38 research outputs found

    Cross-Layer Resiliency Modeling and Optimization: A Device to Circuit Approach

    Get PDF
    The never ending demand for higher performance and lower power consumption pushes the VLSI industry to further scale the technology down. However, further downscaling of technology at nano-scale leads to major challenges. Reduced reliability is one of them, arising from multiple sources e.g. runtime variations, process variation, and transient errors. The objective of this thesis is to tackle unreliability with a cross layer approach from device up to circuit level

    Cache memory design in the FinFET era

    Get PDF
    The major problem in the future technology scaling is the variations in process parameters that are interpreted as imperfections in the development process. Moreover, devices are more sensitive to the environmental changes of temperature and supply volt- age as well as to ageing. All these influences are manifested in the integrated circuits as increased power consumption, reduced maximal operating frequency and increased number of failures. These effects have been partially overcome with the introduction of the FinFET technology which have solved the problem of variability caused by Random Dopant Fluctuations. However, in the next ten years channel length is projected to shrink to 10nm where the variability source generated by Line Edge Roughness will dominate, and its effects on the threshold voltage variations will become critical. The embedded memories with their cells as the basic building unit are the most prone to these effects due to their the smallest dimensions. Because of that, memories should be designed with particular care in order to make possible further technology scaling. This thesis explores upcoming 10nm FinFETs and the existing issues in the cache memory design with this technology. More- over, it tries to present some original and novel techniques on the different level of design abstraction for mitigating the effects of process and environmental variability. At first original method for simulating variability of Tri-Gate Fin- FETs is presented using conventional HSPICE simulation environment and BSIM-CMG model cards. When that is accomplished, thorough characterisation of traditional SRAM cell circuits (6T and 8T) is performed. Possibility of using Independent Gate FinFETs for increasing cell stability has been explored, also. Gain Cells appeared in the recent past as an attractive alternative for in the cache memory design. This thesis partially explores this idea by presenting and performing detailed circuit analysis of the dynamic 3T gain cell for 10nm FinFETs. At the top of this work, thesis shows one micro-architecture optimisation of high-speed cache when it is implemented by 3T gain cells. We show how the cache coherency states can be used in order to reduce refresh energy of the memory as well as reduce memory ageing.El principal problema de l'escalat la tecnologia són les variacions en els paràmetres de disseny (imperfeccions) durant procés de fabricació. D'altra banda, els dispositius també són més sensibles als canvis ambientals de temperatura, la tensió d'alimentació, així com l'envelliment. Totes aquestes influències es manifesten en els circuits integrats com l'augment de consum d'energia, la reducció de la freqüència d'operació màxima i l'augment del nombre de xips descartats. Aquests efectes s'han superat parcialment amb la introducció de la tecnologia FinFET que ha resolt el problema de la variabilitat causada per les fluctuacions de dopants aleatòries. No obstant això, en els propers deu anys, l'ample del canal es preveu que es reduirà a 10nm, on la font de la variabilitat generada per les rugositats de les línies de material dominarà, i els seu efecte en les variacions de voltatge llindar augmentarà. Les memòries encastades amb les seves cel·les com la unitat bàsica de construcció són les més propenses a sofrir aquests efectes a causa de les seves dimensions més petites. A causa d'això, cal dissenyar les memòries amb una especial cura per tal de fer possible l'escalat de la tecnologia. Aquesta tesi explora la tecnologia de FinFETs de 10nm i els problemes existents en el disseny de memòries amb aquesta tecnologia. A més a més, presentem noves tècniques originals sobre diferents nivells d'abstracció del disseny per a la mitigació dels efectes les variacions tan de procés com ambientals. En primer lloc, presentem un mètode original per a la simulació de la variabilitat de Tri-Gate FinFETs usant entorn de simulació HSPICE convencional i models de tecnologia BSIMCMG. Després, es realitza la caracterització completa dels circuits de cel·les SRAM tradicionals (6T i 8T) conjuntament amb l'ús de Gate-independent FinFETs per augmentar l'estabilitat de la cèl·lula

    Ingress of threshold voltage-triggered hardware trojan in the modern FPGA fabric–detection methodology and mitigation

    Get PDF
    The ageing phenomenon of negative bias temperature instability (NBTI) continues to challenge the dynamic thermal management of modern FPGAs. Increased transistor density leads to thermal accumulation and propagates higher and non-uniform temperature variations across the FPGA. This aggravates the impact of NBTI on key PMOS transistor parameters such as threshold voltage and drain current. Where it ages the transistors, with a successive reduction in FPGA lifetime and reliability, it also challenges its security. The ingress of threshold voltage-triggered hardware Trojan, a stealthy and malicious electronic circuit, in the modern FPGA, is one such potential threat that could exploit NBTI and severely affect its performance. The development of an effective and efficient countermeasure against it is, therefore, highly critical. Accordingly, we present a comprehensive FPGA security scheme, comprising novel elements of hardware Trojan infection, detection, and mitigation, to protect FPGA applications against the hardware Trojan. Built around the threat model of a naval warship’s integrated self-protection system (ISPS), we propose a threshold voltage-triggered hardware Trojan that operates in a threshold voltage region of 0.45V to 0.998V, consuming ultra-low power (10.5nW), and remaining stealthy with an area overhead as low as 1.5% for a 28 nm technology node. The hardware Trojan detection sub-scheme provides a unique lightweight threshold voltage-aware sensor with a detection sensitivity of 0.251mV/nA. With fixed and dynamic ring oscillator-based sensor segments, the precise measurement of frequency and delay variations in response to shifts in the threshold voltage of a PMOS transistor is also proposed. Finally, the FPGA security scheme is reinforced with an online transistor dynamic scaling (OTDS) to mitigate the impact of hardware Trojan through run-time tolerant circuitry capable of identifying critical gates with worst-case drain current degradation

    Reliability-aware memory design using advanced reconfiguration mechanisms

    Get PDF
    Fast and Complex Data Memory systems has become a necessity in modern computational units in today's integrated circuits. These memory systems are integrated in form of large embedded memory for data manipulation and storage. This goal has been achieved by the aggressive scaling of transistor dimensions to few nanometer (nm) sizes, though; such a progress comes with a drawback, making it critical to obtain high yields of the chips. Process variability, due to manufacturing imperfections, along with temporal aging, mainly induced by higher electric fields and temperature, are two of the more significant threats that can no longer be ignored in nano-scale embedded memory circuits, and can have high impact on their robustness. Static Random Access Memory (SRAM) is one of the most used embedded memories; generally implemented with the smallest device dimensions and therefore its robustness can be highly important in nanometer domain design paradigm. Their reliable operation needs to be considered and achieved both in cell and also in architectural SRAM array design. Recently, and with the approach to near/below 10nm design generations, novel non-FET devices such as Memristors are attracting high attention as a possible candidate to replace the conventional memory technologies. In spite of their favorable characteristics such as being low power and highly scalable, they also suffer with reliability challenges, such as process variability and endurance degradation, which needs to be mitigated at device and architectural level. This thesis work tackles such problem of reliability concerns in memories by utilizing advanced reconfiguration techniques. In both SRAM arrays and Memristive crossbar memories novel reconfiguration strategies are considered and analyzed, which can extend the memory lifetime. These techniques include monitoring circuits to check the reliability status of the memory units, and architectural implementations in order to reconfigure the memory system to a more reliable configuration before a fail happens.Actualmente, el diseño de sistemas de memoria en circuitos integrados busca continuamente que sean más rápidos y complejos, lo cual se ha vuelto de gran necesidad para las unidades de computación modernas. Estos sistemas de memoria están integrados en forma de memoria embebida para una mejor manipulación de los datos y de su almacenamiento. Dicho objetivo ha sido conseguido gracias al agresivo escalado de las dimensiones del transistor, el cual está llegando a las dimensiones nanométricas. Ahora bien, tal progreso ha conllevado el inconveniente de una menor fiabilidad, dado que ha sido altamente difícil obtener elevados rendimientos de los chips. La variabilidad de proceso - debido a las imperfecciones de fabricación - junto con la degradación de los dispositivos - principalmente inducido por el elevado campo eléctrico y altas temperaturas - son dos de las más relevantes amenazas que no pueden ni deben ser ignoradas por más tiempo en los circuitos embebidos de memoria, echo que puede tener un elevado impacto en su robusteza final. Static Random Access Memory (SRAM) es una de las celdas de memoria más utilizadas en la actualidad. Generalmente, estas celdas son implementadas con las menores dimensiones de dispositivos, lo que conlleva que el estudio de su robusteza es de gran relevancia en el actual paradigma de diseño en el rango nanométrico. La fiabilidad de sus operaciones necesita ser considerada y conseguida tanto a nivel de celda de memoria como en el diseño de arquitecturas complejas basadas en celdas de memoria SRAM. Actualmente, con el diseño de sistemas basados en dispositivos de 10nm, dispositivos nuevos no-FET tales como los memristores están atrayendo una elevada atención como posibles candidatos para reemplazar las actuales tecnologías de memorias convencionales. A pesar de sus características favorables, tales como el bajo consumo como la alta escabilidad, ellos también padecen de relevantes retos de fiabilidad, como son la variabilidad de proceso y la degradación de la resistencia, la cual necesita ser mitigada tanto a nivel de dispositivo como a nivel arquitectural. Con todo esto, esta tesis doctoral afronta tales problemas de fiabilidad en memorias mediante la utilización de técnicas de reconfiguración avanzada. La consideración de nuevas estrategias de reconfiguración han resultado ser validas tanto para las memorias basadas en celdas SRAM como en `memristive crossbar¿, donde se ha observado una mejora significativa del tiempo de vida en ambos casos. Estas técnicas incluyen circuitos de monitorización para comprobar la fiabilidad de las unidades de memoria, y la implementación arquitectural con el objetivo de reconfigurar los sistemas de memoria hacia una configuración mucho más fiables antes de que el fallo suced

    Exploiting heterogeneity in Chip-Multiprocessor Design

    Get PDF
    In the past decade, semiconductor manufacturers are persistent in building faster and smaller transistors in order to boost the processor performance as projected by Moore’s Law. Recently, as we enter the deep submicron regime, continuing the same processor development pace becomes an increasingly difficult issue due to constraints on power, temperature, and the scalability of transistors. To overcome these challenges, researchers propose several innovations at both architecture and device levels that are able to partially solve the problems. These diversities in processor architecture and manufacturing materials provide solutions to continuing Moore’s Law by effectively exploiting the heterogeneity, however, they also introduce a set of unprecedented challenges that have been rarely addressed in prior works. In this dissertation, we present a series of in-depth studies to comprehensively investigate the design and optimization of future multi-core and many-core platforms through exploiting heteroge-neities. First, we explore a large design space of heterogeneous chip multiprocessors by exploiting the architectural- and device-level heterogeneities, aiming to identify the optimal design patterns leading to attractive energy- and cost-efficiencies in the pre-silicon stage. After this high-level study, we pay specific attention to the architectural asymmetry, aiming at developing a heterogeneity-aware task scheduler to optimize the energy-efficiency on a given single-ISA heterogeneous multi-processor. An advanced statistical tool is employed to facilitate the algorithm development. In the third study, we shift our concentration to the device-level heterogeneity and propose to effectively leverage the advantages provided by different materials to solve the increasingly important reliability issue for future processors

    Pentimento: Data Remanence in Cloud FPGAs

    Full text link
    Cloud FPGAs strike an alluring balance between computational efficiency, energy efficiency, and cost. It is the flexibility of the FPGA architecture that enables these benefits, but that very same flexibility that exposes new security vulnerabilities. We show that a remote attacker can recover "FPGA pentimenti" - long-removed secret data belonging to a prior user of a cloud FPGA. The sensitive data constituting an FPGA pentimento is an analog imprint from bias temperature instability (BTI) effects on the underlying transistors. We demonstrate how this slight degradation can be measured using a time-to-digital (TDC) converter when an adversary programs one into the target cloud FPGA. This technique allows an attacker to ascertain previously safe information on cloud FPGAs, even after it is no longer explicitly present. Notably, it can allow an attacker who knows a non-secret "skeleton" (the physical structure, but not the contents) of the victim's design to (1) extract proprietary details from an encrypted FPGA design image available on the AWS marketplace and (2) recover data loaded at runtime by a previous user of a cloud FPGA using a known design. Our experiments show that BTI degradation (burn-in) and recovery are measurable and constitute a security threat to commercial cloud FPGAs.Comment: 17 Pages, 8 Figure

    Degradation Models and Optimizations for CMOS Circuits

    Get PDF
    Die Gewährleistung der Zuverlässigkeit von CMOS-Schaltungen ist derzeit eines der größten Herausforderungen beim Chip- und Schaltungsentwurf. Mit dem Ende der Dennard-Skalierung erhöht jede neue Generation der Halbleitertechnologie die elektrischen Felder innerhalb der Transistoren. Dieses stärkere elektrische Feld stimuliert die Degradationsphänomene (Alterung der Transistoren, Selbsterhitzung, Rauschen, usw.), was zu einer immer stärkeren Degradation (Verschlechterung) der Transistoren führt. Daher erleiden die Transistoren in jeder neuen Technologiegeneration immer stärkere Verschlechterungen ihrer elektrischen Parameter. Um die Funktionalität und Zuverlässigkeit der Schaltung zu wahren, wird es daher unerlässlich, die Auswirkungen der geschwächten Transistoren auf die Schaltung präzise zu bestimmen. Die beiden wichtigsten Auswirkungen der Verschlechterungen sind ein verlangsamtes Schalten, sowie eine erhöhte Leistungsaufnahme der Schaltung. Bleiben diese Auswirkungen unberücksichtigt, kann die verlangsamte Schaltgeschwindigkeit zu Timing-Verletzungen führen (d.h. die Schaltung kann die Berechnung nicht rechtzeitig vor Beginn der nächsten Operation abschließen) und die Funktionalität der Schaltung beeinträchtigen (fehlerhafte Ausgabe, verfälschte Daten, usw.). Um diesen Verschlechterungen der Transistorparameter im Laufe der Zeit Rechnung zu tragen, werden Sicherheitstoleranzen eingeführt. So wird beispielsweise die Taktperiode der Schaltung künstlich verlängert, um ein langsameres Schaltverhalten zu tolerieren und somit Fehler zu vermeiden. Dies geht jedoch auf Kosten der Performanz, da eine längere Taktperiode eine niedrigere Taktfrequenz bedeutet. Die Ermittlung der richtigen Sicherheitstoleranz ist entscheidend. Wird die Sicherheitstoleranz zu klein bestimmt, führt dies in der Schaltung zu Fehlern, eine zu große Toleranz führt zu unnötigen Performanzseinbußen. Derzeit verlässt sich die Industrie bei der Zuverlässigkeitsbestimmung auf den schlimmstmöglichen Fall (maximal gealterter Schaltkreis, maximale Betriebstemperatur bei minimaler Spannung, ungünstigste Fertigung, etc.). Diese Annahme des schlimmsten Falls garantiert, dass der Chip (oder integrierte Schaltung) unter allen auftretenden Betriebsbedingungen funktionsfähig bleibt. Darüber hinaus ermöglicht die Betrachtung des schlimmsten Falles viele Vereinfachungen. Zum Beispiel muss die eigentliche Betriebstemperatur nicht bestimmt werden, sondern es kann einfach die schlimmstmögliche (sehr hohe) Betriebstemperatur angenommen werden. Leider lässt sich diese etablierte Praxis der Berücksichtigung des schlimmsten Falls (experimentell oder simulationsbasiert) nicht mehr aufrechterhalten. Diese Berücksichtigung bedingt solch harsche Betriebsbedingungen (maximale Temperatur, etc.) und Anforderungen (z.B. 25 Jahre Betrieb), dass die Transistoren unter den immer stärkeren elektrischen Felder enorme Verschlechterungen erleiden. Denn durch die Kombination an hoher Temperatur, Spannung und den steigenden elektrischen Feldern bei jeder Generation, nehmen die Degradationphänomene stetig zu. Das bedeutet, dass die unter dem schlimmsten Fall bestimmte Sicherheitstoleranz enorm pessimistisch ist und somit deutlich zu hoch ausfällt. Dieses Maß an Pessimismus führt zu erheblichen Performanzseinbußen, die unnötig und demnach vermeidbar sind. Während beispielsweise militärische Schaltungen 25 Jahre lang unter harschen Bedingungen arbeiten müssen, wird Unterhaltungselektronik bei niedrigeren Temperaturen betrieben und muss ihre Funktionalität nur für die Dauer der zweijährigen Garantie aufrechterhalten. Für letzteres können die Sicherheitstoleranzen also deutlich kleiner ausfallen, um die Performanz deutlich zu erhöhen, die zuvor im Namen der Zuverlässigkeit aufgegeben wurde. Diese Arbeit zielt darauf ab, maßgeschneiderte Sicherheitstoleranzen für die einzelnen Anwendungsszenarien einer Schaltung bereitzustellen. Für fordernde Umgebungen wie Weltraumanwendungen (wo eine Reparatur unmöglich ist) ist weiterhin der schlimmstmögliche Fall relevant. In den meisten Anwendungen, herrschen weniger harsche Betriebssbedingungen (z.B. sorgen Kühlsysteme für niedrigere Temperaturen). Hier können Sicherheitstoleranzen maßgeschneidert und anwendungsspezifisch bestimmt werden, sodass Verschlechterungen exakt toleriert werden können und somit die Zuverlässigkeit zu minimalen Kosten (Performanz, etc.) gewahrt wird. Leider sind die derzeitigen Standardentwurfswerkzeuge für diese anwendungsspezifische Bestimmung der Sicherheitstoleranz nicht gut gerüstet. Diese Arbeit zielt darauf ab, Standardentwurfswerkzeuge in die Lage zu versetzen, diesen Bedarf an Zuverlässigkeitsbestimmungen für beliebige Schaltungen unter beliebigen Betriebsbedingungen zu erfüllen. Zu diesem Zweck stellen wir unsere Forschungsbeiträge als vier Schritte auf dem Weg zu anwendungsspezifischen Sicherheitstoleranzen vor: Schritt 1 verbessert die Modellierung der Degradationsphänomene (Transistor-Alterung, -Selbsterhitzung, -Rauschen, etc.). Das Ziel von Schritt 1 ist es, ein umfassendes, einheitliches Modell für die Degradationsphänomene zu erstellen. Durch die Verwendung von materialwissenschaftlichen Defektmodellierungen werden die zugrundeliegenden physikalischen Prozesse der Degradationsphänomena modelliert, um ihre Wechselwirkungen zu berücksichtigen (z.B. Phänomen A kann Phänomen B beschleunigen) und ein einheitliches Modell für die simultane Modellierung verschiedener Phänomene zu erzeugen. Weiterhin werden die jüngst entdeckten Phänomene ebenfalls modelliert und berücksichtigt. In Summe, erlaubt dies eine genaue Degradationsmodellierung von Transistoren unter gleichzeitiger Berücksichtigung aller essenziellen Phänomene. Schritt 2 beschleunigt diese Degradationsmodelle von mehreren Minuten pro Transistor (Modelle der Physiker zielen auf Genauigkeit statt Performanz) auf wenige Millisekunden pro Transistor. Die Forschungsbeiträge dieser Dissertation beschleunigen die Modelle um ein Vielfaches, indem sie zuerst die Berechnungen so weit wie möglich vereinfachen (z.B. sind nur die Spitzenwerte der Degradation erforderlich und nicht alle Werte über einem zeitlichen Verlauf) und anschließend die Parallelität heutiger Computerhardware nutzen. Beide Ansätze erhöhen die Auswertungsgeschwindigkeit, ohne die Genauigkeit der Berechnung zu beeinflussen. In Schritt 3 werden diese beschleunigte Degradationsmodelle in die Standardwerkzeuge integriert. Die Standardwerkzeuge berücksichtigen derzeit nur die bestmöglichen, typischen und schlechtestmöglichen Standardzellen (digital) oder Transistoren (analog). Diese drei Typen von Zellen/Transistoren werden von der Foundry (Halbleiterhersteller) aufwendig experimentell bestimmt. Da nur diese drei Typen bestimmt werden, nehmen die Werkzeuge keine Zuverlässigkeitsbestimmung für eine spezifische Anwendung (Temperatur, Spannung, Aktivität) vor. Simulationen mit Degradationsmodellen ermöglichen eine Bestimmung für spezifische Anwendungen, jedoch muss diese Fähigkeit erst integriert werden. Diese Integration ist eines der Beiträge dieser Dissertation. Schritt 4 beschleunigt die Standardwerkzeuge. Digitale Schaltungsentwürfe, die nicht auf Standardzellen basieren, sowie komplexe analoge Schaltungen können derzeit nicht mit analogen Schaltungssimulatoren ausgewertet werden. Ihre Performanz reicht für solch umfangreiche Simulationen nicht aus. Diese Dissertation stellt Techniken vor, um diese Werkzeuge zu beschleunigen und somit diese umfangreichen Schaltungen simulieren zu können. Diese Forschungsbeiträge, die sich jeweils über mehrere Veröffentlichungen erstrecken, ermöglichen es Standardwerkzeugen, die Sicherheitstoleranz für kundenspezifische Anwendungsszenarien zu bestimmen. Für eine gegebene Schaltungslebensdauer, Temperatur, Spannung und Aktivität (Schaltverhalten durch Software-Applikationen) können die Auswirkungen der Transistordegradation ausgewertet werden und somit die erforderliche (weder unter- noch überschätzte) Sicherheitstoleranz bestimmt werden. Diese anwendungsspezifische Sicherheitstoleranz, garantiert die Zuverlässigkeit und Funktionalität der Schaltung für genau diese Anwendung bei minimalen Performanzeinbußen

    Cross-layer reliability evaluation, moving from the hardware architecture to the system level: A CLERECO EU project overview

    Get PDF
    Advanced computing systems realized in forthcoming technologies hold the promise of a significant increase of computational capabilities. However, the same path that is leading technologies toward these remarkable achievements is also making electronic devices increasingly unreliable. Developing new methods to evaluate the reliability of these systems in an early design stage has the potential to save costs, produce optimized designs and have a positive impact on the product time-to-market. CLERECO European FP7 research project addresses early reliability evaluation with a cross-layer approach across different computing disciplines, across computing system layers and across computing market segments. The fundamental objective of the project is to investigate in depth a methodology to assess system reliability early in the design cycle of the future systems of the emerging computing continuum. This paper presents a general overview of the CLERECO project focusing on the main tools and models that are being developed that could be of interest for the research community and engineering practice
    corecore