each polarization component. Consequently, they
do not require any initial filtering, but they are not sensitive to
the off-diagonal components of the covariance or coherency
matrices.

• Diagonal relative normalized dissimilarity (DN) is based
on the euclidean norm of the normalized difference of the
diagonal vector. The difference of the diagonal vectors is
normalized by their sum, which results in a value bounded
in the interval [−1, 1] for each diagonal element. The
dissimilarity measure is obtained computing the euclidean
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norm of the resulting vector and multiplying the resulting
value by the sum of region sizes, as denoted in (10).

dDN (X,Y ) =

(
3∑

i=1

(
ZXii − ZY ii
ZXii + ZY ii

)2
)1/2

· (nx + ny)

(10)
where Aij is the index notation for the (i, j)th element
of matrix A.

• Diagonal relative dissimilarity (DR) is computed as the
euclidean norm of the sum of relative errors between the
diagonal elements multiplied by the size of the X

⋃
Y

region. Note that this dissimilarity measure dDR (11) is
not bounded, as opposite of dDN (10) because the value
interval of the resulting vector is open [0,∞)

dDR(X,Y ) =

(
3∑

i=1

(
ZXii − ZY ii

ZY ii

+
ZY ii − ZXii

ZXii

)2
)1/2

· (nx + ny)

=

(
3∑

i=1

(
(ZXii − ZY ii)

2

ZXiiZY ii

)2
)1/2

· (nx + ny).

(11)

• Diagonal revised Wishart dissimilarity (DW) is based
on the symmetric revised Wishart dissimilarity as it is
defined in (7), but only considering the diagonal elements
and setting all off-diagonal elements to 0, which simpli-
fies the matrix inversion as being the inverse of the diag-
onal elements. After some mathematic simplifications, it
can be expressed as

dDW (X,Y ) =

(
3∑

i=1

(
ZX

2
ii + ZY

2
ii

ZXiiZY ii

))
· (nx + ny).

(12)

The objective of the previous division among distances
will be to focus specifically on the analysis of the effects of
considering the off-diagonal elements of the covariance and
coherency matrices when processing PolSAR data under the
Gaussian assumption. Additionally, it would be possible to
determine and to establish those conditions that a distance
should fulfill to perform a correct processing of PolSAR data,
for speckle filtering or for any other different application.
First of all, the distances should be invariant under similarity
transformations of the special unitary group of matrices. For
example, the approach followed by [3] would be congruent
with this condition, since Span is invariant under these trans-
formations. The distance function employed in [4] and the
dissimilarity measures that consider only diagonal elements
would not fulfill such a condition since only diagonal elements
are considered. In this sense, only the distance dRW would be
invariant. Nevertheless, the invariance property is not sufficient
to perform a correct processing of PolSAR data. A clear
example is the approach in [3]. Despite this technique is
invariant under similarity transformations, it is not sensitive to
the off-diagonal information. Consequently, suitable distances,
a part from being invariant under similarity transformations,
should consider all the information provided by the covariance
and coherency matrices, as for instance the dRW distance.

IV. BPT PRUNING FOR POLSAR DATA FILTERING

As described in [7], the BPT is a very attractive representa-
tion since it proposes a reduced number of regions which are
assumed to be the most homogeneous at different scales. This
idea can be exploited to develop PolSAR advanced speckle
noise filtering. The main purpose is to obtain a subset Θ of
meaningful nodes, from the tree representing homogeneous
regions, which can be used to have a better estimation of
the region covariance matrix (4) maintaining the image spatial
resolution. This process consisting of a selection of a subset Θ
of nodes from the Binary Partition Tree is called BPT pruning.

In this section, two main strategies for tree pruning focused
on PolSAR speckle filtering are discussed: pruning based
on the number of regions and pruning based on the region
homogeneity.

A. Pruning based on the number of regions
One of the simplest possible tree pruning strategy is to select

the set Θ as a fixed number nr of regions, corresponding to
the most different regions of the tree. If the difference between
regions is evaluated using the same dissimilarity measure used
for the BPT construction process, then it is equivalent to stop
the construction process when nr regions are achieved. At
that point, an image segmentation with the nr most different
regions, in terms of the employed dissimilarity measure, is
obtained. Finally the filtered image is obtained by representing
all pixels within each region with the mean covariance matrix,
which corresponds to the region model. In the following, this
process will be called BPT pruning based on the number of
regions.

For a quantitative evaluation of this filtering process, a simu-
lated 128x128 pixels PolSAR image is proposed in Fig. 2 with
four square regions of equal size. Simulated data have been
generated using the complex Gaussian polarimetric model
presented in [14], assuming a reflection symmetric target since
most of natural targets follow this model, with covariance
matrix C of the form

C = σHH




1 0 ρ
√
γ

0 ε 0
ρ∗
√
γ 0 γ


 (13)

where ∗ denotes complex conjugate.
Three sets of images have been simulated according to (13)

with γi = 1 and εi = 0.1 and variations for σHHi and ρi in
different regions i = 1 . . . 4 as denoted in Fig. 2a

1) Variations in intensity: ρi = 0.5; σHH =
{1, 9, 25, 49}

2) Variations in correlation: ρ = {0, 0.25ejπ, −
0.5, 0.75e−jπ}; σHHi = 1

3) Variations both in correlation and in intensity: ρ =
{0, 0.25ejπ, − 0.5, 0.75e−jπ}; σHH =
{1, 9, 25, 49}

A matrix relative error measure is also proposed in order to
asses quantitatively the goodness of the processed image X in
comparison with the ground truth Y

ER(X,Y ) =
1

nh · nw

nh∑

i=1

nw∑

j=1

‖Xij −Yij‖F
‖Yij‖F

(14)
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(a) (b) (c)

Fig. 2. Simulated PolSAR images with 4 equal size zones. C11, C22 and C33

are assigned to blue, red and green channels. a) Zones shape and numeration,
b) and c) one realization of the image with intensity variations and image
ground-truth, respectively.

where nh and nw are the image height and width in pixels,
respectively, Xij represents the (i, j)th pixel value of image
X and ‖ · ‖F denotes Frobenius matrix norm. Note that the
relative error measure defined in (14) is based on the inverse
signal to noise ratio (SNR−1) averaged for all the pixels in
the image.

Fig. 3 presents a filtering quality comparison, in terms of
(14), of the proposed BPT pruning based on the number of
regions with the dissimilarity measures defined in Section III.
The number of regions nr is shown in the upper horizontal axis
with logarithmic scale. In the lower horizontal axis, the mean
region area in pixels is stated, calculated as (nh ·nw)/nr. The
plot also compares the BPT pruning based on the number of
regions with the multilook filter (4), for different window sizes.
In this case, the mean region size corresponds to the nominal
window size, i.e. n in (4). For the BPT based filtering, an
initial 3x3 multilook has been applied in order to get full rank
matrices needed for dRW (7) and dWR (8) dissimilarities. The
results have been obtained averaging 25 different realizations
of the simulated image. For the multilook and the dRW cases
the standard deviation values resulting from the 25 realizations
are also included. The rest of the curves present similar values
to the dRW case.

When there are variations in intensity, Fig. 3a and 3c, for
small values of region size the results of the BPT pruning
based on the region number are very close to the Boxcar filter,
as the region mixture is negligible. For region sizes in the
order of 50-100 pixels (equivalent to 9x9 Boxcar filter) the
error measure starts to increase rapidly for the Boxcar filter
as the region mixture near the contours becomes appreciable.
On the contrary, the BPT is able to adapt to the image
morphology minimizing this region mixture effect and thus,
the error measure keeps decreasing when the average region
size increases, achieving the best error bounds near the 4
regions which should be the optimum as the simulated image
has exactly four different regions.

In Fig. 3b the error plots are completely different since only
the dissimilarity measures that use all the covariance matrix
information are sensitive to the region contours. Therefore,
the regions generated using dDN (10), dDR (11) and dDW
(12) rapidly start mixing non-homogeneous regions and never
improve the multilook filter performance. On the other hand,
full matrix dissimilarities dRW (7) and dWR (8) can adapt to
the image morphology and overcome Boxcar error measures
with higher region sizes. Note that, in Fig. 3b, the intensity
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(c) Variations both in correlation and in intensity

Fig. 3. Relative matrix error for simulated images with 4 equal size zones
filtered with a BPT pruning based on the region number. Results have been
obtained averaging 25 realizations.

is constant over the entire image. As a result, the mixing of
different regions has not a dramatic impact in the relative error
as in Fig. 3a and 3c. This also explains why the minimum of
the Boxcar error occurs at region sizes about 400-500 pixels
(21x21 multilook filter).

Comparing the different proposed dissimilarity functions,
when there are variations in intensity dDN (10) and dDR
(11) can achieve better performance in terms of relative error,
but the minimum can be far away from the 4 regions case.
Wishart based dissimilarities, either diagonal dDW (12) or full
matrix dRW (7), have very constant and stable behavior when
increasing the mean region size and achieve the best results
near the point corresponding to 4 regions. Ward based dissim-
ilarity dWR (8) can have poor performance when compared
with other dissimilarities but it is the only one that presents
a clear minimum always at exactly 4 regions. At this point,
its performance in terms of relative error is comparable to the
Wishart based dissimilarities. When intensity is constant, only
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full matrix Wishart and Ward dissimilarities can adapt to the
image morphology and outperform Boxcar performances. In
this case, Ward dissimilarity performance at 4 regions is near
3 dB better than the Wishart minimum at about 10 regions.

Fig. 4 shows the results of applying the pruning based on
the number of regions in one realization of the simulated data
with variations both in correlation and in intensity compared
with Boxcar filtering. As it may be seen in Fig. 4a, 4b and
4c, as the Boxcar filter size increases the amount of speckle
noise reduction and the quality of the estimation increases.
However, the spatial resolution is degraded considerably as the
filter size increases, blurring completely the region contours.
In Fig. 4d, 4e and 4f, the number of regions nr is fixed to 100
and different dissimilarity measures for BPT construction are
compared. All of them are able to detect the main contours
of the four zones with this number of regions. The contours
detected inside the main regions are completely random and
they are due to the speckle noise present on the image. In
Fig. 4g, 4h and 4i, the symmetric revised Wishart dissimilarity
measure dRW (7) has been employed and the results are
shown for different number of regions. For nr = 4, as it
may be observed, there is a good preservation of the spatial
resolution, but also of the polarimetric information under
the Gaussian hypothesis. A comparison between Fig. 2c and
Fig. 4i exhibits that the filtered image is quite close to the
ideal one. This similarity is also supported by the fact that
the relative error function (14), which is also sensitive to
the polarimetric information, presents very low values. As
detailed previously, each region is represented by the average
covariance matrix which is the MLE under the Gaussian
hypothesis [21]. Furthermore, as nr decreases the number of
contours in the filtered image decreases, reducing the effect of
the speckle noise, but new contours never appear.

B. Region homogeneity based pruning

The previous pruning strategy is very simple since no new
criterion nor evaluation are needed for pruning. The same
dissimilarity measure employed for the BPT construction is
employed for pruning, obtaining the nr most different regions
from the tree. However, it presents some drawbacks when
applied to real images:

1) The averaged covariance matrix Z as a region model is
a good representation of the region when it is homoge-
neous in the Gaussian case, but in the upper nodes of the
tree, corresponding to larger regions of the image, this
assumption is not true. Therefore, a pruning criterion
based only on this model is not good for BPT pruning.

2) The optimum region number is completely dependent on
the image structure and also on the employed dissimilar-
ity measure, as seen in Fig. 3. In practical situations, it
is almost impossible to fix a priori the optimum number
of regions for a given PolSAR image.

3) The proposed dissimilarity functions have a strong de-
pendence with the region sizes, which is needed for a
good multiscale representation within the BPT. However,
when employed as a pruning criterion, the obtained
segmentation has also this strong dependence. This

(a) Boxcar 3x3 (b) Boxcar 9x9 (c) Boxcar 15x15

(d) dDN , nr=100 (e) dDW , nr=100 (f) dWR, nr=100

(g) dRW , nr=1000 (h) dRW , nr=100 (i) dRW , nr=4

Fig. 4. Boxcar and BPT filtering (pruning based on the region number) in
one of the simulated PolSAR images with variations in both correlation and
intensity employing different dissimilarity functions. C11, C22 and C33 are
assigned to blue, red and green channels, respectively.

fact implies that, for example, it is very unlikely to
obtain in the same segmentation point scatters and large
homogeneous regions.

To solve the mentioned problems, the pruning criterion
should not rely exclusively on the region model and it should
be independent of the region size. A new BPT pruning
strategy is proposed according to this principle with its pruning
criterion focused on a region homogeneity measure φ.

The proposed criterion φR measures the average error
produced at representing each region X by its model ZX :

φR(X) =
1

nx

nx∑

i=1

‖Xi − ZX‖2
‖ZX‖2

=
1

nx‖ZX‖2
nx∑

i=1

‖Xi − ZX‖2

(15)
where Xi represents the covariance matrix for the ith pixel

within region X and nx is the number of pixels in X . It can
also be interpreted as the mean loss of information that occurs
when modeling the region by its estimated covariance matrix
(4).

Then, the region homogeneity based pruning will select
from the tree a set of regions Θ corresponding to the largest
regions having a homogeneity value below a pruning threshold
δp. This pruning process can be implemented using a top-
down approach, selecting the first nodes Xi that fulfill the
homogeneity criterion φR(Xi) < δp. Starting from the root
node Xr, it will be checked for homogeneity. If it is not
homogeneous, having φR(Xr) ≥ δp, it will be split into its
two child nodes, otherwise it will be added to Θ. Iteratively,
each region will be checked for homogeneity and will be split
or added to Θ depending on the result. Subsequently the set of
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(b) Variation in correlation
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(c) Variations both in correlation and in intensity

Fig. 5. Relative matrix error for simulated images with 4 equal size zones
filtered with a region homogeneity based pruning. Results have been obtained
averaging 25 realizations.

regions Θ will conform a segmentation of the image having a
mean information loss below the threshold δp for all regions.

This region homogeneity based pruning has been also
evaluated as a PolSAR speckle filtering process with the
same simulated images as the pruning based on the number
of regions. The results in terms of relative error (14) for
different pruning threshold values and dissimilarity measures
are shown in Fig. 5. As for the BPT pruning based on the
region number, the results have been obtained after averaging
25 different realizations of the simulated image, where the
standard deviation values for the dRW distance are included.

As it can be seen in Fig. 5, independently from the image
structure, the homogeneity based pruning behavior versus
the prune threshold is very similar for all the dissimilarity
measures employed for BPT construction. There is always
a minimum in terms of relative error located at the same
position. There is also a value for the pruning threshold that
is almost optimum for all the images at about -6 dB for δp.

(a) dDN , δp=-6dB (b) dDW , δp=-6dB (c) dWR, δp=-6dB

(d) dRW , δp=-8dB (e) dRW , δp=-7dB (f) dRW , δp=-6dB

Fig. 6. BPT homogeneity pruning filtering in one of the simulated PolSAR
images with variations in both correlation and intensity employing different
dissimilarity measures and prune thresholds. C11, C22 and C33 are assigned
to blue, red and green channels, respectively.

When there are variations in intensity, in Fig. 5a and 5c,
a wide set of values for δp, ranging from -6dB to -4dB
or -3dB, are near optimum. When there are only variations
in correlation, as seen in Fig. 5b, there is not such a wide
optimum set of values, but a clear minimum is also located at
-6 dB for δp.

Comparing Fig. 3 and Fig. 5, the minimum values in
terms of relative error obtained in BPT pruning based on
the number of regions are approximately preserved in the
region homogeneity pruning. However, since the homogeneity
measure in which pruning is based on is sensitive to all
the covariance matrix elements, a small improvement can be
observed when the dissimilarity measure is not sensitive to
region changes, as seen in Fig. 5b for diagonal dissimilarities
dDN (10), dDR (11) and dDW (12), which contributes making
the homogeneity based pruning more robust.

Fig. 6 shows the results of applying the BPT homogeneity
based pruning in one realization of the simulated data with
variations both in correlation and in intensity. In Fig. 6a, 6b
and 6c the pruning threshold δp has been fixed to -6 dB,
which is the optimum value for all the simulated images,
as seen in Fig. 5. With this pruning threshold, the BPT
homogeneity pruning employing all the dissimilarity measures
obtain a filtered image very close to the ideal one shown
in Fig. 2c, obtaining a good preservation of the polarimetric
information under the Gaussian hypothesis. There are only
small differences in the detected contours, which are more
accurate for dWR (8) and dRW (7), since they are sensitive to
all the covariance matrix information. In Fig. 6d, 6e and 6f,
the symmetric revised Wishart dissimilarity measure dRW has
been employed and different pruning thresholds are shown.
Comparing it with the pruning based on the region number
results for the same image, in Fig. 4, they achieve similar
results, specially for high pruning threshold values. Note that
the region contours are exactly the same, since the two BPT
pruning processes are performed over the same tree.
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(a) Original

(b) dRW , δp=-2dB

Fig. 7. Pauli original image of Oberpfaffenhofen (a) and processed image
(b) employing homogeneity based pruning. RGB channels are assigned to
|hh − vv|, |hv + vh| and |hh + vv|, respectively. Selected homogeneous
regions are marked over the original image.

Nevertheless, the most important properties of this new
pruning strategy is to overcome the stated drawbacks of the
BPT pruning based on the region number enumerated at the
beginning of this section. This advantage can be seen more
clearly with real data.

C. Real PolSAR data filtering

The BPT-based PolSAR filtering approach has been consid-
ered also with real PolSAR data acquired in a measurement
campaign conducted by the DLR in 1999 with its experimental
E-SAR system, over the Oberpfaffenhofen test-site, southern
Germany. Data were collected at L-band, with a spatial res-
olution of 1.5m × 1.5m in fully polarimetric mode. Fig. 7a
presents the original Pauli RGB image of the mentioned data
set.

The previous data set has been processed with a 7x7 mul-
tilook as a reference, the IDAN1 [4] filter, and the discussed
BPT pruning approaches: pruning based on the number of
regions and region homogeneity based pruning. The IDAN
approach has been considered in this work as it is very similar
to the BPT-based approach, since it considers the selection
of an adaptive neighborhood and filters it by assuming a
multilook. As indicated by the authors [4], this approach
is focused on data filtering, whereas they also introduce an
approach based on the linear minimum square error when the

1The PolSARPro [18] IDAN implementation has been employed for this
work, with a maximum window size parameter of 100 pixels.

(a) Original (b) 7x7 multilook (c) IDAN

Fig. 8. Detail Pauli RGB images. (a) Original, (b) filtered with 7x7 multilook
and (c) filtered with IDAN.

focus is on spatial resolution preservation. Fig. 7b shows one
processed image after applying an homogeneity based pruning
with δp = −2dB over a BPT constructed employing the
revised Wishart dRW dissimilarity (7). Fig. 8 shows a detailed
area of the image and results after applying the multilook and
IDAN filters whereas Fig. 9 shows the same area processed
with different BPT pruning strategies and parameters. The
selected area contains some large homogeneous agricultural
fields at the top left part of the image and an urban area with
small details in the central part. The multilook filter implies
a spatial resolution loss. The IDAN filter focuses specifically
on data filtering by considering an adaptive neighborhood for
every pixel of the data, in opposition to the BPT approach
that considers homogeneous regions. As observed, neither
the multilook nor the IDAN techniques can achieve such
strong filtering as the proposed BPT-based filter. For the
BPT construction process, the revised Wishart dissimilarity
dRW has been employed. Comparing both pruning criteria,
the region homogeneity based pruning preserves more small
details and point targets than the pruning based on the number
of regions, as can be seen in urban zones, while, at the same
time, it produces larger areas for homogeneous fields. This
effect is caused by the strong dependence of the dissimilarity
measures with the region sizes, as mentioned before.

One of the main features of the BPT is its multiscale
nature, as it has been indicated. This aspect can be deduced
from figures 9a to 9f. Note that all of these images have
been generated from the same tree, just changing the pruning
strategy and parameters. Then, the BPT contains all the infor-
mation presented in the images at different detail levels. This
property is exploited to obtain within the same image strong
filtering in case of homogeneous areas whereas the spatial
resolution and details of the image are maintained. Decreasing
the number of regions nr or increasing the pruning factor δp
modifies the strength of the filter, but is worth to notice that
new contours never appear, since bigger regions are always
generated by fusion of smaller ones. To illustrate the ability
of the region homogeneity based pruning to obtain within the
same image regions with very different sizes, Fig. 10 shows
a small homogeneous area of the original image with corner
reflectors, close to the runway. BPT based filtering can achieve
very strong filtering while preserving the corner reflectors as
small spatial details. Multilook and IDAN do not achieve such
a strong filtering and multilook implies a spatial resolution
loss, resulting in larger spots.

Fig. 9 also shows that the polarimetric information is main-
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(a) dRW , nr = 50000 (b) dRW , δp = −2dB

(c) dRW , nr = 10000 (d) dRW , δp = −1dB

(e) dRW , nr = 2000 (f) dRW , δp = 0dB

Fig. 9. Detail Pauli RGB images. (a), (c), (e) filtered with pruning based
on the number of regions and (b), (d), (f) filtered with region homogeneity
based pruning.

(a) Original (b) 7x7 ML (c) δp =−2dB (d) δp = 0dB (e) IDAN

Fig. 10. Detail Pauli RGB images of corner reflectors preservation. For BPT
homogeneity based pruning the revised Wishart dRW dissimilarity has been
employed. For IDAN filter, the maximum window size is 100 pixels.

tained in the Gaussian case, since the Pauli representations
do not vary between the original image Fig. 8a and the BPT
filtered images. As stated before, the region model employed
within the BPT nodes consists of the estimated covariance
matrix (4), which represents the MLE of the covariance matrix,
assuming a complex Gaussian distribution [21].

Fig. 11 presents the results for the same image obtained
after applying a region homogeneity based pruning with δp =

(a) dWR, δp = −1dB (b) dDN , δp = −1dB

(c) dDR, δp = −1dB (d) dDW , δp = −1dB

Fig. 11. Detail Pauli RGB images processed using region homogeneity based
pruning with δp = −1dB over different trees constructed employing various
dissimilarity functions.

−1dB over different trees, changing the dissimilarity function
employed for the BPT construction process. As one may
observe, all the proposed dissimilarity measures are sensitive
to the main contours of the image, obtaining large regions
over homogeneous areas while preserving contours and small
details. However, there are some differences between them.
The contours detected employing dWR dissimilarity (8) are
noisy (see Fig. 11a), as it can be seen specially in the fields,
appearing as a rough line. The BPT obtained with diagonal
dissimilarities dDN (10) and dDR (11), figures 11b and 11c,
present clear region contours but some small spots can be seen
inside homogeneous regions that corresponds to the image
speckle noise. This effect is more obvious inside the upper
fields for dDR dissimilarity. The obtained results with dDW
(12), in Fig. 11d, are very close to the revised Wishart dRW
results, shown in Fig. 9d, since the two dissimilarities are
based on the same principles, but some large areas are better
characterized with dRW , as it is sensitive to all the covariance
matrix elements.

To illustrate the capability to retain the polarimetric in-
formation of the proposed BPT filtering approach under the
Gaussian hypothesis, the eigendecomposition parameters of
the covariance matrix, Entropy (E), Anisotropy (A) and the
averaged alpha angle (ᾱ), are shown in Fig. 12 in compar-
ison with the 7x7 multilook and IDAN filtering. An initial
qualitative comparison of the images shows that they obtain
the same values. However, there are differences for large
homogeneous areas in the agricultural fields, where the BPT
approach can obtain these parameters with larger filtering
than multilook, reducing the estimation errors for distributed
scatters. Moreover, in the case of point targets and small details
of the image, for example inside the urban areas, it is able to
maintain a higher spatial resolution, since smaller regions of
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(a) H, 7x7 multilook (b) A, 7x7 multilook (c) ᾱ, 7x7 multilook

(d) H, IDAN (e) A, IDAN (f) ᾱ, IDAN

(g) H,δp = −2dB (h) A,δp = −2dB (i) ᾱ, δp = −2dB

(j) H,δp = 0dB (k) A,δp = 0dB (l) ᾱ, δp = 0dB

Fig. 12. H/A/ᾱ from processed images with multilook, IDAN and using
region homogeneity based pruning for different pruning threshold values and
dRW dissimilarity.

the tree are obtained. As a consequence, the proposed BPT
filtering approach improves the estimation of the polarimetric
information, both, in point as well as in distributed scatters.

To be able to make a quantitative evaluation of the po-
larimetric information preservation, three homogeneous areas
from the image have been selected and some mean estimated
parameters are calculated over them, regarding the covari-
ance matrix elements and the eigendecomposition parameters
H/A/ᾱ. The selected areas are shown in Fig. 7a and the
mean estimated values are presented in Table I. A comparison
is made between the original values, 7x7 multilook, IDAN
filtering and BPT homogeneity based pruning for different δp.
As it can be seen, in the case of multilook and BPT filtering
the estimated covariance matrix elements are very similar
to the original values. However, IDAN filtering introduces
appreciable bias in the covariance matrix elements although
the eigendecomposition parameters H/A/ᾱ are close to the
other filtering values. The presence of this bias has been
discussed in [19] and compensate up to a certain point by
the authors [20]. With BPT-based filter and δp = 0dB the
values start to diverge from the original ones because of
the inhomogeneous region mixture effect due to excessive

(a) Original Pauli (b) BPT based coastline segmentation

Fig. 13. Pauli RGB image of Barcelona (a), and coastline segmentation with
BPT (b). The revised Wishart dRW dissimilarity has been employed for the
BPT construction.

filtering. The H/A/ᾱ parameters cannot be estimated over the
original image since its estimated covariance matrices are
singular, and then a filtering process is needed. Note that these
estimated parameters are biased [6]; increasing the pruning
factor means increasing the filtering and the number of looks
per region and then reducing the estimation biases for all the
eigendecomposition parameters. As expected, as the number of
looks increases the bias is reduced and the estimated entropy
increases while anisotropy is reduced.

V. BPT PRUNING FOR COASTLINE DETECTION

In Section IV, the BPT representation of the image has been
employed for PolSAR filtering. However, the BPT structure
contains a lot of useful information about image structure
that may be employed for other applications. Fig. 13 is an
example where the BPT is employed to obtain an image
segmentation over the coastline. Fig. 13a shows a 1500×2500-
pixel cut of a C-band Pauli RADARSAT-2 image of Barcelona,
Spain, that was acquired in November, 18th 2008, in fine quad
polarization mode, with nominal resolution of 5.2m × 7.6m.
The figure also shows a detailed area corresponding to the
Forum harbor of Barcelona. Fig. 13b shows two regions of the
BPT corresponding to land and sea. In this case, the two most
different regions (that is the two child nodes of the root node)
were selected. Note that, for coastline detection, upper nodes
of the tree, closer to the root, are selected, in opposition to the
filtering application, where lower nodes of the tree, closer to
the leaves, are interesting. It is worth to notice that, due to the
ability of the BPT to preserve small details, the thin structures
in the coastline like breakwaters are preserved.

VI. CONCLUSIONS

A new PolSAR data processing approach, based on a Binary
Partition Tree (BPT) image representation is presented. The
BPT contains a large number of regions that may be extracted
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Region Filtering C11 C22 C33 <(C13) =(C13) H A ᾱ

Original 28.27 16.06 18.34 5.242 5.504 - - -
ML 7x7 28.21 15.97 18.36 5.321 5.465 0.8012 0.3543 48.29

Z1 IDAN 18.73 9.661 12.03 2.471 2.595 0.8558 0.3050 49.48
5000 px BPT -2dB 28.15 16.10 18.17 5.466 5.605 0.8271 0.2873 48.27

BPT -1dB 28.20 15.20 18.08 5.558 5.612 0.8618 0.2036 47.91
BPT 0dB 27.76 14.47 16.96 5.813 5.211 0.8694 0.1630 47.74
Original 279.3 159.1 172.8 49.80 -14.37 - - -
ML 7x7 280.8 159.3 172.9 49.18 -15.27 0.8598 0.2907 49.06

Z2 IDAN 173.0 102.4 105.8 20.59 -7.978 0.9003 0.2501 51.29
5950 px BPT -2dB 278.1 158.4 171.5 48.05 -16.12 0.8475 0.2984 49.50

BPT -1dB 280.4 157.7 172.4 50.24 -15.42 0.8925 0.2269 49.41
BPT 0dB 292.2 160.8 177.0 50.74 -13.42 0.9305 0.1307 49.61
Original 10.70 2.782 13.13 2.644 5.599 - - -
ML 7x7 10.70 2.789 13.14 2.662 5.593 0.6781 0.4248 42.62

Z3 IDAN 7.123 1.864 8.678 1.433 2.896 0.7438 0.4505 44.39
18000 px BPT -2dB 10.33 2.713 12.94 2.498 5.255 0.7370 0.3755 43.32

BPT -1dB 10.36 2.799 13.23 2.434 5.136 0.7445 0.3881 43.60
BPT 0dB 11.76 3.405 13.59 2.556 5.351 0.7852 0.3471 44.34

TABLE I
MEAN ESTIMATED VALUES OVER HOMOGENEOUS AREAS FOR DIFFERENT FILTERING STRATEGIES.

from the data, that are organized in a hierarchical structure,
corresponding to different scales or detail levels. Consequently,
this data representation contains a lot of useful information
related to data structure. Thus, the BPT is a powerful tool for
developing non-linear, region-based and multi-scale PolSAR
applications.

The BPT construction process has been analyzed, employ-
ing a bottom-up approach. In this case, a region model and
a dissimilarity measure need to be defined. The estimated
covariance matrix has been selected as a region model, as-
suming a complex Gaussian model, and different dissimilarity
measures have been proposed and analyzed. It is worth to
notice that this construction process employs all the elements
of the covariance matrix and then exploits all the polarimetric
information. Nevertheless, other region models accounting, for
instance, for data texture or characterizing high resolution data
are possible. The BPT is a general representation of the data,
which construction process should be application independent,
conforming a common part for all the BPT-based applications.

The processing of the BPT typically involves the identifica-
tion of the tree nodes that are useful for a particular applica-
tion. The main application considered in this work is PolSAR
speckle filtering. The target for speckle filtering application is
to detect the largest homogeneous regions within the image.
Two tree pruning strategies for the filtering application have
been proposed, the pruning based on the number of regions
and the homogeneity based pruning. The proposed BPT based
PolSAR speckle filtering process has shown to achieve very
high level of noise filtering while preserving small details and
spatial resolution. Furthermore, the proposed technique is able
to exploit all the polarimetric information under the Gaussian
assumption, unlike most state-of-the-art filtering techniques,
that are only based on radiometric information. The number of
regions nr or the pruning factor δp may be employed to adjust
the strength of the filtering. Additionally, it has been observed
that no bias or distortion is introduced in the polarimetric
information as the region model that has been employed, the
average covariance or coherency matrices, corresponds to the

MLE of these matrices.
Secondarily, another BPT-based application of PolSAR data

processing is presented: coastline detection. In this case, the
goal is to detect the two most different regions corresponding
to sea and land and then identify the coastline as their contour.
Due to the ability of the BPT to preserve small details
and spatial resolution, this coastline detection can detect thin
structures in the coastline like breakwaters.
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PARTITION TREES
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ABSTRACT

A new multi-scale PolSAR data filtering technique, based on
a Binary Partition Tree (BPT) representation of the data, is
proposed. Different alternatives for the construction and the
exploitation of the BPT for filtering and segmentation are pre-
sented. Results with simulated and experimental PolSAR data
are presented to shown the capabilities of the BPT-filtering
strategy to maintain both spatial details and the polarimetric
information.

Index Terms— SAR, SAR Polarimetry, Speckle filtering,
Binary Partition Tree, Segmentation

1. INTRODUCTION

SAR Polarimetry (PolSAR) has demonstrated, specially dur-
ing the last decade, its significance for the analysis and the
characterization of the Earth surface, as well as for the quan-
titative retrieval of biophysical and geophysical parameters.
A set of complex radar scattered echoes are coherently pro-
cessed in order to achieve high spatial resolution. As a conse-
quence, the received signal is affected by a speckle term. De-
spite speckle is determined by the scattering process itself, its
complexity makes necessary to consider it from a stochastic
point of view and then, to assume the speckle term as a noise
term. The speckle is a handicap in SAR imagery processing
and information extraction and consequently some speckle
filtering process is needed.

SAR and PolSAR data are non stationary as they reflect
the complexity of the environment. Assuming that all the
stochastic processes involved in the filtering process are er-
godic, PolSAR filters must adapt to this non stationarity.
Most recent state-of-the-art filtering techniques [1][2] are
based on this approach, tending to define a different homo-
geneity neighborhoods for each image pixel. In this paper,
we propose to tackle this issue by relying on a region-based
multi-scale representation of the image by means of a Binary
Partition Tree (BPT) and to perform filtering or segmentation
tasks directly by pruning the BPT.

The authors thank DLR for providing the PolSAR data. This work
has been supported by the Ramón-y-Cajal programm and the TEC2007-
65690/TCM Spanish MICINN project.

2. BINARY PARTITION TREE

The Binary Partition Tree (BPT) was introduced in [3] as a
region-based and multi-scale image representation. It con-
tains information about image structure at different detail lev-
els in a tree. Each node represents a region of the image. The
tree leaves correspond to single pixels of the image and the
remaining nodes represent the merging of the two child re-
gions. Finally, the root node represents the whole image. The
tree edges describe the inclusion relationship between nodes.
From the leaves to the root, many regions with different sizes
may be found. This multi-scale representation contains a lot
of information about the image structure and may be exploited
for PolSAR filtering and segmentation and for many other ap-
plications.

The BPT construction process can be performed in an ef-
ficient manner by an iterative algorithm [3] in a bottom-up ap-
proach. In the initial state, every pixel of the image will con-
form a single region. Iteratively the two most similar neighbor
regions will be merged until a single region is achieved, keep-
ing full track of the merging sequence within the tree struc-
ture. Thus, in order to be able to construct a BPT representa-
tion from a PolSAR image, the following elements have to be
defined:

1. A region model: traditionally, under the complex Gaus-
sian PolSAR model, the 3x3 estimated covariance ma-
trix Z is employed to measure the region polarimetric
information

Z = 〈kkH〉n =
1

n

n∑

i=1

kikHi (1)

where ki represents the scattering vector of the i-th
pixel and n represents the region size in pixels.

2. A similarity measure on the region model space to com-
pare two neighboring regions d(X,Y ). The revised
Wishart distance measure [4] dw is based on a statis-
tical test assuming Wishart distributions and that one
region statistics are known. However, since this mea-
sure is not symmetric, a modified symmetric version



will be applied

dsw(X,Y ) =
(
tr(Z−1

X ZY ) + tr(Z−1
Y ZX)

)
·(nx+ny)

(2)
where ZX and ZY represent the estimated covariance
matrices for regions X and Y , respectively, and nx and
ny represent their number of pixels.

For comparison purposes a new version of the symmet-
ric revised Wishart dissimilarity will be used, only tak-
ing into account the diagonal elements of the Z matrix
and assuming all off-diagonal values equal to zero

ddw(X,Y ) =

(
3∑

i=1

(
ZX

2
ii + ZY

2
ii

ZXiiZY ii

))
· (nx + ny)

(3)
where ZXij and ZY ij represent the (i,j)th element of
the estimated covariance matrices ZX and ZY , respec-
tively.

3. BPT PRUNING

As stated in [3] an image segmentation may be obtained per-
forming a tree pruning over the BPT. This pruning process is
application dependent. In this paper two BPT pruning criteria
are proposed focused on the speckle filtering application.

• Pruning based on the region number. The number of
regions nr of the segmentation is fixed and the nr most
different regions of the tree are obtained. If this de-
cision relies on the same similarity measure employed
for the BPT construction, then it is equivalent to stop
the BPT construction process when nr regions are ob-
tained.

• Homogeneity based pruning. A new homogeneity cri-
teria is introduced to evaluate the region homogeneity.
The main goal is to obtain a set of regions from the BPT
that represent the largest homogeneous regions on the
image.

The pruning based on the region number has the advantage of
being simpler and faster than the homogeneity based pruning,
since no new criteria nor evaluation are needed for pruning.
However, in practical situations, it is almost impossible to fix
a priori the optimum number of regions for a given PolSAR
image.

For the homogeneity based pruning, the following homo-
geneity criteria is proposed

φR(X) =
1

nx

nx∑

i=1

‖Xi − ZX‖2F
‖ZX‖2F

(4)

where Xi is the estimated covariance matrix for the i-th pixel
within region X and ‖.‖F represents the Frobenius matrix
norm.

Note that the homogeneity measure (4) depends on the
values of all the region pixels and not only on the region
model, as the similarity measure. The measure (4) may be
interpreted as the information loss when modeling all the re-
gion pixels by its estimated covariance matrix. Thus, in order
to determine if a region is homogeneous or not, a maximum
value for the homogeneity measure will be defined, called
pruning threshold.

4. RESULTS

To be able to make a quantitative evaluation of the proposed
BPT pruning processes, a simulated 128x128 pixels PolSAR
image is proposed in Fig. 1. Simulated data have been gen-
erated using the complex Gaussian PolSAR pdf assuming a
reflection symmetric target

C = σHH




1 0 ρ
√
γ

0 ε 0
ρ∗
√
γ 0 γ


 (5)

where ∗ denotes complex conjugate.
Two sets of images has been generated according to (5)

with values γi = 1 and εi = 0.1 and variations for σHHi and
ρi in different regions i = 1 . . . 4 as denoted in Fig. 1a

1. Variations in correlation: ρ = {0, 0.25ejπ, −
0.5, 0.75e−jπ}; σHHi = 1

2. Variations in both correlation and intensity: ρ =
{0, 0.25ejπ, −0.5, 0.75e−jπ}; σHH = {1, 9, 25, 49}

(a) (b) (c)

Fig. 1: Simulated image with variations in both correlation
and intensity. C22, C33 and C11 are assigned to RGB chan-
nels. (a) Zone numeration; BPT pruning at -6dB with (b) dsw
and (c) ddw.

To assess qualitatively the goodness of the processed im-
ageX compared with the ground truth Y a relative error mea-
sure is used

ER(X,Y ) =
1

nh · nw

nh∑

i=1

nw∑

j=1

‖Xij −Yij‖2F
‖Yij‖2F

(6)

where nh and nw are the image height and width in pixels,
respectively, Xij represents the (i, j)th pixel value of image
X .
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Fig. 2: Relative error for simulated images with variations in
both correlation and intensity. BPT number of regions based
pruning (top) and homogeneity based pruning (down).
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Fig. 3: Relative error for simulated images with variations in
correlation. BPT number of regions based pruning (top) and
homogeneity based pruning (down).

Note that the relative error measure (6) is based on the
inverse signal to noise ratio (SNR−1) averaged for all the
image pixels.

Fig. 2 shows the relative error over the image with vari-
ations in both correlation and intensity for the two proposed
BPT pruning strategies. Fig. 3 shows the relative error over
the image with variations in correlation only. The upper plot
of the figures corresponds to the pruning based on the region
number and the lower plot corresponds to region homogene-
ity based pruning. As observed in Fig. 2, in all the cases
the BPT-filtering approach obtains lower values that the mul-
tilook, specially for large areas, without the alteration of the

(a)

(b)

Fig. 4: Pauli RGB images: (a) original and (b) processed.

image contours. When there are variations only in the off-
diagonal matrix elements, as in Fig. 3, the ddw similarity
measure is not sensitive to contours and only dsw can exploit
all the polarimetric information and improve the multilook
filtering.

Complementarily, the application of the BPT-filtering
strategy for PolSAR filtering has been considered with ex-
perimental PolSAR data that was acquired in a measurement
campaign conducted by the DLR in 1999 with its experimen-
tal SAR system, E-SAR, over the Oberpfaffenhofen test-site,
southern Germany. Data were collected at L-band, with a
spatial resolution of 1.5m×1.5m in fully polarimetric mode.

Fig. 4 presents the original Pauli RGB image of the previ-
ous data set, compared with Pauli RGB image obtained from
the speckle filtered data set considering the previous BPT ap-
proach. In this case, the distance dsw has been considered for
the construction process and the homogeneity based pruning
with a pruning threshold of −2 dB has been assumed. As
one may observe, the BPT-based filtering does not introduce
neither new contours nor artifacts on the filtered data set. It
is worth to mention that the proposed BPT-filtering approach
makes it possible to retain almost the original spatial resolu-
tion in case of point and man-made targets, whereas it allows
a large filtering in case of distributed targets such agricultural
and forest areas.



(a) (b)

(c) (d)

Fig. 5: Detail Pauli RGB images: (a) original and processed
with pruning threshold (b) −2 dB (c) −1 dB and (d) 0 dB.

As it has been indicated, one of the main features of the
BPT-based filtering approach is the capability to perform a
multi-scale analysis. Fig. 5 demonstrates this capability by
changing the pruning threshold from −2 dB to 0 dB. As ob-
served, the multi-scale capability allows different levels of fil-
tering, specially on homogeneous areas, but without the intro-
duction of new contours or artifacts. This feature allows to in-
troduce strong filtering in case of homogeneous areas whereas
maintaining the spatial resolution and details of the data.

Additionally to the maintenance of the spatial resolution
and spatial details of the image, Figs. 4 and 5 also shown
that the BPT-filtering approach is able to maintain the polari-
metric information, as the Pauli representations do not vary
between the original and the filtered images. As indicated,
the model for the nodes of the BPT consists of (1), which
represents the Maximum Likelihood Estimation of the covari-
ance matrix to represent the data with the complex Gaussian
pdf. Consequently, no global biases are introduced in the
filtered signal since given a segmentation, a pixel can only
belong to one region. In order to demonstrate the capabil-
ity to retain the polarimetric information, the parameters of
the eigendecomposition of the covariance matrix, namely, En-
tropy (H), Anisotropy (A) and the average alpha angle α have
been obtained with a 7 × 7 multilook filters and compared
with the ones obtained through the BPT-filtering approach.
As observed in Fig. 6, both approaches obtain qualitatively
the same values. Nevertheless, the BPT-approach is able to
obtain these parameters with larger filtering in case of dis-
tributed targets reducing estimation errors. additionally, in
case of distributed scatterers, the BPT-filtering approach is
able to maintain the spatial resolution. Consequently, the pro-
posed filtering approach improves the estimation of the po-
larimetric information, both, in point as well as in distributed
scatterers.

(a) H (b) A (c) α

(d) H (e) A (f) α

Fig. 6: H/A/α with 7× 7 multilook (a), (b) and (c), and with
BPT employing a pruning threshold of−2 dB (d), (e) and (f).

5. CONCLUSIONS

This paper proposes a novel multi-scale polarimetric speckle
filtering strategy, based on a BPT representation of the data,
that is able to maintain spatial resolution and details in case
of point scatterers, while introducing large filtering in case of
homogeneous ones. This filtering strategy adapts to the com-
plete covariance matrix which represents the main difference
with respect to previous approaches that only rely on its diag-
onal elements. As demonstrated, the proposed strategy also
maintains the polarimetric information without the introduc-
tion of biases.

Furthermore, it has been proved that the BPT representa-
tion can be employed to extract useful information in PolSAR
images, and it can be employed for many other applications.
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ABSTRACT

The aim of this paper is to present a Polarimetric Synthetic
Aperture Radar data processing technique on the space-time
domain. This approach is based on a Binary Partition Tree
(BPT), which is a region-based and multi-scale data represen-
tation. Results with series of RADARSAT-2 real data are an-
alyzed from the point of view of speckle filtering and change
detection applications, to illustrate the capabilities to detect
and preserve spatial and temporal contours.

Index Terms— SAR, SAR Polarimetry, Binary Partition
Tree, Segmentation, Change detection

1. INTRODUCTION

Within the last decade Polarimetric Synthetic Aperture Radar
(PolSAR) has demonstrated its capabilities to extract useful
geophysical and biophysical information from the Earth sur-
face. A set of complex radar echoes are coherently processed
to achieve a high spatial resolution image. As a consequence
of this coherent processing and the fact that the resolution cell
contains a certain number of elementary targets, the received
signal is the coherent sum of all these echoes inducing the
speckle term. Despite the speckle term is determined by the
scattering process itself, its complexity makes necessary to
consider it from a stochastic point of view and then, to assume
the speckle term as a noise term. The speckle is a drawback
in SAR imagery processing and information extraction and
consequently some speckle filtering process is needed.

An important point in PolSAR image processing is that
the data are non stationary since they reflect the complexity of
the environment. Therefore, PolSAR filters must adapt to this
non stationarity. Some recent state-of-the-art filtering tech-
niques are based on this approach [1][2] by defining a homo-
geneous neighborhood for each pixel. In [3] a new PolSAR
data filtering scheme was introduced based on a Binary Par-
tition Tree (BPT) representation of the image [4]. This pro-
cessing strategy employs a region-based and multi-scale data
representation which is able to detect homogeneous regions
of the data at different detail levels.

This work has been funded by the Spanish MICINN project TEC2008-
06764-C02-01 and the Catalan FI-DGR program. The authors would like
also to acknowledge the ESA AgriSAR 2009 campaign.

In the last years, the presence of a number of PolSAR
space-borne systems has empowered the construction of Pol-
SAR image datasets containing images of the same scene at
different times. In this work we propose an extension of the
BPT technique to employ series of coregistered PolSAR im-
ages to construct a representation of the data in the space-time
domain. This data representation considers the full dataset
as a single three-dimensional figure of the same scene. This
novel representation is useful to identify homogeneous re-
gions over space and time, allowing a better characterization
and a temporal evolution analysis of the scatters, by means of
merging efficiently all the data in the different time acquisi-
tions.

2. BINARY PARTITION TREE REPRESENTATION

The Binary Partition Tree (BPT) was introduced in [4] as an
image representation. Recently, it has been employed for
PolSAR data filtering and segmentation in [3][5]. BPT is a
region-based and multi-scale data representation. It is a hier-
archical structure containing information about the data struc-
ture at different detail levels. Each node of the tree represents
a region of the data; the tree leaves represent single pixels,
whereas other nodes represent the merging of its two child re-
gions. Consequently, the root node of the tree represents the
whole data. The edges of the tree describe the inclusion rela-
tionship between regions. The BPT contains a large number
of regions between the leaves and the root, having useful in-
formation about the data structure that may be employed for
different applications.

In this paper, the BPT representation is extended to the
time dimension represented by a series of images of the same
site acquired at different dates. As a consequence, a region
of the tree will represent a set of pixels covering different
images. Then, a region conceptually represents a space-time
area of the data.

3. BPT PROCESSING

In this paper, the proposed BPT space-time representation
has been employed to process a RADARSAT-2 Fine Quad-
Pol dataset corresponding to a test-site in Flevoland, Nether-



lands. The dataset was acquired during the ESA AgriSAR
2009 campaign, devoted to analyze the agricultural fields tem-
poral evolution with PolSAR. The scene is composed mainly
by an area of agricultural fields and some sea surface and
urban areas. A subset of 8 images has been selected, cor-
responding to different acquisitions with the same incidence
angle (beam FQ13) and ascending passes. The resulting sub-
set is composed of images from April 4th, 2009 to September
29th, 2009 with an acquisition every 24 days.

3.1. Pre-processing

To process the dataset correctly, a 4000 by 2000 pixel cut of
the original image has been selected and a coregistration pro-
cess has been done to ensure that all the pixels are aligned in
the time dimension. The full dataset coregistrated, containing
4000 x 2000 x 8 pixel is represented in Fig. 1.

Fig. 1: Full 3-dimensional data set

3.2. BPT Construction

The BPT can be constructed with an iterative algorithm in a
bottom-up approach [4]. In the initial state of the algorithm
every pixel of the dataset becomes a one-pixel region. At each
step of the construction process the two most similar neigh-
boring regions are merged. This process is repeated iteratively
until the root of the tree is generated. In this case, since the
dataset is covering the space and time dimensions, a neigh-
borhood has to be defined within this context. In this work,
we propose the 10 connectivity shown in Fig. 2. Each pixel
is connected with its 8 neighbors in space, to be able to pre-
serve small diagonal details properly, and with the pixel in the
same position in the images immediately before and after in
the time dimension.

As mentioned in [3], the following additional elements
have to be defined to apply the BPT construction process:

1. A region model: traditionally, under the complex Gaus-
sian PolSAR model, the 3x3 estimated covariance ma-
trix Z is employed to measure the region polarimetric

Fig. 2: Pixel connectivity for the dataset. Each pixel, in blue,
has 10 neighbors, in red

information

Z = 〈kkH〉n =
1

n

n∑

i=1

kikH
i (1)

where ki represents the scattering vector of the i-th
pixel and n represents the region size in pixels.

2. A similarity measure on the region model space to com-
pare two neighboring regions d(X,Y ). In this work
we will employ the dsg measure based on the positive
definite matrix cone geometry [6]. Different similarity
measures were analyzed and compared in [5], where
dsg resulted into the best performance in the case of
spatial BPT-based PolSAR data filtering

dsg(X,Y ) = ‖log
(
Z

−1/2
X ZY Z

−1/2
X

)
‖F +

+ln

(
2nxny
nx + ny

)
(2)

where ZX and ZY represent the estimated covariance
matrices for regions X and Y , respectively, nx and
ny represent their number of pixels, ‖.‖F represents
the Frobenius matrix norm, log(.) represents the matrix
logarithm and ln(.) represents the natural logarithm.

3.3. BPT Pruning

A data processing may be obtained by a tree pruning pro-
cess over the full BPT, as stated in [4]. This is an application
dependent process. For filtering and segmentation, a homo-
geneity based tree pruning has been proposed and evaluated in
[3][5]. A homogeneity criterion is introduced and the biggest
regions of the tree that fulfill this criterion are selected from
the BPT

φR(X) =
1

nx

nx∑

i=1

‖Xi − ZX‖2F
‖ZX‖2F

< δp (3)

where Xi is the estimated covariance matrix for the i-th pixel
within region X and δp is the pruning factor, usually ex-
pressed in dB.



Note that the region model, the similarity measure and the
pruning criterion employed for the BPT based processing are
sensitive to the full estimated covariance matrix, so this pro-
cessing is employing systematically all the polarimetric infor-
mation, assuming the complex Gaussian PolSAR model.

4. RESULTS

The mentioned BPT processing strategy has been employed
with the full dataset presented in Fig. 1. In this case, because
of the dimensionality of the original data, a space-time seg-
mentation is obtained, representing homogeneous regions in
this domain.

In the following, the results obtained will be interpreted
from the point of view of speckle filtering application and
change detection.

4.1. Filtering results

For the speckle filtering application, the BPT processing can
benefit from a space-time segmentation, since additional sam-
ples can be employed from different images to estimate the
covariance matrix if the region is homogeneous in time.

Fig. 3 shows filtering results for the first image, corre-
sponding to the first acquisition image, for different pruning
factors δp. As expected, when increasing the pruning factor δp
bigger regions are obtained since less homogeneous regions
are accepted and pruned. Note that, as discussed before, these
filtering results are obtained by averaging pixels correspond-
ing to different acquisitions, depending on the region extent
in the time dimension.

(a) δp = −5dB (b) δp = −3dB (c) δp = −1dB

Fig. 3: First image processed with space-time filtering for
different pruning factors δp

To assess the gain obtained when filtering an image em-
ploying the full dataset with respect to a 2 dimensional case,
the average region depth in the time dimension is shown in
Table 1. This parameter is calculated as the relation between
the number of pixels contained in all the regions intersecting

the first acquisition and the pixels contained in a single image.
Note that, for example, when δp = −3dB the first acquisition
can be filtered employing approximately 4 times more sam-
ples than with a single acquisition.

δp Regions Average depth
-5 dB 359371 2.067
-4 dB 223969 2.652
-3 dB 127957 4.068
-2 dB 52077 6.727
-1 dB 14660 7.758
0 dB 4666 7.921

Table 1: Number of regions and average region depth in time
dimension over homogeneous regions intersecting the first ac-
quisition for different pruning factors

Fig. 4 shows the temporal evolution of the entropy (H)
parameter for two different agricultural fields of potatoes and
onions. The results obtained with the BPT for δp = 0dB and
δp = −3dB are compared with those obtained with the 7x7
multilook. As it can be seen, qualitatively the evolution of
the parameter is similar for all the cases. Differences are pro-
duced by estimating the parameter over regions of different
sizes in space and time, and not only in space. The flat zones
that appear with the BPT based processing are produced when
the same region appears over different acquisitions, conform-
ing an homogeneous region that spans various images in the
time dimension.
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Fig. 4: Estimated entropy (H) temporal evolution over two
different agricultural fields with 7x7 multilook and BPT ho-
mogeneity based pruning

4.2. Change detection results

In the previous section some filtering results have been pre-
sented showing the spatial contours of the homogeneous areas
within the BPT corresponding to the first acquisition. In this
section we will focus on the contours in the time dimension,
interpreted as changes between different acquisitions.

Fig. 5 shows, for different δp, the number of changes, or
contours in the time dimension, for each pixel, ranging from
no changes, represented in blue, to 7 changes, in red. Again,
increasing the pruning factor δp results in bigger regions also



in the time domain, and a smaller number of changes is de-
tected for each pixel. Analyzing the results closely, some
small blue dots can be seen over urban areas even at δp =
−5dB, corresponding to point scatters of the buildings that
have no change in time. When increasing the pruning fac-
tor some other areas appear also in blue, as some regions of
closed water, which roughness is less affected by wind. On
the other hand, some agricultural fields appear more reddish,
indicating that they are changing substantially along different
acquisitions. A detailed area showing this behavior is shown
in Fig. 6.

(a) δp = −5dB (b) δp = −3dB (c) δp = −1dB

Fig. 5: Temporal changes detection for different pruning fac-
tors δp. No changes is represented in blue and 7 changes in
red.

(a) Pauli image (b) Changes detected

Fig. 6: Detail of changes detection around urban area

Note that, since this processing strategy is employing all
the information within the covariance matrix, the change de-
tection application is also sensitive to all this information,
identifying indirectly a concept of region temporal stability in
terms of all the polarimetric information assuming the Gaus-
sian polarimetric model.

5. CONCLUSIONS

In this paper a region-based and multi-scale data representa-
tion has been proposed simultaneously in the space and time

dimensions. It is based on a BPT representation extended to
the temporal dimension. Region homogeneity based pruning
has been applied to obtain homogeneous regions of the tree in
the space-time domain. It has proven to be able to adapt to the
spatial and temporal information, preserving the polarimetric
information. For the filtering application, this technique is
able to increase the number of samples of homogeneous re-
gions by efficiently employing pixels of different acquisitions,
conforming an important gain in terms of the speckle filtering
application.

Another application that automatically arises when seg-
menting a space-time dataset is temporal change detection.
Some maps have been generated showing the number of
changes detected in the time dimension. Although this
changes cannot be physically confirmed, because of the ab-
sence of ground-truth, the temporal evolution of the entropy
(H) parameter over some fields has shown to follow similar
trends than the individual images filtered.

Consequently, a new processing tool has been introduced
that systematically exploits PolSAR image series. Due to the
BPT processing generic formulation, the same BPT construc-
tion and pruning algorithms can be employed for a single im-
age or a set of images; only a new pixel neighboring scheme
is needed to generate the initial state of the construction pro-
cess. Moreover, the BPT based processing is not restricted to
any region model, similarity measure or pruning criterion.
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ABSTRACT

A region-based and multi-scale image representation is
proposed in this work, the Binary Partition Tree (BPT),
for different polarimetric SAR image processing applica-
tions. This structure contains a lot of information about
the image structure at different detail levels. The BPT
construction process and its exploitation for PolSAR data
filtering and segmentation is analyzed in this work. Re-
sults with real and simulated data are presented to illus-
trate the capability of the BPT based filtering to maintain
spatial resolution and small details of the image while,
at the same time, strong filtering is performed over large
homogeneous regions.

Key words: SAR, PolSAR, speckle filtering, segmenta-
tion, Binary Partition Tree.

1. INTRODUCTION

Synthetic Aperture Radar (SAR) is a technique that co-
herently combines the echoes received by a moving radar
to form a high resolution image. In the las decade, mul-
tidimensional SAR data, specially polarimetric SAR data
(PolSAR), have demonstrated its importance for charac-
terization and classification of the earth surface. Some
geophysical and biophysical information can be extracted
by inversion of the polarimetric data.

However, SAR data are contaminated by speckle noise,
produced by the coherent processing of received echoes.
The speckle term can be reduced by estimation over ho-
mogeneous regions. However, SAR data are vastly non-
homogeneous, as they reflect the structure of the scene.
Some state-of-the-art techniques try to adapt to this non-
stationarity, either with predefined directional windows
[LGdG99] or defining an adaptive neighborhood for each
pixel [VTLB06].

In this work we propose a Binary Partition Tree (BPT)
[SG00] representation of the image to extract its spatial
information in order to segment the data into homoge-
neous regions, where the polarimetric information can

be estimated precisely. The BPT is a fully region-based
and multi-scale PolSAR data representation. Addition-
ally this representation can be exploited for many differ-
ent PolSAR processing applications. The BPT was in-
troduced for PolSAR data processing in [AGLMS10]. In
this paper, we introduce some new similarity criteria, and
we do a more extensive evaluation with more complex
and realistic synthetic data. Furthermore, we present re-
sults of coastline segmentation as a new application based
on the BPT.

2. BINARY PARTITION TREE

The Binary Partition Tree (BPT) was introduced in
[SG00] as a region-based and multi-scale image repre-
sentation. It contains information of the image structure
at different details levels within a tree. In this hierarchi-
cal structure each node represents a connected region of
the image. The tree leaves represent single pixels and all
the other nodes represent the region composed by merg-
ing its two son nodes. Finally, the root node represents
the whole image. Thus, the tree edges describe the in-
clusion relationship between nodes. Between the leafs
and the root there are a wide number of nodes represent-
ing regions of the image with different detail level. This
multi-scale representation contains a lot of useful infor-
mation about the image structure that can be exploited
for different applications.

To construct the BPT representation from an image, an
iterative algorithm is employed in a bottom-up approach
[SG00]. In the initial state, every pixel of the image be-
comes a one-pixel region. At every step, the two most
similar regions are merged and this process is repeated
until the root of the tree, containing the whole image, is
generated. In order to apply this algorithm, two important
concepts have to be defined [AGLMS10]:

1. A region model: traditionally, under the complex
Gaussian PolSAR model, the estimated covariance
matrix Z is employed to measure the region polari-



metric information

Z = 〈kkH〉n =
1

n

n∑

i=1

kikH
i (1)

where ki represents the scattering vector of the i-th
pixel and n represents the region size in pixels.
Additionally, since during the BPT construction pro-
cess regions of different sizes coexist, the region size
information should be taken into account and will be
included in the region model.

2. A similarity measure on the region model space to
compare two neighboring regions d(X,Y ). Two
types of measures are analyzed in this work, ones
based on the statistical distribution (the Wishart dis-
tribution) and others based on the covariance matrix
subspace geometry. The revised Wishart measure
[KLA05] dw is based on a statistical test assuming
Wishart distributions and that one region statistics
are known. However, since this measure is not sym-
metric, a modified symmetric version will be applied

dsw(X,Y ) =
(
tr(Z−1

X ZY ) + tr(Z−1
Y ZX)

)
·

·(nx + ny) (2)

where tr(.) represent the matrix trace, ZX and ZY

represent the estimated covariance matrices for re-
gions X and Y , respectively, and nx and ny repre-
sent their number of pixels.
For comparison purposes a new version of the sym-
metric revised Wishart dissimilarity will be used,
only taking into account the diagonal elements of
the Z matrix and assuming all off-diagonal values
equal to zero

ddw(X,Y ) =

(
3∑

i=1

(
ZX

2
ii + ZY

2
ii

ZXiiZY ii

))
· (nx + ny)

(3)
where ZXij and ZY ij represent the (i,j)-th element
of the estimated covariance matrices ZX and ZY ,
respectively.
Another family of dissimilarities is proposed and an-
alyzed on this paper based on the positive definite
matrix cone geometry [Bar09]

dsg(X,Y ) = ‖log
(
Z

−1/2
X ZY Z

−1/2
X

)
‖F +

+ln

(
2nxny
nx + ny

)
(4)

where ‖.‖F represents the Frobenius matrix norm,
log(.) represents the matrix logarithm and ln(.) rep-
resents the natural logarithm.
As for the Wishart dissimilarities, a new version is
defined employing only the information contained
in the diagonal elements of the covariance matrix

ddg(X,Y ) =

√√√√
3∑

i=1

ln2
(
ZXii

ZY ii

)
+ ln

(
2nxny
nx + ny

)

(5)

3. BPT PRUNING

The BPT is a hierarchical representation of the image
structure at different details levels. Thus, it depends only
on the image and consequently it is application indepen-
dent. One possible approach to develop BPT-based ap-
plications is to select a set of meaningful regions within
the tree. As mentioned in [SG00], an image segmentation
can be obtained by tree pruning.

For the filtering application, the main target is to obtain
the biggest possible homogeneous regions of the image.
The BPT and its multi-scale nature can be exploited for
this application. Then, an homogeneity-based tree prun-
ing can be performed. A region homogeneity measure φ
has to be defined to be able to define a pruning process.
In [AGLMS10], is proposed the criterion based on the
Frobenius matrix norm

φR(X) =
1

nx

nx∑

i=1

‖Xi − ZX‖2F
‖ZX‖2F

(6)

where Xi is the estimated covariance matrix for the i-th
pixel within region X .

Note that this measure depends on all the pixel values
within the X region and not only on its model, as the dis-
similarity measure. Additionally, φR is independent of
the region size, since it is an average over all the region
pixels. This is an important property of the homogeneity
measure in order to define the region homogeneity inde-
pendently of its size. The measure (6) can be seen as
the mean information loss when modeling all the pixels
within a region with its estimated covariance matrix. Fi-
nally, to determine if a region is homogeneous or not, a
maximum value δp for the homogeneity measure has to
be defined, called pruning threshold. Then, the bigger
regions Xi having φR(Xi) < δp will be selected from
the tree. In this paper δp will be expressed in dB scale,
corresponding to 10 · log10(φR).

4. FILTERING RESULTS

The described homogeneity based BPT pruning for fil-
tering has been tested with real and simulated PolSAR
data. Fig. 1 shows one real image corresponding to Pol-
SAR data that was acquired in a measurement campaign
conducted by the DLR in 1999 with its experimental
SAR system, E-SAR, over the Oberpfaffenhofen test-site,
southern Germany. Data were collected at L-band, with
a spatial resolution of 1.5m× 1.5m in fully polarimetric
mode.

On Fig. 2 different pruning results are shown over the
same BPT constructed with the dsw dissimilarity (2). In-
creasing the pruning threshold δp results in bigger regions
of the tree pruned, as less homogeneous regions are ac-
cepted. Note that all of this regions are contained within



Figure 1: Pauli RGB original E-SAR image

the same tree and thus, they reflect the multi-scale nature
of the BPT.

It is worth to notice that in the same image there are re-
gions with very different sizes. Large homogeneous ar-
eas, as the agricultural fields in the left part of the image,
appear as big regions whereas point scatters or details
from the urban area in the center of the image are pre-
served as small regions. The value for each region is the
estimated covariance matrix, as expressed in (1), over all
the pixels within the region. This means that very strong
filtering can be achieved while, at the same time, spatial
resolution and small details of the image are preserved.

A 512x512 pixels cut of the original data, shown in
Fig. 3a, is selected to see a more detailed view of the re-
sults. The 7x7 multilook is shown in Fig. 3b for compar-
ison purposes. In Figs. 3c-3f different results are shown
corresponding to the same tree pruning process over dif-
ferent BPTs constructed with the different similarity mea-
sures proposed. Compared with the 7x7 multilook, the
BPT based filtering preserves much better original image
spatial resolution and small details. Comparing the re-
sults obtained with different similarity measures there are
very subtle differences. This fact gives an idea of robust-
ness of the technique respect to the similarity measure
employed for the BPT construction.

To analyze the capability of the BPT based filtering ap-
proach to retain the polarimetric information without dis-
tortion, the eigendecomposition parameters of the esti-
mated covariance matrix, Entropy (E), Anisotropy (A)
and the averaged alpha angle (ᾱ), are shown in Fig. 4.
Different pruning thresholds are compared with the 7x7
multilook over the image cut presented in Fig. 3a. A qual-
itative analysis of these parameters shows that they obtain
the same values. However, the BPT based filtering can
take profit of the very large regions over homogeneous
areas to enhance the covariance matrix estimation. This
effect can be seen specially in the agricultural fields in
the left part of the image. In the forest, in the right part
of the image, the same effect can be found; increasing the
pruning factor to δp = 0dB results in a better estimation
of H and A, tending to 1 and 0 respectively, which fits
with the theoretical response for random volume scatter-
ing. The capability to preserve small details can also be
seen in urban areas, in the center of the image, specially

(a) δp = −2dB

(b) δp = −1dB

(c) δp = 0dB

Figure 2: Pauli RGB processed images

in H and ᾱ in comparison with the multilook, which has
an important spatial resolution loss.

Additionally, a quantitative evaluation of the polarimet-
ric information preservation has been made taking into
account some homogeneous regions of the image pre-
sented in Fig. 5. Over these regions some parameters
corresponding to covariance matrix elements and H/A/ᾱ
decomposition have been estimated. The results for the
original image, 7x7 multilook and BPT based filtering
are shown in Table 1. The covariance matrix elements
calculated for the original image and the filtered image
are very similar for both filtering strategies. On some
regions, the BPT pruning with δp = 0dB start to di-
verge from the original values due to inhomogeneous re-
gion mixture. The H/A/ᾱ parameters cannot be calcu-
lated over original data since it needs full-rank matrices
and some filtering process is needed. The estimation of
H and A parameters is biased [LMPC05] and, as stated



(a) Original (b) 7x7 multilook

(c) ddw, δp = −1dB (d) dsw, δp = −1dB

(e) ddg , δp = −1dB (f) dsg , δp = −1dB

Figure 3: Detail Pauli RGB original and BPT processed
images with δp = −1dB over different trees constructed
employing various similarity criteria

before, the BPT based filtering can achieve a better es-
timation of the H/A/ᾱ parameters due to the estimation
of the covariance matrix over larger number of homoge-
neous samples. This explains the evolution observed for
H and A, with are always underestimated and overesti-
mated, respectively, when increasing δp.

To be able to make a quantitative evaluation of the BPT
based filtering over the whole image a simulated data has
been generated from a segmentation of a real image. A
512x512 pixels cut has been selected, Fig. 6a, contain-
ing mainly agricultural fields and some urban area, and
it has been filtered using a BPT pruning with dsg simi-
larity measure and δp = −1dB, Fig. 6b. This data has
been used as a ground truth to generate simulated Pol-
SAR images. A filtered image is employed in order to
obtain a ground truth with realistic polarimetric and spa-
tial information. As an example, one realization is shown
in Fig. 6c and one BPT filtered image in Fig. 6d with dsg
similarity measure and δp = −5dB.

(a) H, 7x7 multilook (b) A, 7x7 multilook (c) ᾱ, 7x7 multilook

(d) H,dsw, δp =
−2dB

(e) A,dsw, δp =
−2dB

(f) ᾱ, dsw, δp =
−2dB

(g) H,dsw, δp = 0dB (h) A,dsw, δp = 0dB (i) ᾱ, dsw, δp = 0dB

Figure 4: H/A/ᾱ from processed images with multilook
and BPT based pruning for different δp

Figure 5: Homogeneous zones selected over the image

Several different realizations are generated and filtered
with different techniques. These results are compared
with the ground truth, Fig. 6b, to asses numerically the
goodness of the filtering technique. As an error measure,
ER(X,Y ) is defined between two images X and Y

ER(X,Y ) =
1

nh · nw

nh∑

i=1

nw∑

j=1

‖Xij −Yij‖F
‖Yij‖F

(7)

where nh and nw are the image height and width in pix-
els, respectively, Xij represents the (i, j)th pixel value of
imageX and ‖·‖F denotes Frobenius matrix norm. Note
that the relative error measure defined in (7) is based on
the inverse signal to noise ratio (SNR−1) averaged for
all the pixels in the image.



Region Filtering C11 C22 C33 <(C13) =(C13) H A ᾱ

Original 28.27 16.06 18.34 5.242 5.504 - - -
Z1 ML 7x7 28.21 15.97 18.36 5.321 5.465 0.8012 0.3543 48.29

5000 px BPT -2dB 28.15 16.10 18.17 5.466 5.605 0.8271 0.2873 48.27
BPT -1dB 28.20 15.20 18.08 5.558 5.612 0.8618 0.2036 47.91
BPT 0dB 27.76 14.47 16.96 5.813 5.211 0.8694 0.1630 47.74
Original 279.3 159.1 172.8 49.80 -14.37 - - -

Z2 ML 7x7 280.8 159.3 172.9 49.18 -15.27 0.8598 0.2907 49.06
5950 px BPT -2dB 278.1 158.4 171.5 48.05 -16.12 0.8475 0.2984 49.50

BPT -1dB 280.4 157.7 172.4 50.24 -15.42 0.8925 0.2269 49.41
BPT 0dB 292.2 160.8 177.0 50.74 -13.42 0.9305 0.1307 49.61
Original 10.70 2.782 13.13 2.644 5.599 - - -

Z3 ML 7x7 10.70 2.789 13.14 2.662 5.593 0.6781 0.4248 42.62
18000 px BPT -2dB 10.33 2.713 12.94 2.498 5.255 0.7370 0.3755 43.32

BPT -1dB 10.36 2.799 13.23 2.434 5.136 0.7445 0.3881 43.60
BPT 0dB 11.76 3.405 13.59 2.556 5.351 0.7852 0.3471 44.34

Table 1: Mean estimated values over homogeneous areas for different filtering strategies

(a) Original cut (b) Ground truth for simulation

(c) One generated realization (d) Realization filtered

Figure 6: Simulated data generation from a real image
segmentation

Fig. 7 shows the evolution of the relative error ER de-
fined in (7) when changing the pruning threshold δp for
the defined similarity measures in Section 2. Note that the
error axis is expressed in logarithmic scale (dB). To make
a clearer plots, results over 25 different realization of the
ground truth have been averaged. As it can be seen, the
behavior when changing the pruning factor is the same
for all the BPTs constructed with different criteria. There
is always a clear minimum located at about -5dB. Ac-
cording to the relative error ER criterion, employing the
diagonal similarity measures for BPT construction seems
to achieve better results than full-matrix ones. However,
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Figure 7: Relative error ER versus pruning factor δp plot
over simulated images
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Figure 8: Number of regions versus pruning factor δp plot
over simulated images

the ER measure is more sensitive to power, correspond-
ing to the diagonal elements of the covariance matrix,
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Figure 9: Relative errorER versus number of regions plot
over simulated images

than to the correlation information. In the lack of a clear
measure to correctly quantify the polarimetric informa-
tion loss, an alternative evaluation is made by means of
analysis of the number of regions attained by different
BPT pruning in Fig. 8. Note that the number of regions
pruned is automatically found when fixing the maximum
accepted homogeneity per region δp. This plot shows that
for a specific value of δp, the number of regions attained
by full-matrix similarity measures is always lower than
for the diagonal ones. This means that full-matrix simi-
larity measures produce trees having bigger regions with
the same level of homogeneity and, thus, they can achieve
better adaptation to the spatial information. Additionally,
it reflects that similarity measures based on the positive
definite covariance matrix cone geometry leads to better
adaptation to this spatial information than the ones based
on the Wishart distribution statistical test.

Moreover, Fig. 9 shows the relative error ER versus the
number of regions pruned. Similarity measures based
on the positive define matrix cone geometry attain bet-
ter results in terms of relative error and also they achieve
the best results with a lower number of regions than the
Wishart based ones. As a reference, the ground truth im-
age, Fig. 6b, has 1939 regions, whereas the minimum er-
ror is attained at 3000-4000 regions for ddg and dsg and
over 5000 for ddw and dsw measures. This difference
reflects the accuracy of the different segmentations ob-
tained by means of BPT pruning and, consequently, the
quality attainable for the filtering application.

Analyzing the results with real and simulated data an
important point arises. Similar results are obtained by
means of BPT based filtering in Fig. 6b and Fig. 6d in
real and simulated images. However, the pruning thresh-
old in both cases differs significantly: -1dB and -5dB,
respectively. In the view of the authors, this fact can be
related to additional region features in the real data not
taken into account inside the model, which can be con-
sidered as the region texture. The homogeneity threshold
has to be increased to absorb these modeling errors with
real data. For the simulated data, since this texture is not
reproduced, it is not necessary to increase δp and the same

results are obtained with lower homogeneity thresholds.

5. SEGMENTATION RESULTS

In Section 4 the BPT has been analyzed to develop a fil-
tering application. However, the BPT is an application
independent image representation that can be useful for
many other applications. As an example, in this section
some results will be shown that employ the BPT for a seg-
mentation application, concretely to coastline segmenta-
tion. For filtering purposes, the pruned nodes are usually
homogeneous regions that are relatively close to the tree
leaves. For this application, bigger regions are interest-
ing, strongly non-homogeneous, closer to the tree root.

Figure 10: Pauli RGB for the original image of Barcelona

Fig. 10 shows the original image corresponding to 1500×
2500-pixel cut of a C-band Pauli RADARSAT-2 image of
Barcelona, Spain, that was acquired in November, 18th
2008, in fine quad polarization mode with nominal reso-
lution of 5.2m× 7.6m. The figure also shows a detailed
area corresponding to the Forum harbor of Barcelona.
Fig. 11 shows the resulting coastline segmentation result.
Two regions can be clearly seen, corresponding to the
land and the sea on the original image. In this case the
pruning process is based on selecting the two bigger re-
gions of the tree, corresponding to the two sons of the root
node. Fig. 11 represents the entropy H of the two regions.
The dsw criteria has been used for BPT construction, de-
fined in (2). As can be seen, specially in the zoom over
the Forum harbor, the segmentation preserves the spatial
resolution of the original image and small details and thin
structures like breakwaters are preserved.



Figure 11: Coastline segmentation, where colors repre-
sent the region entropy H

6. CONCLUSIONS

In this work, a region-based and multi-scale image rep-
resentation has been employed for PolSAR data repre-
sentation [AGLMS10]. This BPT representation contains
information about the image structure and is application
independent. It has proved to be able to extract spatial in-
formation of the image at different detail levels, ranging
from small details close to the tree leaves to big regions
close to the root, as the land and the sea on the segmenta-
tion example.

An iterative algorithm is employed to construct a BPT
from a PolSAR image, based on a region model and a
similarity measure. The region model is based on the po-
larimetric information contained in the covariance matrix
and several similarity criteria are presented. Analyzing
the results obtained for the filtering application, it seems
that the proposed family of measures based on the posi-
tive definite matrix cone geometry perform better for BPT
construction since a better adaptation to the spatial infor-
mation is achieved.

In addition, a BPT based processing approach is ana-
lyzed, based on an application dependent tree pruning,
which produces a segmentation of the image. The speckle
filtering application has been studied in detail, by defin-
ing a BPT pruning based on the region homogeneity. It
has proved to attain good results with real and simulated
data, being able to obtain at the same time large regions
over homogeneous areas while preserving spatial reso-
lution and small details. Moreover, this filtering tech-

nique is able to adapt to the full polarimetric information
without introducing any kind of bias or distortion. Addi-
tionally, the segmentation application itself has been pre-
sented with a coastline segmentation example. On this
example a simpler pruning process is employed: select
the two bigger regions of the BPT, corresponding to the
soon nodes of the tree root. Furthermore, the BPT rep-
resentation contains a lot of information about the image
that can be useful for many other applications.
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