172 research outputs found

    High-field/high-frequency EPR spectroscopy in protein research: principles and examples

    Get PDF
    During the last decades, the combined efforts of biologists, chemists, and physicists in developing high-field/high-frequency EPR techniques and applying them to functional proteins have demonstrated that this type of magnetic resonance spectroscopy is particularly powerful for characterizing the structure and dynamics of stable and transient states of proteins in action on biologically relevant time scales ranging from nanoseconds to hours. The review article describes how high-field EPR methodology, in conjunction with site-specific isotope and spin-labeling strategies, is capable of providing new insights into fundamental biological processes. Specifically, we discuss the theoretical and instrumental background of continuous-wave and pulse high-field EPR and the multiple-resonance extensions EDNMR, ENDOR, TRIPLE, ESEEM, PELDOR, and RIDME. Some emphasis is placed on a balanced description of both the historical spadework and the achieved performance of advanced EPR at 95 GHz and 360 GHz. This culminates in a coherent treatment of state-of-the-art research of high-field EPR in terms of both instrumentation development and application to representative protein complexes such as cofactor binding sites in photosynthesis

    High-field/High-frequency EPR Spectroscopy in Protein Research: Principles and Examples

    Get PDF
    During the last decades, the combined efforts of biologists, chemists, and physicists in developing high-field/high-frequency EPR techniques and applying them to functional proteins have demonstrated that this type of magnetic resonance spectroscopy is particularly powerful for characterizing the structure and dynamics of stable and transient states of proteins in action on biologically relevant time scales ranging from nanoseconds to hours. The review article describes how high-field EPR methodology, in conjunction with site-specific isotope and spin-labeling strategies, is capable of providing new insights into fundamental biological processes. Specifically, we discuss the theoretical and instrumental background of continuous-wave and pulse high-field EPR and the multiple-resonance extensions EDNMR, ENDOR, TRIPLE, ESEEM, PELDOR, and RIDME. Some emphasis is placed on a balanced description of both the historical spadework and the achieved performance of advanced EPR at 95 GHz and 360 GHz. This culminates in a coherent treatment of state-of-the-art research of high-field EPR in terms of both instrumentation development and application to representative protein complexes such as cofactor binding sites in photosynthesis

    Study on the Method of Constructing a Statistical Shape Model and Its Application to the Segmentation of Internal Organs in Medical Images

    Get PDF
    In image processing, segmentation is one of the critical tasks for diagnostic analysis and image interpretation. In the following thesis, we describe the investigation of three problems related to the segmentation algorithms for medical images: Active shape model algorithm, 3-dimensional (3-D) statistical shape model building and organic segmentation experiments. For the development of Active shape models, the constraints of statistical model reduced this algorithm to be difficult for various biological shapes. To overcome the coupling of parameters in the original algorithm, in this thesis, the genetic algorithm is introduced to relax the shape limitation. How to construct a robust and effective 3-D point model is still a key step in statistical shape models. Generally the shape information is obtained from manually segmented voxel data. In this thesis, a two-step procedure for generating these models was designed. After transformed the voxel data to triangular polygonal data, in the first step, attitudes of these interesting objects are aligned according their surface features. We propose to reflect the surface orientations by means of their Gauss maps. As well the Gauss maps are mapped to a complex plane using stereographic projection approach. The experiment was run to align a set of left lung models. The second step is identifying the positions of landmarks on polygonal surfaces. This is solved by surface parameterization method. We proposed two simplex methods to correspond the landmarks. A semi-automatic method attempts to “copy” the phasic positions of pre-placed landmarks to all the surfaces, which have been mapped to the same parameterization domain. Another automatic corresponding method attempts to place the landmarks equidistantly. Finally, the goodness experiments were performed to measure the difference to manually corresponded results. And we also compared the affection to correspondence when using different surface mapping methods. The third part of this thesis is applying the segmentation algorithms to solve clinical problems. We did not stick to the model-based methods but choose the suitable one or their complex according to the objects. In the experiment of lung regions segmentation which includes pulmonary nodules, we propose a complementary region growing method to deal with the unpredictable variation of image densities of lesion regions. In the experiments of liver regions, instead of using region growing method in 3-D style, we turn into a slice-by-slice style in order to reduce the overflows. The image intensity of cardiac regions is distinguishable from lung regions in CT image. But as to the adjacent zone of heart and liver boundary are generally blurry. We utilized a shape model guided method to refine the segmentation results.3-D segmentation techniques have been applied widely not only in medical imaging fields, but also in machine vision, computer graphic. At the last part of this thesis, we resume some interesting topics such as 3-D visualization for medical interpretation, human face recognition and object grasping robot etc.九州工業大学博士学位論文 学位記番号:工博甲第353号 学位授与年月日:平成25年9月27日Chapter 1: Introduction|Chapter 2: Framework of Medical Image Segmentation|Chapter 3: 2-D Organic Regions Using Active Shape Model and Genetic Algorithm|Chapter 4: Alignment of 3-D Models|Chapter 5: Corespondence of 3-D Models|Chapter 6:Experiments of Organic Segmentation|Chapter 7: Visualization Technology and Its Applications|Chapter 8: Conclusions and Future Works九州工業大学平成25年

    Studying the relationship between emulsion structure and lipid digestibility for infant milk : a thesis was present in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology, at Massey University, Palmerston North, New Zealand

    Get PDF
    All Figures are re-used with the publishers' permission.Milk, whether maternal or formulated, provides the sole source of nutrition to infants in the early stages of life, providing critical micronutrients, support for the immune function and primary dietary macronutrients including lipids. In healthy adults, lipids are primarily digested in the small intestine. However, for infants, the neonatal small intestine is not fully developed after birth, so the gastric environment plays a more significant role in milk fat digestion. Clinical studies have shown that maternal milk fat is digested more efficiently than lipids in infant formulae in infants under infant gastric conditions. Compositional differences, the structure of the oil droplets, and especially the interfacial composition may all play a crucial role in influencing lipid digestibility in the infant's stomach. In this thesis, the simulated gastric digestion of model emulsions and commercial infant formula was studied. The model emulsions comprised either a phospholipid or complexed protein-phospholipid interface while keeping all other facets of emulsion properties equivalent. Gastric digestion of these emulsions was carried out across variable pH conditions using an analogue gastric lipase, alone and in combination with pepsin with findings providing insights into the role of each enzyme and their combined effect on gastric lipolysis. The rate and extent of lipolysis were characterised, along with morphological changes to the structure of the oil droplets. Results showed that gastric lipolysis might be influenced by pH conditions in the gastric environment when lipase was present alone in the simulated gastric fluid. The inclusion of pepsin resulted in significant structural changes when emulsions were stabilised with protein, in terms of droplet aggregation, size and morphology. However, no significant differences in the extent of lipolysis were determined. Thus, while the protein interface of both model and formulated emulsions was not observed to be a barrier for gastric lipolysis. Proteolysis of protein stabilised emulsions may lead to very different structural outcomes during gastric digestion when compared to phospholipid stabilised emulsions. While the research within this thesis demonstrates how the gastric environment influences emulsion structure as a consequence of interfacial composition, any specific relationship between structure and relative rate of gastric lipolysis currently remains undetermined. This research also highlights some of the ongoing challenges in the use of in vitro models to provide mechanistic understanding and interpretation of findings from clinical studies

    Spin waves in curved magnetic shells

    Get PDF
    This thesis aims to theoretically explore the geometrical effects on spin waves, the fundamental low-energy excitations of ferromagnets, propagating in curved magnetic shells. Supported by an efficient numerical technique developed for this thesis, several aspects of curvilinear spin-wave dynamics involving magnetic pseudo-charges, the topology of curved magnets, symmetry-breaking effects, and dynamics of spin textures are studied. In recent years, geometrical and curvature effects on mesoscale ferromagnets have attracted the attention of fundamental and applied research. Exciting curvature-induced phenomena include chiral symmetry breaking, the stabilization of magnetic skyrmions on Gaussian bumps, or topologically induced domain walls in Möbius ribbons. Spin waves in vortex-state magnetic nanotubes exhibit a curvature-induced dispersion asymmetry due to geometric contributions to the magnetic volume pseudo-charges. However, previous theoretical studies were limited to simple and thin curved shells due to the complexity of analytical models and the time-consuming nature of existing numerical techniques. For a systematic study of spin-wave propagation in curved shells, the first of five thematic parts of this thesis deals with developing a numerical method to calculate spin-wave spectra in waveguides with arbitrarily shaped cross-sections efficiently. For this, a finite-element/boundary-element method to calculate dynamic dipolar fields, the Fredkin-Koehler method, was extended for propagating waves. The technique is implemented in the micromagnetic modeling package TetraX developed and made available as open source to the scientific community. Equipped with this method, the second part of the thesis studies the influence of geometric contributions to the magnetic charges leading to nonlocal chiral symmetry breaking. Introducing the toroidal moment to spin-wave dynamics allows us to predict whether this symmetry breaking is present even in complicated systems with spatially inhomogeneous equilibria or shells with gradient curvatures. The theoretical study of curvilinear magnetism is extended to thick shells, uncovering a curvature-induced nonreciprocity in the spatial mode profiles of the spin waves. Consequently, nonreciprocal dipole-dipole hybridization between different modes leads to asymmetric level gaps enabling spin-wave diode behavior. Besides unidirectional transport, curvature modifies the weakly nonlinear spin-wave interactions. The third part of this thesis focuses on topological effects. A topological Berry phase of spin waves in helical-state nanotubes is studied and connected to a local curvature-induced chiral interaction of exchange origin. The topology of more complicated systems, such as magnetic Möbius ribbons, is shown to impose selection rules on the spectrum of possible spin waves and split it into modes with half and full-integer indices. To understand the effects of achiral symmetry breaking, the fourth part of this thesis focuses on the deformation of symmetric shells, here, cylindrical nanotubes, to polygonal and elliptical shapes. Lowering rotational symmetry leads to splitting spin-wave dispersions into singlet and doublets branches, which is explained using a simple group theory approach and is analogous to the electron band structure in crystals. Apart from mode splitting, this symmetry breaking allows hybridization between different spin-wave modes and modifies their microwave absorption. While this hybridization appears discretely in polygonal tubes, tuning the eccentricity of elliptical tubes allows controlling the level gaps appearing from hybridization. Finally, the last part focuses on the dynamics of spin waves in the vicinity of spin textures in curvilinear systems. The dynamics of topological meron strings are shown to exhibit dipole-induced chiral symmetry breaking like spin waves in curved shells. Moreover, modulational instability is predicted from the softening of their gyrotropic modes, similar to the formation of stripe domains in flat systems. This stripe domain formation can also be observed in curved shells but leads to tilted or helix domains. Overall, this thesis contributes to the fundamental understanding of spin-wave dynamics on the mesoscale but also advertises these for possible magnonic applications.:Abstract Acknowledgements Contents 1 Introduction Theoretical Foundations 2 Micromagnetic continuum theory 3 Spin waves Numerical methods in micromagnetism 4 Overview 5 Finite-element dynamic-matrix method for propagating spin waves 6 Numerical reverse-engineering of spin-wave dispersions 7 TetraX: A micromagnetic modeling package Aspects of curvilinear magnetization dynamics 8 Magnetic charges 9 Topology 10 Achiral symmetry breaking 11 Spin textures Closing remarks 12 Summary and outlook 13 Publications and conference contributions Appendix A Extended derivations and proofs B Supplementary data and discussion List of Figures List of Tables Bibliography Alphabetical IndexZiel dieser Arbeit ist es, die geometrischen Effekte auf Spinwellen (Magnonen), die fundamentalen niederenergetischen Anregungen von Ferromagneten, die sich in gekrümmten magnetischen Schalen ausbreiten, theoretisch zu untersuchen. Unterstützt durch ein effizientes numerisches Verfahren, das für diese Arbeit entwickelt wurde, werden verschiedene Aspekte der krummlinigen Spinwellen-Dynamik untersucht: magnetische Pseudoladungen, die Topologie gekrümmter Magnete, Symmetriebrechungseffekte und die Dynamik von Spin-Texturen. In den letzten Jahren haben Geometrie- und Krümmungseffekte auf mesoskaligen Ferromagneten die Aufmerksamkeit der Grundlagen- und angewandten Forschung auf sich gezogen. Zu den spannenden krümmungsinduzierten Phänomenen gehören chirale Symmetriebrechung, die Stabilisierung magnetischer Skyrmionen auf Gaußschen Unebenheiten oder topologisch induzierte Domänenwände in Möbiusbändern. Spinwellen in magnetischen Nanoröhren im Vortex-Zustand zeigen eine krümmungsinduzierte Dispersionsasymmetrie aufgrund geometrischer Beiträge zu den magnetischen Volumen-Pseudoladungen. Bisherige theoretische Studien beschränkten sich jedoch auf einfache und dünne gekrümmte Schalen, da die analytischen Modelle zu komplex und die bestehenden numerischen Verfahren zu zeitaufwändig waren. Für eine systematische Untersuchung der Spinwellenausbreitung in gekrümmten Schalen befasst sich der erste von fünf thematischen Teilen dieser Arbeit mit der Entwicklung einer numerischen Methode zur effizienten Berechnung von Spinwellenspektren in Wellenleitern mit beliebig geformten Querschnitten. Dazu wurde eine Finite-Elemente/Grenzelement-Methode zur Berechnung dynamischer Dipolfelder, die Fredkin-Köhler-Methode, für propagierende Wellen erweitert. Die Technik ist in dem mikromagnetischen Modellierungspaket TetraX implementiert, das während dieser Arbeit entwickelt und der wissenschaftlichen Gemeinschaft als Open Source zur Verfügung gestellt wurde. Ausgestattet mit dieser Methode untersucht der zweite Teil der Arbeit den Einfluss von geometrischen Beiträgen zu den magnetischen Ladungen, die zu nichtlokaler chiraler Symmetriebrechung führen. Durch die Einführung des toroidalen Moments in die Spin-Wellen-Dynamik lässt sich vorhersagen, ob diese Symmetriebrechung auch in komplizierten Systemen mit räumlich inhomogenen Gleichgewichtszuständen oder magnetischen Schalen mit Gradientenkrümmungen vorhanden ist. Die theoretische Untersuchung des krummlinigen Magnetismus wird auf dicke Schalen ausgedehnt, für die eine krümmungsbedingte Nichtreziprozität in den räumlichen Modenprofilen der Spinwellen gefunden wird. Als Konsequenz führt nicht-reziproke Dipol-Dipol-Hybridisierung zwischen verschiedenen Moden zu asymmetrischen Niveaulücken, die die Konstruktion von Spinwellen-Dioden ermöglichen. Neben unidirektionalem Transport modifiziert die Krümmung auch die schwach nichtlinearen Spin-Wellen-Wechselwirkungen. Der dritte Teil dieser Arbeit befasst sich mit topologischen Effekten. So wird eine topologische Berry-Phase von Spinwellen in Nanoröhren im Helix-Zustand untersucht, die mit einer lokalen krümmungsinduzierten chiralen Wechselwirkung in Verbindung gebracht wird. Es wird gezeigt, dass die Topologie komplizierterer Systeme, wie z.B. magnetischer Möbiusbänder, dem Spektrum möglicher Spinwellen Auswahlsregeln auferlegt, das damit in Moden mit halb- und ganzzahligen Indizes aufspaltet. Um die Auswirkungen der achiralen Symmetriebrechung zu verstehen, konzentriert sich der vierte Teil dieser Arbeit auf die Verformung symmetrischer Schalen, hier zylindrischer Nanoröhren, zu polygonalen und elliptischen Formen. Die Verringerung der Rotationssymmetrie führt zu einer Aufspaltung der Spin-Wellen-Dispersionen in Singlets Dublets, was mit einem einfachen gruppentheoretischen Ansatz erklärt wird und analog zur Elektronenbandstruktur in Kristallen ist. Abgesehen von der Modenaufspaltung ermöglicht diese Symmetriebrechung eine Hybridisierung zwischen verschiedenen Spin-Wellen-Moden und verändert zudem deren Mikrowellenabsorption. Während diese Hybridisierung in polygonalen Röhren diskret auftritt, kann die Exzentrizität elliptischer Röhren genutzt werden um die durch Hybridisierung entstehenden Niveaulücken kontinuierlich einzustellen. Schließlich konzentriert sich der letzte Teil auf die Dynamik von Spinwellen in der Umgebung von Spinstrukturen in krummlinigen Systemen. Es wird gezeigt, dass die Dynamik topologischer Meron-Strings dipol-induzierte chirale Symmetriebrechungen wie Spinwellen in gekrümmten Schalen aufweist. Darüber hinaus wird eine Instabilität der gyrotropen Mode vorhergesagt, ähnlich der Bildung von Streifendomänen in flachen Systemen. Diese Bildung von Streifendomänen kann auch in gekrümmten Schalen beobachtet werden, führt aber zu gekippten oder spiralförmigen Domänen. Insgesamt trägt diese Arbeit zum grundlegenden Verständnis der Spinnwellen-Dynamik auf der Mesoskala bei, aber diskutiert auch mögliche magnonische Anwendungen.:Abstract Acknowledgements Contents 1 Introduction Theoretical Foundations 2 Micromagnetic continuum theory 3 Spin waves Numerical methods in micromagnetism 4 Overview 5 Finite-element dynamic-matrix method for propagating spin waves 6 Numerical reverse-engineering of spin-wave dispersions 7 TetraX: A micromagnetic modeling package Aspects of curvilinear magnetization dynamics 8 Magnetic charges 9 Topology 10 Achiral symmetry breaking 11 Spin textures Closing remarks 12 Summary and outlook 13 Publications and conference contributions Appendix A Extended derivations and proofs B Supplementary data and discussion List of Figures List of Tables Bibliography Alphabetical Inde

    On Topological Mechanics of 3D Chiral Metamaterials

    Get PDF
    corecore