5,416 research outputs found

    Analog dithering techniques for highly linear and efficient transmitters

    Get PDF
    The current thesis is about investigation of new methods and techniques to be able to utilize the switched mode amplifiers, for linear and efficient applications. Switched mode amplifiers benefit from low overlap between the current and voltage wave forms in their output terminals, but they seriously suffer from nonlinearity. This makes it impossible to use them to amplify non-constant envelope message signals, where very high linearity is expected. In order to do that, dithering techniques are studied and a full linearity analysis approach is developed, by which the linearity performance of the dithered amplifier can be analyzed, based on the dithering level and frequency. The approach was based on orthogonalization of the equivalent nonlinearity and is capable of prediction of both co-channel and adjacent channel nonlinearity metrics, for a Gaussian complex or real input random signal. Behavioral switched mode amplifier models are studied and new models are developed, which can be utilized to predict the nonlinear performance of the dithered power amplifier, including the nonlinear capacitors effects. For HFD application, self-oscillating and asynchronous sigma delta techniques are currently used, as pulse with modulators (PWM), to encode a generic RF message signal, on the duty cycle of an output pulse train. The proposed models and analysis techniques were applied to this architecture in the first phase, and the method was validated with measurement on a prototype sample, realized in 65 nm TSMC CMOS technology. Afterwards, based on the same dithering phenomenon, a new linearization technique was proposed, which linearizes the switched mode class D amplifier, and at the same time can reduce the reactive power loss of the amplifier. This method is based on the dithering of the switched mode amplifier with frequencies lower than the band-pass message signal and is called low frequency dithering (LFD). To test this new technique, two test circuits were realized and the idea was applied to them. Both of the circuits were of the hard nonlinear type (class D) and are integrated CMOS and discrete LDMOS technologies respectively. The idea was successfully tested on both test circuits and all of the linearity metric predictions for a digitally modulated RF signal and a random signal were compared to the measurements. Moreover a search method to find the optimum dither frequency was proposed and validated. Finally, inspired by averaging interpretation of the dithering phenomenon, three new topologies were proposed, which are namely DLM, RF-ADC and area modulation power combining, which are all nonlinear systems linearized with dithering techniques. A new averaging method was developed and used for analysis of a Gilbert cell mixer topology, which resulted in a closed form relationship for the conversion gain, for long channel devices

    Generalized modulational instability in multimode fibers: wideband multimode parametric amplification

    Full text link
    In this paper intermodal modulational instability (IM-MI) is analyzed in a multimode fiber where several spatial and polarization modes propagate. The coupled nonlinear Schr\"{o}dinger equations describing the modal evolution in the fiber are linearized and reduced to an eigenvalue problem. As a result, the amplification of each mode can be described by means of the eigenvalues and eigenvectors of a matrix that stores the information about the dispersion properties of the modes and the modal power distribution of the pump. Some useful analytical formulas are also provided that estimate the modal amplification as function of the system parameters. Finally, the impact of third-order dispersion and of absorbtion losses is evaluated, which reveals some surprising phenomena into the IM-MI dynamics. These outcomes generalize previous studies on bimodal-MI, related to the interaction between 2 spatial or polarization modes, to the most general case of N>2N>2 interacting modes. Moreover, they pave the way towards the realization of wideband multimode parametric amplifier

    Open-ended evolution to discover analogue circuits for beyond conventional applications

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10710-012-9163-8. Copyright @ Springer 2012.Analogue circuits synthesised by means of open-ended evolutionary algorithms often have unconventional designs. However, these circuits are typically highly compact, and the general nature of the evolutionary search methodology allows such designs to be used in many applications. Previous work on the evolutionary design of analogue circuits has focused on circuits that lie well within analogue application domain. In contrast, our paper considers the evolution of analogue circuits that are usually synthesised in digital logic. We have developed four computational circuits, two voltage distributor circuits and a time interval metre circuit. The approach, despite its simplicity, succeeds over the design tasks owing to the employment of substructure reuse and incremental evolution. Our findings expand the range of applications that are considered suitable for evolutionary electronics

    A theoretical and experimental analysis of SBS suppression through modification of amplifier seed

    Get PDF
    Theoretical and experimental investigations of stimulated Brillouin scattering (SBS) are conducted in Yb-doped fiber amplifiers when the amplifier is simultaneously seeded with multiple distinct frequencies or with a phase modulated signal. To this end, detailed models of the SBS process are developed consisting of both a steady-state approach described mathematically by a coupled set of ordinary differential equations and also transient effects described by a coupled set of partial differential equations. For the multi-frequency seeded case, the equations are solved in the steady-state limit and include the effects of four-wave mixing (FWM), intrinsic and external thermal gradients, and laser gain. In one configuration of the multi-seeded case, the signals are separated at twice the acoustic frequency of the fiber medium in order to create nonlinear Brillouin gain coupling between the seeds and Stokes signals, which suppresses the SBS process in the highest frequency seed. The concept is theoretically investigated for the two and three seeded cases. It is shown that for this scheme, FWM becomes quite significant making this concept unlikely in a practical application requiring single-frequency output. Alternatively, a novel concept is developed to suppress SBS in fiber amplifiers that relies on laser gain competition among multiple seeds to create both a favorable thermal gradient and a reduced effective length for the SBS process. In one configuration, the amplifier is simultaneously seeded with a broadband (Δ ) and single-frequency Δ seed. In this case, several experiments are performed to validate the theoretical predictions with experiments leading to a 203 W polarization maintaining (PM), co-pumped monolithic fiber amplifier demonstration. To the best of our knowledge, this output power is the highest reported in the literature to date for such an amplifier. A time-dependent model of the SBS process initiated from random thermal noise is also developed to study SBS suppression under phase modulated pump conditions. The SBS suppression is characterized for several phase modulation schemes. It is found that the SBS suppression for a white-noise phase modulation (WNS) which broadens the pump spectrum, depends significantly on the length of fiber and only in the long fiber limit follows the often quoted threshold enhancement formula of where , and describe the SBS threshold of the single-frequency case, the effective linewidth of the pump, and the spontaneous Brillouin linewidth respectively. In addition, the SBS threshold is characterized as a function of modulation amplitude and frequency for a single-sinusoidal phase modulation scheme
    • …
    corecore