763 research outputs found

    Robust low-power digital circuit design in nano-CMOS technologies

    Get PDF
    Device scaling has resulted in large scale integrated, high performance, low-power, and low cost systems. However the move towards sub-100 nm technology nodes has increased variability in device characteristics due to large process variations. Variability has severe implications on digital circuit design by causing timing uncertainties in combinational circuits, degrading yield and reliability of memory elements, and increasing power density due to slow scaling of supply voltage. Conventional design methods add large pessimistic safety margins to mitigate increased variability, however, they incur large power and performance loss as the combination of worst cases occurs very rarely. In-situ monitoring of timing failures provides an opportunity to dynamically tune safety margins in proportion to on-chip variability that can significantly minimize power and performance losses. We demonstrated by simulations two delay sensor designs to detect timing failures in advance that can be coupled with different compensation techniques such as voltage scaling, body biasing, or frequency scaling to avoid actual timing failures. Our simulation results using 45 nm and 32 nm technology BSIM4 models indicate significant reduction in total power consumption under temperature and statistical variations. Future work involves using dual sensing to avoid useless voltage scaling that incurs a speed loss. SRAM cache is the first victim of increased process variations that requires handcrafted design to meet area, power, and performance requirements. We have proposed novel 6 transistors (6T), 7 transistors (7T), and 8 transistors (8T)-SRAM cells that enable variability tolerant and low-power SRAM cache designs. Increased sense-amplifier offset voltage due to device mismatch arising from high variability increases delay and power consumption of SRAM design. We have proposed two novel design techniques to reduce offset voltage dependent delays providing a high speed low-power SRAM design. Increasing leakage currents in nano-CMOS technologies pose a major challenge to a low-power reliable design. We have investigated novel segmented supply voltage architecture to reduce leakage power of the SRAM caches since they occupy bulk of the total chip area and power. Future work involves developing leakage reduction methods for the combination logic designs including SRAM peripherals

    Design of Low-Voltage Digital Building Blocks and ADCs for Energy-Efficient Systems

    Get PDF
    Increasing number of energy-limited applications continue to drive the demand for designing systems with high energy efficiency. This tutorial covers the main building blocks of a system implementation including digital logic, embedded memories, and analog-to-digital converters and describes the challenges and solutions to designing these blocks for low-voltage operation

    Ultra-low Power FinFET SRAM Cell with improved stability suitable for low power applications

    Get PDF
    In this paper, a new 11T SRAM cell using FinFET technology has been proposed, the basic component of the cell is the 6T SRAM cell with 4 NMOS access transistors to improve the stability and also makes it a dual port memory cell. The proposed cell uses a header scheme in which one extra PMOS transistor is used which is biased at different voltages to improve the read and write stability thus, helps in reducing the leakage power and active power. The cell shows improvement in RSNM (Read Static Noise Margin) with LP8T by 2.39x at sub-threshold voltage 2.68x with D6T SRAM cell, 5.5x with TG8T. The WSNM (Write Static Noise Margin) and HM (Hold Margin) of the SRAM cell at 0.9V is 306mV and 384mV. At sub-threshold operation also it shows improvement. The Leakage power reduced by 0.125x with LP8T, 0.022x with D6T SRAM cell, TG8T and SE8T. Also, impact of process variation on cell stability is discussed

    Ultra-low Power FinFET SRAM Cell with improved stability suitable for low power applications

    Get PDF
    In this paper, a new 11T SRAM cell using FinFET technology has been proposed, the basic component of the cell is the 6T SRAM cell with 4 NMOS access transistors to improve the stability and also makes it a dual port memory cell. The proposed cell uses a header scheme in which one extra PMOS transistor is used which is biased at different voltages to improve the read and write stability thus, helps in reducing the leakage power and active power. The cell shows improvement in RSNM (Read Static Noise Margin) with LP8T by 2.39x at sub-threshold voltage 2.68x with D6T SRAM cell, 5.5x with TG8T. The WSNM (Write Static Noise Margin) and HM (Hold Margin) of the SRAM cell at 0.9V is 306mV and 384mV. At sub-threshold operation also it shows improvement. The Leakage power reduced by 0.125x with LP8T, 0.022x with D6T SRAM cell, TG8T and SE8T. Also, impact of process variation on cell stability is discussed

    Reconfigurable negative bit line collapsed supply write-assist for 9T-ST static random access memory cell

    Get PDF
    This paper presents a reconfigurable negative bit line collapsed supply (RNBLCS) write driver circuit for the 9T Schmitt trigger-based static random-access memory (SRAM) cell (9T-ST), significantly improving write performance for real-time memory applications. In deep sub-micron technology, increasing device parameter deviations significantly reduce SRAM cells' write-ability. The proposed RNBLCS write-assist driver for 9T-ST SRAM cell has 0.84×, 0.48×, 0.27× optimized write access delay and 1.05×, 1.08×, 1.19× improvement in write static noise margin (WSNM), 1.05×, 1.13×, and 1.39× improvement in write margin (WM), 0.96×, 0.89× and 0.72× minimum write trip-point (WTP) from transient-negative bit line (Tran-NBL), capacitive charge sharing (CCS), and conventional write circuits respectively. The proposed RNBLCS is functionally verified using a synopsys custom compiler with a 16 nm BSIM4 model card for bulk complementary metal-oxide semiconductor (CMOS)

    Statistical analysis and design of subthreshold operation memories

    Get PDF
    This thesis presents novel methods based on a combination of well-known statistical techniques for faster estimation of memory yield and their application in the design of energy-efficient subthreshold memories. The emergence of size-constrained Internet-of-Things (IoT) devices and proliferation of the wearable market has brought forward the challenge of achieving the maximum energy efficiency per operation in these battery operated devices. Achieving this sought-after minimum energy operation is possible under sub-threshold operation of the circuit. However, reliable memory operation is currently unattainable at these ultra-low operating voltages because of the memory circuit's vanishing noise margins which shrink further in the presence of random process variations. The statistical methods, presented in this thesis, make the yield optimization of the sub-threshold memories computationally feasible by reducing the SPICE simulation overhead. We present novel modifications to statistical sampling techniques that reduce the SPICE simulation overhead in estimating memory failure probability. These sampling scheme provides 40x reduction in finding most probable failure point and 10x reduction in estimating failure probability using the SPICE simulations compared to the existing proposals. We then provide a novel method to create surrogate models of the memory margins with better extrapolation capability than the traditional regression methods. These models, based on Gaussian process regression, encode the sensitivity of the memory margins with respect to each individual threshold variation source in a one-dimensional kernel. We find that our proposed additive kernel based models have 32% smaller out-of-sample error (that is, better extrapolation capability outside training set) than using the six-dimensional universal kernel like Radial Basis Function (RBF). The thesis also explores the topological modifications to the SRAM bitcell to achieve faster read operation at the sub-threshold operating voltages. We present a ten-transistor SRAM bitcell that achieves 2x faster read operation than the existing ten-transistor sub-threshold SRAM bitcells, while ensuring similar noise margins. The SRAM bitcell provides 70% reduction in dynamic energy at the cost of 42% increase in the leakage energy per read operation. Finally, we investigate the energy efficiency of the eDRAM gain-cells as an alternative to the SRAM bitcells in the size-constrained IoT devices. We find that reducing their write path leakage current is the only way to reduce the read energy at Minimum Energy operation Point (MEP). Further, we study the effect of transistor up-sizing under the presence of threshold voltage variations on the mean MEP read energy by performing statistical analysis based on the ANOVA test of the full-factorial experimental design.Esta tesis presenta nuevos métodos basados en una combinación de técnicas estadísticas conocidas para la estimación rápida del rendimiento de la memoria y su aplicación en el diseño de memorias de energia eficiente de sub-umbral. La aparición de los dispositivos para el Internet de las cosas (IOT) y la proliferación del mercado portátil ha presentado el reto de lograr la máxima eficiencia energética por operación de estos dispositivos operados con baterias. La eficiencia de energía es posible si se considera la operacion por debajo del umbral de los circuitos. Sin embargo, la operación confiable de memoria es actualmente inalcanzable en estos bajos niveles de voltaje debido a márgenes de ruido de fuga del circuito de memoria, los cuales se pueden reducir aún más en presencia de variaciones randomicas de procesos. Los métodos estadísticos, que se presentan en esta tesis, hacen que la optimización del rendimiento de las memorias por debajo del umbral computacionalmente factible mediante la simulación SPICE. Presentamos nuevas modificaciones a las técnicas de muestreo estadístico que reducen la sobrecarga de simulación SPICE en la estimación de la probabilidad de fallo de memoria. Estos esquemas de muestreo proporciona una reducción de 40 veces en la búsqueda de puntos de fallo más probable, y 10 veces la reducción en la estimación de la probabilidad de fallo mediante las simulaciones SPICE en comparación con otras propuestas existentes. A continuación, se proporciona un método novedoso para crear modelos sustitutos de los márgenes de memoria con una mejor capacidad de extrapolación que los métodos tradicionales de regresión. Estos modelos, basados en el proceso de regresión Gaussiano, codifican la sensibilidad de los márgenes de memoria con respecto a cada fuente de variación de umbral individual en un núcleo de una sola dimensión. Los modelos propuestos, basados en kernel aditivos, tienen un error 32% menor que el error out-of-sample (es decir, mejor capacidad de extrapolación fuera del conjunto de entrenamiento) en comparacion con el núcleo universal de seis dimensiones como la función de base radial (RBF). La tesis también explora las modificaciones topológicas a la celda binaria SRAM para alcanzar velocidades de lectura mas rapidas dentro en el contexto de operaciones en el umbral de tensiones de funcionamiento. Presentamos una celda binaria SRAM de diez transistores que consigue aumentar en 2 veces la operación de lectura en comparacion con las celdas sub-umbral de SRAM de diez transistores existentes, garantizando al mismo tiempo los márgenes de ruido similares. La celda binaria SRAM proporciona una reducción del 70% en energía dinámica a costa del aumento del 42% en la energía de fuga por las operaciones de lectura. Por último, se investiga la eficiencia energética de las células de ganancia eDRAM como una alternativa a los bitcells SRAM en los dispositivos de tamaño limitado IOT. Encontramos que la reducción de la corriente de fuga en el path de escritura es la única manera de reducir la energía de lectura en el Punto Mínimo de Energía (MEP). Además, se estudia el efecto del transistor de dimensionamiento en virtud de la presencia de variaciones de voltaje de umbral en la media de energia de lecture MEP mediante el análisis estadístico basado en la prueba de ANOVA del diseño experimental factorial completo.Postprint (published version

    Near-Threshold Computing

    Get PDF
    Valmistustekniikoiden kehittyessä IC-piireille saadaan mahtumaan yhä enemmän transistoreja. Monimutkaisemmat piirit mahdollistavat suurempien laskutoimitusmäärien suorittamisen aikayksikössä. Piirien aktiivisuuden lisääntyessä myös niiden energiankulutus lisääntyy, ja tämä puolestaan lisää piirin lämmöntuotantoa. Liiallinen lämpö rajoittaa piirien toimintaa. Tämän takia tarvitaan tekniikoita, joilla piirien energiankulutusta saadaan pienennettyä. Uudeksi tutkimuskohteeksi ovat tulleet pienet laitteet, jotka seuraavat esimerkiksi ihmiskehon toimintaa, rakennuksia tai siltoja. Tällaisten laitteiden on oltava energiankulutukseltaan pieniä, jotta ne voivat toimia pitkiä aikoja ilman akkujen lataamista. Near-Threshold Computing on tekniikka, jolla pyritään pienentämään integroitujen piirien energiankulutusta. Periaatteena on käyttää piireillä pienempää käyttöjännitettä kuin piirivalmistaja on niille alunperin suunnitellut. Tämä hidastaa ja haittaa piirin toimintaa. Jos kuitenkin laitteen toiminnassa pystyään hyväksymään huonompi laskentateho ja pienentynyt toimintavarmuus, voidaan saavuttaa säästöä energiankulutuksessa. Tässä diplomityössä tarkastellaan Near-Threshold Computing -tekniikkaa eri näkökulmista: aluksi perustuen kirjallisuudesta löytyviin aikaisempiin tutkimuksiin, ja myöhemmin tutkimalla Near-Threshold Computing -tekniikan soveltamista kahden tapaustutkimuksen kautta. Tapaustutkimuksissa tarkastellaan FO4-invertteriä sekä 6T SRAM -solua piirisimulaatioiden avulla. Näiden komponenttien käyttäytymisen Near-Threshold Computing –jännitteillä voidaan tulkita antavan kattavan kuvan suuresta osasta tavanomaisen IC-piirin pinta-alaa ja energiankulusta. Tapaustutkimuksissa käytetään 130 nm teknologiaa, ja niissä mallinnetaan todellisia piirivalmistusprosessin tuotteita ajamalla useita Monte Carlo -simulaatioita. Tämä valmistuskustannuksiltaan huokea teknologia yhdistettynä Near-Threshold Computing -tekniikkaan mahdollistaa matalan energiankulutuksen piirien valmistaminen järkevään hintaan. Tämän diplomityön tulokset näyttävät, että Near-Threshold Computing pienentää piirien energiankulutusta merkittävästi. Toisaalta, piirien nopeus heikkenee, ja yleisesti käytetty 6T SRAM -muistisolu muuttuu epäluotettavaksi. Pidemmät polut logiikkapiireissä sekä transistorien kasvattaminen muistisoluissa osoitetaan tehokkaiksi vastatoimiksi Near- Threshold Computing -tekniikan huonoja puolia vastaan. Tulokset antavat perusteita matalan energiankulutuksen IC-piirien suunnittelussa sille, kannattaako käyttää normaalia käyttöjännitettä, vai laskea sitä, jolloin piirin hidastuminen ja epävarmempi käyttäytyminen pitää ottaa huomioon.Siirretty Doriast

    Quantifying Near-Threshold CMOS Circuit Robustness

    Get PDF
    In order to build energy efficient digital CMOS circuits, the supply voltage must be reduced to near-threshold. Problematically, due to random parameter variation, supply scaling reduces circuit robustness to noise. Moreover, the effects of parameter variation worsen as device dimensions diminish, further reducing robustness, and making parameter variation one of the most significant hurdles to continued CMOS scaling. This paper presents a new metric to quantify circuit robustness with respect to variation and noise along with an efficient method of calculation. The method relies on the statistical analysis of standard cells and memories resulting an an extremely compact representation of robustness data. With this metric and method of calculation, circuit robustness can be included alongside energy, delay, and area during circuit design and optimization

    Standby Supply Voltage Minimization for Reliable Nanoscale SRAMs

    Get PDF

    Nano-scale TG-FinFET: Simulation and Analysis

    Get PDF
    Transistor has been designed and fabricated in the same way since its invention more than four decades ago enabling exponential shrinking in the channel length. However, hitting fundamental limits imposed the need for introducing disruptive technology to take over. FinFET - 3-D transistor - has been emerged as the first successor to MOSFET to continue the technology scaling roadmap. In this thesis, scaling of nano-meter FinFET has been investigated on both the device and circuit levels. The studies, primarily, consider FinFET in its tri-gate (TG) structure. On the device level, first, the main TCAD models used in simulating electron transport are benchmarked against the most accurate results on the semi-classical level using Monte Carlo techniques. Different models and modifications are investigated in a trial to extend one of the conventional models to the nano-scale simulations. Second, a numerical study for scaling TG-FinFET according to the most recent International Technology Roadmap of Semiconductors is carried out by means of quantum corrected 3-D Monte Carlo simulations in the ballistic and quasi-ballistic regimes, to assess its ultimate performance and scaling behavior for the next generations. Ballisticity ratio (BR) is extracted and discussed over different channel lengths. The electron velocity along the channel is analyzed showing the physical significance of the off-equilibrium transport with scaling the channel length. On the circuit level, first, the impact of FinFET scaling on basic circuit blocks is investigated based on the PTM models. 256-bit (6T) SRAM is evaluated for channel lengths of 20nm down to 7nm showing the scaling trends of basic performance metrics. In addition, the impact of VT variations on the delay, power, and stability is reported considering die-to-die variations. Second, we move to another peer-technology which is 28nm FD-SOI as a comparative study, keeping the SRAM cell as the test block, more advanced study is carried out considering the cell‘s stability and the evolution from dynamic to static metrics
    corecore