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1
Chapter 1

Introduction

“It is often very simple ideas which are the deepest” [1]. This statement was made
by J. Michael Kosterlitz when honoring his colleague David J. Thouless in his
Nobel lecture in December 2016. Together with F. Duncan M. Haldane, they had
just received the Nobel prize for their “theoretical discoveries of topological phase
transitions and topological phases of matter” [1]. Among other achievements, Thouless
had described the quantum Hall effect [2] in terms of topology [3]. Thereby, he
launched the new material class of topological insulators [4].

In contrast to conventional insulators, topological insulators are governed by an
inherent link between their bulk and boundary properties. On the one hand, they
are insulating and lack eigenstates within the energy gap of their bulk. On the
other hand, they have robust states available at their boundaries. In the quantum
Hall effect, these robust boundary states manifest themselves as one-dimensional
unidirectional channels with an exactly quantized conductance. Triggered by such
an exceptional property, topological insulators turned into a hot topic with plenty
of theoretical and experimental research on quantum-mechanical systems [4, 5]
as well as on classical wave systems, such as topologically robust photonic and
phononic waveguides [6–8]. Thereby, a remarkable effort is put into the compli-
cated design of a system’s bulk to achieve control over its boundary. But does
it have to be complicated to get topological? As Kosterlitz pointed out in his
statement, also simple physical systems can have deep implications.

In its very essence, this thesis deals with nothing more than masses and springs
of alternating stiffness lined up in a chain. Most physicists would agree that
such a one-dimensional mass-spring model is a indeed rather simple system. The
model appears in almost every introductory lecture on solid-state physics and
nicely illustrates the emergence of a band gap in the bulk of a periodic system.
However, the discussion gets a bit more involved as soon as we remind ourselves
that every real-world bulk has to come with some boundary. It turns out that
the finite version of this mass-spring model exhibits protected boundary modes
similar to the quantum Hall system in two dimensions. In fact, the system is
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1 introduction

the mechanical analog of a one-dimensional electronic topological insulator, the
so-called Su-Schrieffer-Heeger model [9]. Hence, in the spirit of Kosterlitz, the
investigation of a simple finite mass-spring model can be cutting-edge research in
its best sense.

As for mass-spring models in a lecture, the focus of metamaterial research is
commonly on bulk properties as well. A metamaterial is a rationally designed
structure with effective properties that go beyond those of its ingredient mate-
rials [10]. These effective properties are naturally related to the metamaterial’s
bulk, not to its boundary. For instance, mechanical metamaterials were designed
to be ultralight and ultrastiff [11], to manipulate acoustic wave propagation [12],
or to realize unusual dispersion relations in elastic media [13, 14]. Furthermore,
three-dimensional chiral mechanical metamaterials were introduced that escape
the description by standard continuum mechanics [15]. Such chiral metamaterials
twist upon a push and are capable of rotating the polarization direction of trans-
verse elastic waves [16].

Altogether, mechanical metamaterials and mechanical topological insulators are
two complementary building blocks required to gain full control of the propaga-
tion of acoustic or elastic waves. What both concepts have in common is that they
seek to offer much more than the mere material platform they are realized on.
Still, their exceptional properties, may it be within the bulk or at the boundaries,
cannot be untied from a mostly undesired real-world material effect: Both meta-
material mechanisms and topologically protected boundary modes of classical
wave systems suffer from dissipation. Thereby, their highly praised potential
gets easily lost when working toward an actual application. For systems based
on three-dimensional laser-printed polymeric microstructures, viscous material
damping can be such a show-stopper [17].

In this thesis, I will combine the bulk control provided by a chiral mechanical
metamaterial with the boundary control of a topological insulator, starting from the
simple mass-spring model described above. I will design, realize, and characterize
a metamaterial that exhibits a topologically protected boundary mode. Via such a
mode, a small axial push can be resonantly converted to a large rotational motion.
In a proof-of-principle design, the chiral topological metamaterial will serve to
realize a resonant mechanical laser-beam scanner. To overcome limitations due to
dissipation in viscoelastic materials, I will introduce a novel approach that allows
for the fabrication of three-dimensional microstructures out of fused-silica glass.
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Outline of this thesis

Chapter 2 will capture the required theoretical background on the field of topo-
logical mechanics. After a brief introduction on topology in general, I will present
the key concepts of topological band theory, emerging as an extension of the
well-known band theory in solid-state physics. Shifting the focus from electronic
wave functions to classical systems, I will then discuss the mechanical analog
of the Su-Schrieffer-Heeger model, which is a prototype model of a topological
insulator as well as the starting point of the investigations in this work. I will close
the chapter and prepare for the next one by proceeding from mass-spring models
to continuum mechanics and its basic principles and equations.

In chapter 3, I will describe the route to design a chiral topological mechanical
metamaterial that exhibits protected edge modes. Starting from a definition and
examples for metamaterials in general, I will show how chirality in mechanics,
in combination with the Su-Schrieffer-Heeger model, leads to a coupled model
with its own particular topological features. I will describe and explain these
features in detail, especially the emergence of the aimed-at topological edge
modes, and transfer the configured mass-spring model to a three-dimensional
(3D) metamaterial design.

In chapter 4, I will show how 3D microstructures, in particular the designed
chiral topological metamaterial, can be fabricated out of fused-silica glass by
using a glass nanocomposite, two-photon 3D laser printing, and helium-assisted
microcasting. The latter is a novel fabrication technique that is introduced in the
context of this work. The capabilities and limits of this technique will be discussed
to close the chapter.

In chapter 5, I will show how the fabricated 3D microstructures can be charac-
terized via measurements at ultrasound frequencies and subsequent optical-image
cross-correlation. The resonances of micro tuning forks made of polymer and
fused-silica glass will be measured to reveal the materials’ stiffness and the rel-
evant damping mechanisms. As the main findings of this chapter, I will then
present and discuss the experiments that verify the existence of the aimed-at
topological edge resonance of the realized chiral mechanical metamaterial.

In a brief excurse in chapter 6, I will show both the design and experiments on
a 3D microstructure which is refined toward a potential application as a functional
resonant mechanical laser-beam scanner.

Finally, I will summarize the key results of this work in chapter 7 and give a
brief outlook.
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2
Chapter 2

Topology and Mechanics

In this chapter, I will provide the theoretical foundation for this thesis. In the
first section, I will shortly introduce the basic concepts and the terminology of
topology via two descriptive and intuitive examples. The concepts will then be
applied to the standard band theory of solid state physics to explain the celebrated
bulk-boundary correspondence of topological insulators and its remarkable im-
plications on the existence of so-called topologically protected boundary modes.
Subsequently, I will focus on a one-dimensional (1D) topological mechanical
system, i.e., the mass-spring-model analog of the electronic Su-Schrieffer-Heeger
model, and discuss its topology in detail. This model is the starting point for
the topological metamaterial design as will be presented in chapter 3. Also, I
will briefly discuss the effects of dissipation on mass-spring systems and topo-
logical systems in general. In the last section, I will make the step from discrete
mass-spring models to continuum mechanics and summarize the basic equations
required to describe the dynamical behavior of elastic structures, including vis-
coelastic effects. As outlook toward the next chapter, I will discuss the band
structure of an exemplary 1D periodic elastic structure.

2.1 An Introduction to Topology

At the latest in elementary school, children get into contact with the concepts of
geometry and sooner or later learn how to calculate lengths and angles of simple
objects. In an abstract sense, geometry provides a quantitative description of
geometrical objects, or generally mathematical spaces, by introducing metrics [18].
The importance of geometry for natural sciences, technology, and industry is
self-understood, and a remarkable amount of geometrical principles have already
been stated more than two thousand years ago.

In strong contrast, the field of topology emerged only a few centuries ago. As it
seeks to describe and classify objects only in terms of their qualitative properties,
its application, e.g., in physics, remained elusive for a long time [19]. However,
in the framework of topology, problems can be solved that are not captured by
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2 topology and mechanics

(a) (b) (c)

χ=2 χ=2 χ=0

Figure 2.1: Different objects and their Euler characteristic χ. While the sphere (a)
and the bowl (b) are geometrically different, they have the same Euler characteristic
and are said to be in the same topological phase. (c) The torus with its hole has a
different Euler characteristic and is hence said to be in a distinct topological phase.

geometrical considerations. One of the earliest examples is the problem of the
bridges of Königsberg [20]. Thereby, the question was if all parts of Königsberg
can be visited by crossing each of the seven bridges exactly once. In 1736, Leonard
Euler analyzed the problem and showed that this is indeed not possible [21].
Clearly, the proof did not depend on any specific length or angle of the bridges
but only on the qualitative structure of the problem. A similar but more recent
example is the inscribed rectangle problem. There, it can be proven by a topological
argumentation that, for an arbitrary closed contour in a plane, it is always possible
to find a rectangle having all its four corners lying on this contour [22]. Notably,
a corresponding proof for an inscribed square remains elusive up to date [23].
While these two specific problems seem to be quite peculiar, topology finally
found its way into the field of physics in the 1960s, triggered for instance by the
Aharonov-Bohm effect [19, 24]. To understand the implications of topology on
solid-state physics and in particular on band theory, we start with two simple
examples that are introduced along the lines of reference [6] and [25], and along
my master’s thesis [26].

Euler Characteristic and Genus of Objects

Generally, topology classifies objects or spaces qualitatively by properties that are
invariant under continuous deformations [6, 27]. The probably most illustrative
example for such an invariant property is the Euler characteristic, which is basi-
cally given by the number of holes, also called genus, of a given geometrical object.
Figure 2.1 shows three objects: a sphere, a bowl, and a torus. While all three
objects have a clearly different geometry, two of them share the same number of
holes, i.e., zero. In terms of topology, the sphere and the bowl are said to be in
the same topological phase, as they are classified by the same topological invariant
or topological index, whereas the torus with its hole in the middle is in a distinct
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2 .1 an introduction to topology

topological phase. Only by tearing apart the surface of an object and reclosing it
differently, and thus by a non-continuous transformation, the number of holes can
be changed. Such a change is then called a topological phase transition.

From this simple example, two key concepts of topology become apparent:
First, the number of holes is always an integer quantity, such that the associated
topological invariant can only assume discrete values. This allows for a unique
classification and distinction of geometrical objects. Second, a topological invariant
is a global property. The number of holes does not depend on the exact geometry
of an object and it is not sensitive to local continuous deformations. Still, the global
topological properties have to somehow emerge from the local properties. For
the genus of geometrical objects, this is captured by the Gauss-Bonnet theorem.
It states, that the Euler characteristic χ, linked to the genus g, is obtained by
integration of the local curvature K over the closed surface S of the geometrical
object [28]:

χ = 2 − 2g =
1

2π

ˆ
S

KdS. (2.1)

Here, the integration appears as the obvious operation to link local to global
properties. This will as well hold true for the calculation of topological indices in
the context of the topological band theory in section 2.2.

Möbius Strip

A second prominent example for distinct topological phases are the cylinder strip
and the Möbius strip, shown in Figure 2.2. Both objects can be described as a
fiber bundle E that associates a fiber F = [−1, 1] to each point of a base space
which is the unit circle B = S1 [25]. Sitting at some arbitrary position and just
describing each strip locally, both fiber bundles can be expressed as the direct
product of the base and fiber space, i.e., E = B × F. For the Möbius strip, however,
this description breaks down globally. After undergoing a complete roundtrip
over the base space, one realizes that the strip is wound up, such that the fiber has
to do a transition from F = [−1, 1] → [1,−1]. As a consequence, the Möbius strip
has just one edge and a single, non-orientable surface. Its vector bundle is called
topologically nontrivial, as the strip globally winds by an angle of π. It has a nonzero
winding number as topological index. In contrast, the vector bundle of the cylinder
is called topologically trivial, as its global behavior shows nothing exceptional as
compared to the local behavior. Its winding number is zero. Notably, despite
differing in their winding numbers, the surface of the cylinder strip and Möbius
strip have the same Euler characteristic, i.e., χ = 0. Hence, to properly evaluate
and distinguish topological properties, it is crucial to find the topological invariant
that is meaningful in a given case.

9



2 topology and mechanics

Figure 2.2: Topologically trivial and
nontrivial bundles. (a) The fiber bun-
dle of a cylinder strip can be glob-
ally represented by the direct prod-
uct E = B × F of a periodic base
space B and some fiber F that is
assigned to each point of the base.
(b) For the Möbius strip this represen-
tation works only locally. Due to the
nonzero winding, it fails when going
once around the strip. Hence, the
Möbius bundle is said to be topologi-
cally nontrivial. Adapted from [26].

fiber F

nontrivial
bundle E

(a)

(b)

periodic
base B

trivial
bundle E

The example of the cylinder and Möbius strip indicates the role of periodicity
for topological considerations: Only the periodicity of the unit circle S1 together
with the requirement of having a continuous strip quantizes the possible winding
angles to integer multiples of π. Thereby, it creates the distinct topological phases
with their associated discrete topological indices. Taking for instance some non-
periodic interval B = [0, 1] as a base space, the resulting open strips could have
any winding angle and a topological distinction between these objects would be
impossible. We will see in the following, that also the topological classification in
band theory depends on periodicity, namely on that of the reciprocal space.

2.2 Topological Band Theory

In general, band theory is the conceptual framework to describe the physical
properties of spatially periodic media. Originally, band theory was introduced to
explain the electronic properties of crystalline solids, such as insulators, metals,
and especially semiconductors, by solving the quantum-mechanical Schrödinger
equation for electrons in a periodic potential. For quite some time, the focus was
on understanding and manipulating the band structure, i.e., the energy spectrum
of the solids’ bulk, which consists of energy bands and band gaps.

This situation started to change with the discovery of the integer quantum Hall
effect (IQHE) for a 2D electron gas in a static magnetic field by Klitzing et al.
in 1980 and its interpretation in terms of topology [2, 3, 29, 30]. It turned out
that the number of unidirectional 1D conduction channels along the boundary of
an otherwise insulating 2D electron gas is equal to a topological invariant of its
bulk [31]. This equality is now known as the bulk-boundary correspondence. It
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2 .2 topological band theory

implies that the surface properties are somehow encoded in the bulk properties
of a solid. However, to see this encoding, the focus has to be shifted away from
the energy eigenvalues of the band structure toward the eigenstates associated to
these eigenvalues [29, 30, 32].

In the following, the basics of topological band theory are established along the
lines of several publications [4, 27, 33, 34]. However, while most discussions are
based on 2D systems with the IQHE as a natural example, I will limit the formal
description to the equations relevant for 1D periodic systems and otherwise stick
to qualitative explanations.

2.2.1 Band Theory

Although we will later discuss phononic band structures of elastic media, we start
in the historic context with the eigenstate |ψ⟩ and eigenenergy E of an electron
obeying the time-independent Schrödinger equation with a given Hamiltonian
Ĥ:

Ĥ |ψ⟩ = E |ψ⟩ . (2.2)

For a crystalline solid with its periodic potential, the eigenproblem is subject to a
discrete spatial translation invariance given by a Bravais lattice. In d dimensions,
the Bravais lattice R and the associated reciprocal lattice G are constructed via the
real-space and the reciprocal lattice vectors ai and bi, respectively:

R =
d

∑
i=1

ziai and G =
d

∑
i=1

mibi, with zi, mi ∈ Z and aibi = 2πδij. (2.3)

According to Bloch’s theorem, the electronic eigenstates can be written as a state
|un(k)⟩ periodic in the lattice R, modulated by a spatial phase factor:

|ψn(k)⟩ = eikr |un(k)⟩ . (2.4)

Here, n is the band index. The wave vector or quasimomentum k is defined inside
of the first Brillouin zone of the reciprocal lattice and the eigenstates are subject to
the periodicity

|ψn(k)⟩ = |ψn(k + G)⟩ . (2.5)

Using the Bloch ansatz on equation 2.2, we get the eigenequation

Ĥ(k) |un(k)⟩ = En(k) |un(k)⟩ , (2.6)

with the wave-vector-dependent Hamiltonian Ĥ(k). Following the periodicity
of the eigenstates, the associated eigenenergies are also periodic, leading to the
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2 topology and mechanics

formation of energy bands. As a consequence, all the information about the eigen-
states |un(k)⟩ and eigenenergies En(k) is captured in the band structure within
the first Brillouin zone. We know that |un(k)⟩ and |un(k + G)⟩ are equivalent
states, up to a phase factor that follows from equations 2.4 and 2.5 [34]:

|u(k + G)⟩ = e−iGr |u(k)⟩ . (2.7)

2.2.2 Berry Phase

Comparable to the Möbius strip in the previous section, the band structure can
mathematically be understood as a fiber or vector bundle, as shown in Figure 2.3(a).
The periodic base space of this bundle is the first Brillouin zone, which is linked
to the space of states |un(k)⟩ via the Hamiltonian Ĥ(k) [25]. To check, whether
such a vector bundle is wound up, one has to go once around the base space
and evaluate the change of the eigenstates, or more precisely, the change in their
phase.

For two eigenstates |un(k)⟩ and |un(k + dk)⟩ that are neighboring in the base
space and separated by dk, the phase difference dγ is given by

e−idγ =
⟨un(k)|un(k + dk)⟩
|⟨un(k)|un(k + dk)⟩| . (2.8)

Taking the first order approximation in dk on both sides yields

dγ = i ⟨un(k)|∇k|un(k)⟩dk. (2.9)

Here, the eigenstates are assumed to be normalized. Reformulating the equation,
we obtain the local phase change of the eigenstates in the reciprocal space, called
the Berry connection [35]:

An(k) =
dγ

dk
= i ⟨un(k)|∇k|un(k)⟩ = − Im ⟨un(k)|∇k|un(k)⟩ . (2.10)

Notably, the phase of the individual eigenstates |un(k)⟩ can be chosen arbitrarily
without affecting the physics behind [27]:

|un(k)⟩ → eiα(k) |un(k)⟩ . (2.11)

Of course, such a transformation also changes the phase difference between the
eigenstates, meaning that the Berry connection is not gauge-invariant with respect
to this phase ambiguity and hence has no direct physical meaning. Only by
integrating the Berry connection over a closed contractible loop in reciprocal space,
one obtains an observable physical quantity, the Berry phase

γB
n =

˛
C

An(k)dk. (2.12)
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(a) (b)

k0
base B

Ĥ(k0)

|un(k)⟩

|un(k + dk)⟩
e−idγ

e−iγn

−G/2 +G/2

bundle E

k = ±G/2

|un(k0)⟩

Figure 2.3: (a) Exemplary band structure of a 1D lattice. The Bloch Hamiltonian
Ĥ(k0) assigns the eigenstates |un(k0)⟩ of individual bands n to each wave number k0.
The resulting bundle has the 1D first Brillouin zone as its periodic base space. (b) The
winding of such a bundle is measured via the Berry phase accumulated across the 1D
Brillouin zone, i.e., the Zak phase γn. For a discretized version of the reciprocal space,
the Zak phase can be calculated by summing up the phases dγ between neighboring
Bloch eigenstates. Adapted from [26].

As it appears in a phase factor, the Berry phase is only defined up to an integer
multiple of 2π. By moving on a closed loop from eigenstate to eigenstate in the
reciprocal space, each of their arbitrary phases will appear once in bra- and once
in ket-notation in the scalar product in equation 2.8. Thus, in total, the phases
cancel out and make the Berry phase a gauge-independent quantity [35]. As
Berry himself stated in his paper [32], the Berry phase is generally a geometrical
phase that is acquired by adiabatically driving a quantum-mechanical system
through some parameter space. However, it is not merely a concept for electronic
Bloch eigenstates in the reciprocal space but can be equally applied to other
quantum-mechanical systems, and even to classical systems. Examples are the
Aharanov-Bohm phase for electrons propagating around a confined magnetic flux,
the polarization rotation of light in a twisted fiber, and the rotation of Foucault’s
pendulum [36].

2.2.3 Zak Phase

From Berry’s geometrical phase it is only a small step to the actual topological
invariant of a band structure. For this, it is necessary to not only consider the
phase change of the Bloch eigenstates over some closed loop in the reciprocal
space but rather over the complete periodic base space, i.e., the complete first
Brillouin zone.

The apparently simplest case is a 1D crystal with lattice constant a and the
corresponding wave number k lying in first Brillouin zone k ∈ [−π/a,+π/a].
Given the periodic boundaries of the wave number, the Brillouin zone can be
represented by a circle, and the closed loop around it automatically covers the
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whole reciprocal space, as shown in Figure 2.3(b). Using equations 2.10 and 2.12

for the Berry connection and Berry phase, we get the so-called Zak phase [37]

γn = − Im
ˆ π/a

−π/a
⟨un(k)|∂kun(k)⟩dk, (2.13)

= − Im
π/a−dk

∑
ki=−π/a

ln ⟨un(ki)|un(ki + dk)⟩ . (2.14)

The second equation is just the integral for k-values discretized into steps of dk
and follows directly from equation 2.8. It will be useful to perform numerical
calculations. As the Berry phase, the Zak phase is only defined up to an integer
multiple of 2π. We will see that the Zak phase is quantized given the proper
symmetries of the Hermitian operator in the eigenequation 2.6 and can only as-
sume the value 0 for a topologically trivial band or π for a topologically nontrivial
band. Thus, it is called a Z2 topological invariant and it is the quantity that will
be evaluated for the 1D band structures discussed in this work. In analogy to
the Möbius strip, the acquisition of a nonzero Zak phase is often described as
a winding or twisting of an individual band. The winding of the Bloch states
will be visualized when discussing the Su-Schrieffer-Heeger model in section 2.3.
There, we will also see that the Zak phase is not invariant under a change of
the unit cell convention of the 1D crystal lattice. This makes it a quite peculiar
topological invariant as compared to invariants in higher dimensions, such as the
Chern number for the IQHE in 2D, which is shortly introduced in appendix A.1.

2.2.4 Bulk-Boundary Correspondence and Topological Insulators

The emergence of the bulk-boundary correspondence will be shown in detail for
the 1D Su-Schrieffer-Heeger model in section 2.3. In the following, I will only pro-
vide a qualitative general explanation, as a conclusive formal explanation involves
a larger set of equations and is beyond the scope of this work. For explanations
based on the 2D IQHE, I would like to refer to reference [33] or [35].

As introduced in the formalism for the Berry and Zak phase, i.e., in equa-
tion 2.13, topological invariants are generally assigned to individual isolated
bands of a given band structure. However, Berry deduced that a nontrivial band
with nonzero topological invariant is actually a result of virtual interactions with
the eigenstates of other bands [32]. By these virtual interactions, the eigenstates of
the bands can mutually wind up themselves, such that each of the bands obtains
the opposite winding direction and a topological invariant with opposite sign.
As a consequence of this exchange of winding, the complete vector bundle of all
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Figure 2.4: Bulk-boundary corre-
spondence for a 1D topological
insulator. (a) At the spatial interface
of two trivial insulators with equal
topological indices γ, a topological
phase transition is not required. The
band gap (red region) stays open.
(b) For a trivial-nontrivial interface
with unequal γ, the band gap has
to close such that the bands can
undergo a topological phase transi-
tion. This generates a boundary state
localized to the interface. The energy
E of the boundary state (blue dashed
line) lies inside of the band gap of
the bulk’s energy spectrum.

bands of a system has always a total winding of zero and thus stays trivial [19].
Only subsets of bands can be nontrivial. Since the topological invariants of individ-
ual bands are quantized, they cannot be changed by smooth deformations of the
band structure. As for the Euler characteristic, a non-continuous transformation is
required to change the invariants and the topological phase. For the energy bands,
this topological phase transition can only happen if two originally isolated bands
touch each other, thus become degenerate and change their winding [35].

This becomes relevant, when not only considering infinitely extended crystal
lattices but also boundary effects occurring in finite systems: Assume two insulat-
ing systems that have a band gap in the same region of the energy spectrum but
distinct topological indices of the bands above and below the band gap, as shown
in Figure 2.4. The bulk-boundary correspondence then states that boundary states
have to exist at the spatial interface between the two systems, and the number of
boundary states corresponds to the difference in the topological invariants [31].
If both systems are in the same topological phase, e.g., the trivial phase with an
invariant of zero, there is no need for a topological phase transition across the
interface, such that the band gap will stay open. However, if the invariants differ,
the bands have to touch. This generates one or more boundary states which have
their energy inside of the band gap and hence have to be spatially confined to
the interface region. The result is a topological insulator that is insulating in the
bulk due to its band gap but has states available at the boundary. In the simplest
case, the boundary around the bulk of a topological insulator is just the vacuum
around it, which is basically just a trivial insulator [34]. In such a case, the band
gap of a topological insulator is often simply referred to as a topological band gap,
omitting the specification nontrivial in the naming.
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The boundary states are the cause for the great interest in topological insulators,
as can be seen already from the IQHE. For a 2D bulk, these states are 1D edge
channels that are guaranteed to exist and robust against perturbation and defects.
Thereby, the robustness holds true as long as the symmetries inducing the non-
triviality of the bulk bands are also present at the boundary. For the IQHE, it is
the rather the absence of a symmetry, namely broken time-reversal symmetry due
to an applied magnetic field, that generates the nontrivial band gap. It renders
the edge states not only guaranteed but also unidirectional and thereby immune
to back-scattering [4]. These features together made 2D topological insulators
extremely popular as platform to design 1D conduction channels and 1D waveg-
uides for classical systems [6, 8]. For 1D bulk systems, the interest lies in the
existence of zero-dimensional (0D) edge states that are spatially localized and
spectrally isolated from the bulk modes, as we will see in the course of this thesis.

2.2.5 Topology and Symmetry

As already indicated, the topological properties of bulk bands are imposed by the
symmetries that are present or absent. Triggered by the proposal of the quantum
spin Hall effect in 2005 [38–41], it became clear that time-reversal breaking is not
the only way to realize topological insulators. The quantum spin Hall insulator
obeys time-reversal symmetry and has separate edge states for spin-up and spin-
down states with propagation in opposite directions. As the Euler characteristic
did not describe the Möbius strip properly, the Chern number of the IQHE
turned out to be a meaningless topological invariant for quantum spin Hall
systems. Hence, other topological invariants for other topological phases had
to be identified. By systematically classifying all 10 possible symmetry classes
for generic Hamiltonians, a variety of 15 different topological classes for 1D,
2D, and 3D systems were identified [5]. Following Altland and Zirnbauer [42],
every electronic Hamiltonian can be classified by time-reversal symmetry, charge-
conjugation symmetry, and chiral symmetry. The three symmetries determine
how Bloch eigenstates can evolve when varying the wave vector k within the
first Brillouin zone and thus also what results can be obtained for the topological
invariants, e.g., for the Zak phase in equation 2.13.

Time-reversal symmetry is present, if the Bloch Hamiltonian Ĥ(k) fulfills

T̂ĤT(k)T̂−1 = Ĥ(−k) with T̂2 = ±1, (2.15)

where T̂ is a unitary operator mapping the Bloch eigenstates from k to −k. The
case T̂2 = +1 corresponds to bosonic time-reversal symmetry. Charge-conjugation
symmetry also links wave vectors with opposite sign, with an additional sign
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inversion of the Bloch Hamiltonian:

ĈĤT(k)Ĉ−1 = −Ĥ(−k) with Ĉ2 = ±1. (2.16)

Again, Ĉ has to be some unitary operator. The third symmetry, called chiral
symmetry, is just the combination of the first two, resulting in

ŜĤ(k)Ŝ−1 = −Ĥ(k) with Ŝ2 = 1, (2.17)

for a unitary Ŝ. The names of the three symmetries refer to their meaning when
acting on electronic Hamiltonians. In classical wave systems, these symmetries
should be rather seen as purely formal constraints on the Hermitian operator of a
given eigenproblem [7].

Strong Topological Insulators and Topological Crystalline Insulators

As the above classification applies to any generic Hamiltonian, no assumptions
were made about additional discrete spatial symmetries that might be present in a
given crystal. The three symmetries are thus called nonspatial or global symme-
tries and are preserved at boundaries of a system independent of the exact spatial
termination [34]. This guarantees that the bulk-boundary correspondence is valid
even in the presence of lattice disorder. As a consequence, the topological classes
that only rely on these nonspatial symmetries are labeled as strong topological
insulators.

When taking spatial symmetries into account, such as inversion [43], rotation,
and reflection, the Bloch Hamiltonian and Bloch eigenstates can be subject to
additional restrictions, e.g.,

P̂Ĥ(k)P̂−1 = Ĥ(−k) with P̂2 = ±1, (2.18)

with a unitary or antiunitary parity operator P̂ which is distinct from the ones
in equations 2.15 to 2.17. By this, the topological classification gets even more
detailed and it is expected that an own classification scheme has to be established
for each discrete space-group symmetry [44, 45]. If the nontriviality of a topo-
logical insulator and thus the existence of topologically protected boundary states
depends on such spatial symmetries, the system is called a topological crystalline
insulator. We will see in section 2.3 that the quantization of the Zak phase for the
Su-Schrieffer-Heeger model depends both on a nonspatial and a spatial symmetry.
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2.2.6 From Electronics to Mechanics

Given the historic context, the topological band theory introduced so far was
only based on electronic states obeying the Schrödinger equation. Yet, after the
concepts of band theory were transferred to classical wave systems, such as pho-
tonic crystals [46–48] and phononic crystals [12, 49, 50], the design of topological
classical systems began as well. The starting points were the theoretical descrip-
tion of the analog of the quantum Hall effect in photonic crystals [51, 52] and
topological phonon modes in self-assembled hollow protein tubes [53]. Such
systems are also described in terms of an eigenequation similar to equation 2.6
with a Hermitian eigenoperator and eigenvalues dependent on a periodic wave
vector. By mapping the classical equations of motion to a differential equation in
the form of the Schrödinger equation, the topological classification established for
electronic systems can be adopted for classical systems [7]. In fact, it was proposed
that each of the 15 strong topological classes can be mimicked by adequately
coupling classical passive elements [54]. In this way, classical systems can serve as
interesting toy models for topological classes that are not easy to experimentally
realize as electronic topological insulators. Taking also platforms that rely on
spatial symmetries into account, plenty of classical topological systems have been
proposed and demonstrated [6, 8].

In acoustic and elastic systems, analogs of the quantum Hall insulator with
its unidirectional edge states [55–58] were established as well as analogs of the
quantum spin Hall insulator [59–63]. Also 3D systems exhibiting topological
features such as Weyl degeneracies [64, 65] and higher-order topological insulators
with boundary states that can be confined to more than one dimension less as
compared to the bulk system were investigated [66]. Topological states were
also discussed in terms of isostatic mechanical lattices [67]. Acoustic and elastic
topological systems in 1D are mostly realizations of the Su-Schrieffer-Heeger
model [8]. This model is discussed in the following section and will be the starting
point for the design of a more complex topological system as will be presented in
chapter 3.

2.3 The Mechanical Su-Schrieffer-Heeger Model

The Su-Schrieffer-Heeger (SSH) model was initially established to describe the
electronic properties of the polymer trans-polyacetylene [9]. As shown in Fig-
ure 2.5(a), trans-polyacetylene is a linear chain of sp2-hybridized carbon atoms.
The molecule can be described via a tight-binding approach where each electron
is strongly bound to a carbon atom but can hop to the neighboring ones according
to hopping parameters. In the dimerized configuration, trans-polyacetylene has
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Figure 2.5: Su-Schrieffer-Heeger
model. (a) The linear polymer
trans-polyacetylene with alternating
single and double carbon bonds
can be described via a tight-binding
model with a diatomic basis. (b) The
mechanical analog is a mass-spring
chain with equal masses ma=mb=m
and alternating springs D1 and D2
of different stiffness. The dashed
gray box shows a possible unit cell
convention with the displacements
ui,a and ui,b in cell i at the two
sublattice sites, a and b, respectively.

alternating double and single carbon bonds, which requires a description using
a unit cell with a diatomic basis and two sublattice sites. While the SSH model
was discussed in the course of rather exotic properties, i.e., topological solitons
and conducting polymers [68], the model configuration itself is very basic and its
tight-binding Hamiltonian can be mimicked easily in mechanics by a mass-spring
model, as shown in Figure 2.5(b). It requires equal masses that are connected
via alternating strong and weak springs, corresponding to the double and single
carbon bonds, respectively. In fact, this SSH-like mass-spring model is close to a
diatomic model that is very often presented in lectures to show the emergence of
phononic band gaps. There, however, usually the masses are alternated instead of
the spring constants, which will turn out to be fundamentally different in terms
of the band structure’s topology.

To see this, we start with a mass-spring model with different masses ma and
mb at the two sublattice sites a and b, coupled by intracell springs and intercell
springs with spring constant D1 and D2, respectively. From Newton’s second
law and Hooke’s law we get the equations of motion for the two time-dependent
longitudinal displacements ui,a(t) and ui,b(t) in each unit cell i:

d2ui,a

dt2 =
D1

ma
(ui,b − ui,a) +

D2

ma
(ui−1,b − ui,a) ,

d2ui,b

dt2 =
D1

mb
(ui,a − ui,b) +

D2

mb
(ui+1,a − ui,b) .

(2.19)

To solve these equations for all discrete lattice sites, we use a wave ansatz with
angular eigenfrequency ω and wave number k, e.g., for sublattice site a,

ui,a(t) = ua(k) · ei(kRi−ωt), (2.20)
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where Ri = ia are the discrete lattice positions and a the corresponding lattice
constant. Thereby, we get an eigenequation similar to the Bloch equation 2.6:

D̂(k)un(k) = ω2
n(k)un(k),

with un(k) = (
√

maun,a(k),
√

mbun,b(k))
T .

(2.21)

Here, un(k) are the Bloch eigenvectors of the two bands n = 1, 2, defined within
the first Brillouin zone k∈ [−π/a,+π/a]. Note that the Bloch vector components
un,a(b)(k) and real space displacement amplitudes ui,a(b)(t) are used in parallel in
this thesis and should not be confused. The phase relation of the displacements at
the two sublattice sites is absorbed in the complex components un,a(k) and un,b(k).
The dynamical matrix D̂(k) is given by

D̂(k) =

 D1+D2
ma

−D1−D2e−ika
√

mamb
−D1−D2eika

√
mamb

D1+D2
mb

 , (2.22)

which is Hermitian, i.e., D̂†(k) = D̂(k). For a moment, we limit ourselves to equal
masses ma = mb = m and obtain the dispersion relation

ω2
1,2(k) =

D1 + D2

m
±

√
D2

1 + D2
2 + 2D1D2 cos(ka)

m
. (2.23)

To make the discussion independent of the parameters that merely act as scaling
factors, the dispersion relation can be expressed in terms of the normalized
(angular) frequencies

ω̃ = 2π
a
λ
= ω

a
cl

, (2.24)

where λ is the wavelength and cl = a
√
(D1 + D2)/m the phase velocity of the

lower band close to k = 0. As shown in Figure 2.6(a), one obtains a 1D band gap
in the spectrum of this mechanical analog of the SSH model for the two parameter
regimes D2 < D1 and D2 > D1, thus for a nonzero normalized difference

∆ =
D1 − D2

D1 + D2
. (2.25)

For D1 = D2 and ∆ = 0, however, the band gap closes at the Brillouin zone bound-
ary at k = ±π/a. Following the ideas of topological band theory, a topological
phase transition could come along with this gap closing, rendering the bands
topologically nontrivial in one of the two regimes.
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Figure 2.6: (a) Band structure of the mechanical SSH model with two bands separated
by a band gap. The band gap reduces when decreasing the normalized spring
constant difference ∆. (b) Contours of the vector d(k) representing the dynamical
matrix. For ∆ > 0 (D2 < D1), the vector does not wind around the origin, while for
∆ < 0 (D2 > D1), the nonzero winding indicates a topologically nontrivial phase.
The distance between the vector’s tip and the origin is proportional to the width of
the band gap. For equal spring constants, i.e., ∆ = 0, the band gap closes and the
winding number and topological phase changes.

To verify that this is indeed the case, I will use two approaches, that are
transferred from discussions on the electronic SSH model [34, 35]. In the first
approach, I will focus on the dynamical matrix and clarify analytically, how the
symmetries introduced in section 2.2.5 lead to distinct topological phases and to
the emergence of the bulk-boundary correspondence. The second approach will
show how consistent conclusions can be drawn from the eigenvectors’ behavior
by numerically evaluating the Zak phase as motivated in section 2.2.3.

2.3.1 Symmetry Classification

The dynamical matrix can be classified via its nonspatial and spatial symmetries
following equations 2.15 to 2.18. We use the three Pauli matrices σx, σy, σz, and
the identity matrix σ0 (see appendix A.2), which are all unitary 2×2 matrices and
involutory, i.e., they are their own inverse. From equation 2.22, it is apparent that
D̂T(k) = D̂(−k) holds true for real-valued spring constants D1 and D2, such that
the matrix respects the bosonic time-reversal symmetry of equation 2.15:

T̂D̂T(k)T̂−1 = D̂(−k) with T̂2 = σ2
0 = +1. (2.26)
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Additionally, the dynamical matrix satisfies the parity symmetry

P̂D̂(k)P̂−1 = D̂(−k) with P̂2 = σ2
x = +1. (2.27)

This symmetry is only present, if the two diagonal elements of D̂ are equal, thus
only if ma = mb. In this case an inversion or mirror symmetry is established
with respect to the center of the unit cell, as can be verified in Figure 2.5(b). This
mirror symmetry can also be described as sublattice symmetry, as σx acting on
the eigenvector in equation 2.21 interchanges the two sublattice sites a and b:

P̂
(

un,a(k)
un,b(k)

)
=

(
un,b(k)
un,a(k)

)
. (2.28)

The two symmetries are required to induce two topologically distinct phases in
the SSH system. This becomes obvious when decomposing the dynamical matrix
of equation 2.22 into the base of the three Pauli matrices and the identity matrix:

D̂(k) =

dx(k)
dy(k)
dz(k)

 ·

σx
σy
σz

+ d0σ0,

with d0 =
D1 + D2

m
,

dx = −D1 + D2 cos(ka)
m

,

dy = −D2 sin(ka)
m

,

(2.29)

and dz = 0, as long as we keep the masses ma and mb equal and thereby the
mirror symmetry intact. The k-dependent dynamical matrix of the SSH model is
affected by the mirror symmetry as follows: As long as dz = 0, the matrix can be
fully described by the vector

d(k) = dx(k) + idy(k) =
−D1 − D2eika

m
, (2.30)

which is confined to the complex plane, as shown in Figure 2.6(b). It describes a
circle with radius D2 around its center point at D1 on the real axis when sweeping
the wave number k once across the first Brillouin zone. The component d0 can
be neglected, as it is merely a k-independent offset equivalent to the first term
in the dispersion relation in equation 2.23. The spectral distance between the
squared eigenfrequencies of the two bands corresponds directly to the k-dependent
modulus of the vector d(k),

ω2
2(k)− ω2

1(k) = 2|d(k)| = 2
√

d2
x(k) + d2

y(k), (2.31)
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which is the distance of this vector from the origin. For D2 < D1, the contour of
the vector d(k) does not rotate around the origin, such that, in terms of topology,
it can be labeled as topologically trivial phase with a winding number of 0. For
D2 > D1, the contour includes the origin and obtains a winding number of 1,
corresponding to the topologically nontrivial phase. Having a spatial interface
between the trivial and nontrivial phase, the circular contour of the vector has
to sweep and at some point cross the origin to change the winding number, as
shown in Figure 2.6(b). Crossing the origin, according to equation 2.31, means
closing the band gap at the interface and generating a 0D boundary state. This
establishes the bulk-boundary correspondence for the SSH model.

The situation is fundamentally different if one allows for different masses
ma ̸= mb, breaking mirror symmetry and thus obtain dz ̸= 0. In this case, the
contour of the vector d(k) is not confined to a plane through the origin anymore
and can enclose any solid angle in the parameter space, making it impossible to
define a quantized winding number. As a consequence, a topological classification
becomes elusive and at a spatial boundary the vector’s contour does not necessarily
have to cross the origin. Hence, it will not generate a boundary state.

When going back to the more common lecture mass-spring model with alternat-
ing masses but equal spring constants, another mirror symmetry is reestablished,
this time with respect to the mass position (cf. Fig. 2.5(b)). Surprisingly, this
symmetry does not restrict the vector d to the complex plane again an hence it
does also not recover the distinct topological phases. This makes the mechanical
SSH model and the lecture mass-spring model fundamentally different. While
both are able to explain phononic band gaps, only the SSH model provides a
quantized winding number and two distinct topological phases, rendering it a 1D
mechanical topological insulator.

To conclude this section, it should be noted that the symmetry classification
of the SSH model, despite its simplicity, is quite controversial. In addition to
bosonic time-reversal symmetry and mirror symmetry, the SSH model also exhibits
the formal charge-conjugation symmetry and chiral symmetry (equations 2.16

and 2.17), which puts it into one of the 10 fundamental symmetry classes of strong
topological insulators, i.e., the so-called BDI class [7]. This class is characterized
by a Z topological invariant and has more than the two distinct trivial and
nontrivial topological phases as described by the Z2 invariant winding number.
However, this does not capture the features of the SSH model correctly, such
that a classification as a topological crystalline insulator (or a so-called Dirac-
insulator [34]) equipped with time-reversal symmetry and mirror or inversion
symmetry is more meaningful.
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2.3.2 Zak Phase

The above analysis of the SSH model via a vector describing the associated
dynamical matrix illustrates its topological features nicely. However, the approach
relies on the fact that the SSH model has only two degrees of freedom (DOF) per
unit cell, which made it possible to decompose it into a maximum of three wave-
vector-dependent parameters visualized in a 3D coordinate system. The situation
will change in chapter 3 when dealing with four DOF per unit cell. There,
the dynamical matrix would have to be decomposed into 16 unitary matrices
and thus a vector d(k) as above would move in 16-dimensional space, making
the visualization of a quantized winding number elusive. Hence, a numerical
evaluation of the winding number based on the eigenvectors and their Zak phase
is more advisable.

The Zak phase is calculated numerically using equation 2.14. For the Bloch
eigenvectors of equation 2.21, the scalar product measuring the phase between
neighboring states boils down to

⟨un(ki)|un(ki + dk)⟩ =
2

∑
c=1

u∗
n,c(ki)un,c(ki + dk), (2.32)

with the sum over the two complex eigenvector components corresponding to the
two sublattice sites. Figure 2.7(a) shows the accumulation of the Berry connection,
i.e., the Zak phase evolution, across the first Brillouin zone for various spring
constant differences ∆ in the mirror-symmetric SSH model. In agreement with
the winding number in previous sections, one obtains a quantized topological
index for the two bands, now identified with an accumulated Zak phase of γn = 0
or γn = π for D2 < D1 or D2 > D1, respectively. For a configuration with
unequal masses ma ̸= mb, shown in Figure 2.7(b), the mirror symmetry and the
quantization breaks down. Thereby, the accumulated Zak phase can assume
arbitrary values and the distinct topological phases vanish.

To obtain the Zak phase accumulation in Figure 2.7, the global arbitrary phase
of each numerically calculated Bloch eigenvector entering in equation 2.32 was
fixed by forcing one of its components to be real-valued. As explained in sec-
tion 2.2.2, the individual phase relations of neighboring eigenvectors, i.e., the
Berry connection, depend on this phase convention. Thus, it should be noted that
the phase evolution across the first Brillouin zone could look quite differently for
a different phase convention. The result for the overall accumulated Zak phase,
however, would not be affected.
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(a) (b)

parity P preserved parity P broken

Figure 2.7: Numerically calculated Zak phase evolution of the first band for various
spring constant differences ∆. (a) For the SSH model, the Zak phase accumulated
across the first Brillouin zone is discretized to values of γ1 = 0 or γ1 = π, corre-
sponding to the trivial or nontrivial phase, respectively. Even close to the phase
transition at ∆ = 0, the phase snaps to one of these two values. (b) This holds
no longer true if the mirror (parity) symmetry is broken. For an exemplary mass
difference of (mb − mb)/(mb + mb) = 0.2, the Zak phase can change continuously.
Thus, the distinct topological phases vanish and no protected boundary states are
expected for this configuration.

2.3.3 Band Inversion

On first sight, the Zak phase calculation is just a black box that takes the Bloch
eigenstates as input and gives the topological phase of the associated band as
output. However, the eigenvectors are subject to the same symmetry considera-
tions as the dynamical matrix itself, such that the Zak phase quantization should
also be apparent for the eigenvectors. From the parity symmetry in equation 2.27,
remembering that P̂ = σx = σ−1

x = P̂−1, it follows that the dynamical matrix D̂(k)
commutes with P̂ at the high-symmetry points k = 0 and k = π/a, where original
and sign-reversed wave numbers are equal up to a reciprocal lattice vector. Hence,
D̂(k) and P̂ share eigenvectors at these points and it holds

P̂un(0) = p(n)0 un(0),

P̂un(π/a) = p(n)π un(π/a).
(2.33)

Here, the parity eigenvalues p(n)0 and p(n)π of band n are +1 for symmetric eigen-
vectors and −1 for antisymmetric eigenvectors upon exchange of the two sublattice
components, as in equation 2.28. The parity eigenvalues are relevant, as they can
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indicate a so-called band inversion, meaning a change between symmetric and
antisymmetric eigenvectors of a band between k = 0 and k = π/a. As proven
in appendix A.3, exactly such a band inversion in combination with the present
time-reversal symmetry leads to a nonzero Zak phase of a given band. The Zak
phase is determined by the parity eigenvalues as [43, 69]

γn =
π

2

(
1 − p(n)0 p(n)π

)
, (2.34)

up to an integer multiple of 2π. This is a remarkable result, as, given the symme-
tries, potentially exhaustive numerical calculations of the Zak phase can be avoided
and reduced to the evaluation of the eigenvectors at the two high-symmetry k-
points.

For the SSH model with its diatomic basis, a symmetric mode means that the
masses at the two sublattice sites oscillate in phase, which is true for the so-called
acoustic band emerging at zero frequency in the center of the Brillouin zone. In the
topologically trivial phase of the acoustic band, i.e., D2 < D1, the two masses are
also in phase at the Brillouin zone boundary, corresponding to parity eigenvalues
of p0 = pπ = +1 and a Zak phase of zero according to equation 2.34. For the same
spring constant configuration, the so-called optical band has parity eigenvalues
of p0 = pπ = −1, rendering this band trivial as well. However, in the nontrivial
phase, both bands exchange their modes’ symmetry at the Brillouin zone boundary.
The bands are inverted and acquire a Zak phase of γ1 = γ2 = π. Having both
bands in the nontrivial phase simultaneously is in accordance with section 2.2.4,
stating that the complete vector bundle of all bands is always trivial with a total
winding number of zero: The total Zak phase for both bands is γ1 + γ2 = 2π and
hence equivalent to zero due to its definition and its Z2 character. To account for
this, we can define a topological index κ that determines the topological phase of
a set of selected bands n′ with individual Zak phases γn′ as

κ =
1
2

(
1 − ei ∑n′ γn′

)
, (2.35)

which is 0 for a trivial set and 1 for a nontrivial set. It can be directly seen that
the bundle of both bands is also trivial when both bands are trivial themselves,
with γ1 = γ2 = 0. The above equation will be especially useful, when discussing
band gaps that separate subsets consisting of more than one band, as in the next
chapter. There, the topological index κ of the subset of all bands below a band
gap can be understood as the topological index of the band gap itself, such that
κ = 1 indicates a topological band gap.
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2 .3 the mechanical su-schrieffer-heeger model

2.3.4 Unit Cell Convention

Although the topological classification with the trivial phase for D2 < D1 and
nontrivial phase for D2 > D1 seemed to be conclusive, it has a tremendous
loophole. So far we have omitted that, when setting up the SSH model with its
equations of motion 2.19, one is free to chose the unit cell convention. In Figure 2.5,
a natural alternative is a unit cell that is shifted by half a lattice constant. This
simply interchanges the intracell and intercell spring constants, D1 → D2 and
D2 → D1, respectively, such that literally all observations from above would
become obsolete. The trivial topological phase flips to the nontrivial phase and
vice versa just by arbitrarily changing unit cell convention. This is a particular
property of the 1D periodic SSH model. Formally, this is reflected by a gauge
dependency of the Zak phase with respect to a spatial shift of the unit cell. From
equations 2.5 and 2.7, it follows that a spatial shift b = a/2 of half the unit cell
size changes the original to new Bloch eigenvectors, un(k) and u′

n(k), respectively,
by a phase factor:

u′
n(k) = e−ikbun(k). (2.36)

Plugging this into the equation 2.13 results in two different Zak phases γn and γ′
n

for the two conventions [70]:

γ′
n = γn +

2π

a
b = γn + π, (2.37)

which indeed interchanges trivial and nontrivial phases. In fact, the discussion of
sections 2.3.2 and 2.3.1 is meaningless for a strictly infinite 1D system. However, we
will see in the next section that the topological classification of the SSH model and
also the bulk-boundary correspondence gets valid and relevant, when regarding
finite systems.

2.3.5 Topologically Protected Boundary Modes

To investigate the features of a finite version of the mechanical SSH model, the
mass-spring model obeying the equations of motion 2.19 has to be solved in real-
space instead of reciprocal space. In discretized real-space coordinates with all
DOF arranged in the vector U(z), the eigenvalue problem for a finite mass-spring
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model with N unit cells reads

Q̂U(z) = ω2
zU(z),

with U(z) =
(√

mau(z)
1,a ,

√
mbu(z)

1,b, ...,
√

mau(z)
N,a,

√
mbu(z)

N,b

)T
,

and Q̂ =


D̃a −D̃1 0 0
−D̃1 D̃b −D̃2 . . . 0

0 −D̃2 D̃a 0
... . . . −D̃1

0 0 0 −D̃1 D̃b

 ,

where D̃a(b) =
D1 + D2

ma(b)
and D̃1(2) =

D1(2)√
mamb

.

(2.38)

Here, Q̂ is the real space dynamical matrix and z the solution number. The springs
at both ends are assumed to be connected to fixed points. Notably, a finite system
with open ends will produce different results, as discussed in section 3.3.4. The
unit cell convention can now be defined unambiguously by demanding a complete
unit cell at the chain’s boundary. Terminating the chain at spring D2 leaves a
whole unit cell with D1 in the center, which makes the unit cell convention with
D1 as intercell spring correct (cf. Fig. 2.5). In contrast, if the mass-spring chain is
terminated at a D1 spring, D2 would become the intercell spring, and the notation
can be adapted via D2 → D1 and D1 → D2. As discussed in the previous section,
this is exactly the change in the unit cell convention that flips the topological
phases from trivial to nontrivial and vice versa. According to the bulk-boundary
correspondence, this topological phase flip should then also switch between the
presence and absence of protected states at the SSH chain’s ends.

By solving the eigenvalue problem 2.38 of the finite SSH system numerically,
the above reasoning can be verified. Notably, the boundary termination and hence
also the appearance of the 0D edge states in the 1D band gap can be controlled in-
dependently at both ends. Figure 2.8 shows the eigenfrequencies and two selected
eigenmodes of an exemplary mass-spring chain with 49 sites, corresponding to 24
and a half unit cell. The left end corresponds to a topologically trivial termination
as in equation 2.38 for D2 < D1 and exhibits no edge state. However, due to the
half unit cell, the right end flips into a nontrivial configuration (D2 > D1) and
consequently a localized state emerges, with its frequency inside of the band gap.
Intuitively, the emergence of edge states can be understood in the limit of D1 → 0,
which is called the fully dimerized limit for the electronic SSH model. In this limit,
the bulk of the 1D chain is decomposed into isolated pairs of coupled sublattice
sites. Each pair exhibits a symmetric and antisymmetric state, generating two flat
bulk bands [35]. For the mechanical SSH model, this can be seen in the dispersion
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Figure 2.8: Finite SSH mass-spring chain with 49 sites and fixed ends at site 0 and 50.
(a) The eigenfrequencies (black dots) of the bulk modes resemble the band structure of
the infinite chain (blue line). For each bulk mode, an associated quasi wave number
has been calculated via spatial Fourier transformation. A single eigenfrequency
(dashed line) lies in the band gap, corresponding to the topological edge mode.
(b) Exemplary amplitude pattern of a bulk mode in the upper band. (c) Amplitude
pattern of the edge mode. Due to the uneven number of sites, only the right end is
in the nontrivial configuration, while the left end is trivial.

relation 2.23, where ω1(k) = 0 and ω2(k) =
√

2D2/m for the symmetric and
antisymmetric state, respectively. Only for the nontrivial boundary termination,
an additional single mass is bound to the fixed end via a spring D2 (cf. Fig. 2.8(c)).
The eigenfrequency of this isolated state is

√
D2/m, which is in the gap between

the two flat bands. Due to the discrete topological nature of the SSH model, this
localized state cannot vanish when D1 is switched on again. Only if the coupling
is increased up to D1 > D2 again, the state vanishes due to the topological phase
transition.

It should be noted that such localized states are not only possible at outer
boundaries but can also appear at inner boundaries, i.e., at interfaces between
a trivial and nontrivial SSH-model domain. This corresponds for instance to an
interface with two neighboring D1 bonds [71]. Interface states of this kind will
not be discussed in the course of this work. However, a similar configuration is
discussed in chapter 6.
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SSH Model as Topological Insulator

The dependence of the edge states on the boundary termination makes the SSH
model a quite peculiar topological insulator. Despite very often presented as
simple introductory topological toy model [7, 35], it is clearly different from
other topological classes, such as the 2D IQHE class. There, an explicit boundary
dependency of the topological phase and the edge states is absent. The peculiarity
of the SSH model ultimately originates from its dimensionality, combined with
the dependence on a spatial symmetry. Following a strictly formal definition,
the SSH model itself should be rather seen as one of two topological phases of a
generalized model, the so called Rice-Mele model [34, 44, 72].

Nevertheless, it is exactly the boundary-dependence of 1D mirror-symmetric
system that provides additional freedom in the design of the edge states. Simply
by choosing an appropriate boundary, edge states can switched on or off. That the
two configurations are indeed distinct was also proven experimentally via Bloch
oscillations in optical lattices [70]. Therein, the gauge invariant difference between
the Zak phases of two distinct configurations was measured to be ∆γ ≈ π.

In sections 3.3.4 and 3.4.3, we will see that once edge states are switched on,
they are topologically protected and robust against perturbation, such that they
stay localized and their eigenfrequencies cannot easily be pushed out of the band
gap. Its simple model character combined with its rich topological features lead
to a realization of SSH model analogs in various classical systems, ranging from
photonic platforms [73–76], over static mechanical lattices [67], water and acoustic
waves [77–82], to elastic waves in structured beams [83–85], and extensions such
as 2D SSH-like systems [86] and SSH models with nonlinear springs [87]. While
topological 1D bulk systems are not able to provide any kind of the often desired
protected boundary transport, they are promising for applications that require
spatially and spectrally isolated stable modes, e.g., for lasing and sensing [8, 88],
and also for the design of a proof-of-principle resonant mechanical laser-beam
scanner in the course of this work.

2.4 Effects of Dissipation

In the previous sections, I have already mentioned several realization of topological
systems, especially of classical 1D systems mimicking the SSH model. All such
real-world experiments are usually subject to dissipation of energy, which affects a
system in two ways: First, the resonant behavior of potential boundary states upon
excitation will be governed by damping, as described by the well-known damped
harmonic oscillator model. Second, the topological phases and the protection of
the states itself may be affected, i.e., diminished or even completely lifted. The
description of such effects will involve non-Hermitian topological systems. In the
following, I will discuss both aspects.
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2 .4 effects of dissipation

2.4.1 Damped Harmonic Oscillator and Quality Factor

We start with the well-known damping effects on a harmonic oscillator. To in-
tegrate damping in mechanical systems, e.g., in the mechanical SSH model of
section 2.3, we consider a simple mass-spring system with mass m, real-valued
spring constant D′, and displacement u(t), comparable to equations 2.19. Further-
more, we introduce a velocity-dependent damping force with damping coefficient
β and some external force F(t):

d2u
dt2 +

β

m
du
dt

+
D′

m
u =

F(t)
m

. (2.39)

Though this description is limited to a single mass and spring for clarity, it can be
generalized to mass-spring models as in equations 2.21 or 2.38.

When driving the system time-harmonically with angular frequency ω, i.e.,

F(t) = F̃eiωt and u(t) = ũ(ω)eiωt, (2.40)

the equation for the stationary solution ũ(ω) reads

−ω2ũ +
D
m

ũ =
F̃
m

with D = D′ + iωβ = D′ + iD′′. (2.41)

Here, we have introduced the complex-valued spring constant D with its real and
imaginary part, D′ and D′′, respectively. This will be used in the next section. To
characterize the damping, we define the eigenfrequency ω0 =

√
D′/m and the

damping ratio Γ = β/
√

4mD′ and calculate the resonance curve, i.e., the squared
spectral amplitude

|ũ(ω)|2 =
1

(ω2
0 − ω2)2 + (2Γω0ω)2

·
∣∣F̃∣∣2
m2 . (2.42)

The resonance curve has its maximum at ωres = ω0
√

1 − 2Γ2. In this work, we
will only deal with underdamped systems with small damping ratios Γ ≪ 1. In
this regime, we can quantify damping with the quality factor Q via the ratio of
the resonance frequency to the spectral full width at half maximum (FWHM) ∆ω
of the resonance curve:

Q =
ωres

∆ω
=

ωres

2 ω2
0

ωres

√
Γ2 − Γ4

=
1 − 2Γ2

2
√

Γ2 − Γ4

Γ≪1≈ 1
2Γ

ω≈ω0≈ D′

D′′ . (2.43)

Thus, in the vicinity of the eigenfrequency ω0, the quality factor Q is directly given
by the ratio of real to imaginary part of the complex spring constant D. Note
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that, when using the non-squared resonance amplitude |ũ(ω)|, a scaled FWHM
of ∆ω′ =

√
3∆ω is obtained. There, the maximum amplitude is approximately

proportional to Q. Another definition for the quality factor uses the total energy
Etot in the resonating system divided by the amount of energy ∆E that is dissipated
per oscillation:

Q = 2π
Etot

∆E
. (2.44)

By integrating the damping force over one oscillation, it can be shown that the
definitions in equations 2.43 and 2.44 are equivalent for underdamped systems [89].
In case multiple damping mechanisms are present, the damping coefficients add
up in equation 2.41 and the total quality factor is

1
Qtot

= ∑
i

1
Qi

. (2.45)

This will become relevant when discussing different contributions to measured
total quality factors in section 5.3.3.

2.4.2 Non-Hermitian Topological Systems

I will show in chapters 4 and 5, how dissipation can be strongly reduced to obtain
pronounced resonances in mechanical metamaterials. However, the question
remains, whether not even the smallest dissipation effects could make the above
description in terms of distinct topological classes and topological boundary states
obsolete. This question was discussed within the scope of the bachelor’s thesis of
Steven Kraus in collaboration with Jörg Schmalian [90].

As the eigenproblems to be analyzed in terms of topology, e.g., in equation 2.21,
are in frequency domain, we can use the approach of complex spring constants as
in equation 2.41. However, replacing the originally real-valued spring constants by
complex-valued quantities renders the dynamical matrices, e.g., in equation 2.22,
non-Hermitian. At first, this breaks down the formalism of topological band
theory as introduced in section 2.2. The eigenvalues corresponding to the squared
frequencies, λn = ω2

n, are no longer real-valued and, more importantly, the
eigenvectors do not form an orthogonal set anymore. To partially recover orthogo-
nality relations for non-Hermitian matrices, the set of left eigenvectors |um,L⟩ is
introduced in addition to the right eigenvectors |un,R⟩ [91]:

D̂ |un,R⟩ = λn,R |un,R⟩ , (2.46)

D̂† |um,L⟩ = λ∗
m,L |um,L⟩ , (2.47)

⇔ ⟨um,L| D̂ = λm,L ⟨um,L| . (2.48)
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Here, the k-dependency of the dynamical matrix, the eigenvectors, and the eigen-
states has been omitted for a moment and we use bra-ket notation for convenience.
The eigenvalues are assumed to be non-degenerate within the two distinct sets.
By combining equations 2.46 and 2.48, we get

⟨um,L|D̂|un,R⟩ = λm,L ⟨um,L|un,R⟩ = λn,R ⟨um,L|un,R⟩
⇔ (λm,L − λn,R) ⟨um,L|un,R⟩ = 0,

(2.49)

such that we can find pairs of corresponding left eigenvectors and right eigen-
vectors that can be labeled with n = m and share the same eigenvalue λn,R =
λn,L = λn. The left and right eigenvectors are biorthogonal, meaning that each left
eigenvector is orthogonal to all right eigenvectors except for its corresponding one
and vice versa [92]. We can normalize the states by requiring

⟨um,L|un,R⟩ = δm,n. (2.50)

In this form, the left and right eigenvectors can be used to calculate the Zak phase
of individual bands via a generalized version of equations 2.13 and 2.14 [93–95]:

γc
n = − Im

ˆ π/a

−π/a
⟨un,L(k)|∂kun,R(k)⟩dk, (2.51)

= − Im
π/a−dk

∑
ki=−π/a

ln ⟨un,L(ki)|un,R(ki + dk)⟩ . (2.52)

Thus, when switching on dissipation in a 1D topological system, it has to be
checked if the quantization of the Zak phase of the non-dissipative system trans-
lates into a quantization of the generalized Zak phase. If that is the case, the
distinct topological phases and the topological protection of boundary states stay
intact.

Notably, for the numerical calculation of the generalized Zak phase, more
attention has to be payed to the phase convention as compared to the Hermitian
scenario in section 2.3.2. Each of the distinct left and right eigenvectors has
its own arbitrary phase factor, which can spoil the result for the generalized
Zak phase [96]. In the course of his bachelor’s thesis, Steven Kraus defined
a transformation that obeys the normalization condition of equation 2.50 and
additionally fixes the phases of the left and right eigenvectors in a symmetric
manner. The transformation assures a smooth phase evolution and a well-defined
generalized Zak phase. It can be found in the appendix A.4. The formalism of the
generalized Zak phase can be used for Hermitian problems as well. There, the left
eigenvectors are equivalent to the right eigenvectors according to their definition
in equation 2.47, thus resembling the standard Zak phase again.
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Damped Su-Schrieffer-Heeger Model

Different non-Hermitian extensions of the SSH model have been discussed to
study the influence of loss and gain on the system’s topology [95, 97]. We will
limit ourselves to damping implemented by complex-valued spring constants as
discussed in the last two sections. Notably, both time-reversal symmetry and
parity symmetry stay preserved under this transition. Therefore, the vector d(k)
of equation 2.30 representing the dynamical matrix is still confined to the complex
plane, as shown in Figure 2.6(b). Hence, the quantization of the winding number
and the complex Zak phase are preserved. However, as the spring constants
D1 and D2 are now complex, the center point of the rotating vector d(k) is not
confined to the real axis anymore. As a consequence, the winding number now
changes at the characteristic point |D1| = |D2| and the topological phase depends
also on the imaginary parts of the spring constants.

We will incorporate damping for the coupled SSH mass-spring model in sec-
tion 3.3. Thereby, we will only consider imaginary parts that are proportional
to the real part of each spring constant. Following the above explanation, the
topological phases and even the phase transition point should not change by this.
For numerical verification, the complex Zak phase equation 2.52 will be evaluated
as well.

2.5 Continuum Mechanics

In this work, the aim is to design and realize a topological mechanical system in
the form of 3D structures made of solid material. The static and dynamic behavior
of such structured material bodies is captured via the equations of continuum
mechanics. In the following, I will introduce the material properties and equations
that generalize the case of discrete mass-spring models, as in section 2.3, to
continuous mass distributions. The discussion will be limited to the description
of an isotropic linear elastic material, including intrinsic material damping in the
form of viscoelasticity. For a rigorous and complete introduction, I would like to
refer to standard textbooks on continuum mechanics [98–100], which have been
the basis for this short overview. As transition to the next chapter, I will present
the phononic band structure of an exemplary 1D-periodic structure.

2.5.1 Stress, Strain, and Motion

The deformation of a material body is described by its displacement field u(r, t),
where r is the continuous space coordinate. As for a mass-spring model, forces
are a result of local differences in the displacements which lead to nonzero strains
within the material. For a continuous 3D mass distribution, the local strain is
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given by the spatial gradient of the three displacement components i along the
three dimensions j of the coordinate system. In the limit of small displacement
gradients, the strain at each point is approximated by the infinitesimal strain
tensor

ϵij =
1
2

(
∂ui

∂rj
+

∂uj

∂ri

)
. (2.53)

Similarly, the forces acting within a material body have to be generalized. The local
forces acting along coordinate j on a virtual surface with a unit area perpendicular
to coordinate i are described by the Cauchy stress tensor σij. Now the relation
between displacements and force can be transformed to the relation between strain
tensor ϵ̂ and stress tensor σ̂. For a linear elastic Cauchy continuum, this leads to a
generalized version of Hook’s law:

σij = Cijklϵkl, (2.54)

using Einstein summation convention. The tensor Ĉ, called stiffness tensor or
elasticity tensor, defines the material properties. Assuming an isotropic material,
the entries of this fourth-order tensor are fully defined by two material parameters,
e.g., by Young’s modulus E and the Poisson’s ratio ν [100]:

Cijkl =
E

2(1 + ν)

(
δilδjk + δikδjl

)
+

Eν

(1 + ν)(1 − 2ν)
δijδkl. (2.55)

Here, the Young’s modulus E measures the stiffness of the isotropic material via
the ratio of stress σ11 to strain ϵ11 that is induced along the same direction [101]:

E =
σ11

ϵ11
. (2.56)

The Poisson’s ratio ν is defined via the lateral strain, i.e., ϵ22 or equally ϵ33, that
goes along with a strain ϵ11 in the perpendicular direction [101],

ν = −ϵ22

ϵ11
. (2.57)

With the mass density ρ of the material, the equations of motion for a linear elastic
material can now be written in terms of the components of the displacement and
stress at each point [100]:

ρ
∂2uj

∂t2 −
∂σij

∂ri
= ρ

∂2uj

∂t2 − Cijkl
∂2uk

∂rj∂rl
= f j, (2.58)

where f j are components of a potential force field acting on the body, e.g., due
to gravity. Leaving such forces aside and using a longitudinal plane wave ansatz,
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the equations 2.53 to 2.55 plugged into equation 2.58 result in a linear dispersion
relation:

ω(k) =

√
C1111

ρ
k =

√
E(1 − ν)

ρ(1 + ν)(1 − 2ν)
k = clk. (2.59)

In chapter 3, we will use the phase velocity cl of the longitudinal plane wave
propagating in a bulk material to normalize the dispersion relation of the periodic
3D structures with respect to their material parameters. Comparable to the
procedure in equation 2.24 for mass-spring models, normalized frequencies f̃ and
ordinary frequencies f are linked via

f̃ =
a
λ
= f

a
cl

, (2.60)

where λl is the wavelength of the longitudinal mode and a the unit cell size of the
periodic structure.

2.5.2 Viscoelasticity

In section 2.4.1, a velocity-dependent damping force has been introduced to
account for losses in mass-spring systems. For a bulk materials, damping arises
due to a viscous contribution to the ideal linear elastic material behavior of
equation 2.54 [98]. When working in frequency domain, this damping can also be
absorbed by introducing an imaginary part that adds to the originally real-valued
material parameters.

For a real-world material, the viscous behavior cannot be captured via a single
damping term. Instead, the material has to be modeled via the so-called general-
ized Maxwell model to account for relaxation and retardation mechanisms [102].
Within this model, the material’s relation between stress σ and strain ϵ in one
dimension is modeled by multiple Maxwell elements which are connected in
parallel. Thereby, each Maxwell element consist of a spring with spring constant
Ei which is connected in series to a damper of viscosity ηi. The total stress σ in
the material is then given by the sum of the stresses σi of the individual elements:

σ = E0ϵ + ∑
i

σi. (2.61)

Here, E0 represents the Young’s modulus of the material in the static limit. For
each Maxwell element, the strain rate ϵ̇i is given by the contributions of its spring
and its damper [98]:

ϵ̇i =
σ̇i

Ei
+

σi

ηi
. (2.62)

Assuming time-harmonic stresses and strains with an angular frequency of ω
in above equations, the overall dynamic stress-strain relation of the generalized
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Maxwell model results in

σ̃(ω) =

(
E0 + ∑

i
Ei

ω2τ2
i

1 + ω2τ2
i
− i ∑

i
Ei

ωτi

1 + ω2τ2
i

)
ϵ̃(ω)

= (E′ + iE′′)ϵ̃(ω),

(2.63)

with the characteristic relaxation times τi = ηi/Ei of the individual elements.
Thus, for a linear viscoelastic material, we can use the complex dynamical Young’s
modulus E = E′ + iE′′ for calculations in frequency domain. In analogy to
section 2.4.1, the material damping can be characterized by the quality factor,
which is approximately Q = E′/E′′ for an underdamped system. Within the
generalized Maxwell model, the real part E′ of the complex dynamical Young’s
modulus approaches a constant value for sufficiently large frequencies ω≫1/τi,
while the imaginary part E′′ vanishes. In the experiments in chapter 5, the
materials will be subject to dynamic stresses and strains with frequencies in
the ultrasound regime. Thereby, the investigations are mostly limited to small
frequency intervals, such that we will assume a constant complex dynamical
Young’s modulus in corresponding calculations.

2.5.3 Phononic Band Structures of Solid Periodic Structures

The equations of section 2.5.1 are sufficient to describe the static and dynamic
behavior in a solid bulk in linear approximation. However, to be able to analyze
3D structured material bodies, these partial differential equations have to be
solved on a potentially complex continuous domain, while respecting the given
boundary conditions. The numerical tool of choice for problems of this kind is
the finite-element method (FEM) [100, 103]. There, the continuous domain, for
instance of a material body, is discretized into small volume elements, as shown
in Figure 2.9. The differential equations are then solved only at the elements’
corners, also called the nodes of the finite-element mesh, and interpolated within.
A short summary of the FEM procedure for continuum mechanics is provided in
appendix A.5.

In this work, the eigenmodes and response spectra of mechanical 3D structures
are solved by frequency-domain FEM calculations via the commercial software
COMSOL Multiphysics. In the solid mechanics module of the software, the equa-
tions of continuum mechanics are implemented, as well as the routine to define
the finite elements and the matrix solver to calculate the total 3D displacement
fields.

The calculation of phononic band structures of solid periodic structures goes
along the same lines as for the discrete mass-spring model in section 2.3. One
has to consider only a single unit cell and impose the proper boundary condi-
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Figure 2.9: Finite-element decomposition for a solid mass-spring model with a
tetrahedral mesh generated by COMSOL Multiphysics.

tions along the dimension of periodicity. Following the definition of the Bloch
eigenmodes in equation 2.4, the spatial phase factor arising in the real-space
displacement field u(r) between opposite sides at the planes R and R + a of the
unit cell is

u(R + a) = eikau(R). (2.64)

This so-called Floquet-Bloch periodicity can be imposed onto the corresponding
boundaries in the FEM calculations to obtain the eigenfrequencies and eigenmodes
for a given wave number k. The number of degrees of freedom for a continuous
solid structure is infinite. In the FEM calculations with N nodes it is equal to 3N,
which is usually a large number. As a consequence, a large amount of frequency
bands emerge in the band structure. While the low-frequency bands resemble the
fundamental transverse (shear), rotational (torsional), and longitudinal (pressure)
modes that also appear in a bulk continuum or a solid beam, additional bands
appear due to higher-order backfolding of these modes, as shown exemplary
in Figure 2.10. Additionally local resonances of individual structural elements
can emerge. In the next chapter, the rotational and longitudinal modes and their
interaction in a mechanical metamaterial will be relevant. Bands due to higher-
order backfolding and local resonances in the same frequency regime will be
highly undesired, as they potentially couple to the modes of interest, thereby
rendering a correct description via a simple effective model elusive.

Zak Phase Calculation

In principle, the Zak phase of the phononic bands can be calculated in the same
way as for a simple mass-spring model. However, the number of components of
the FEM Bloch vector |u(k)⟩ that have to be summed up to evaluate the scalar
product in equation 2.32 will drastically increase. At the same time, to get a
smooth Zak phase evolution, the calculation will also require a high resolution
in k-space. Indeed, for a specific 1D continuous periodic acoustic system, such
Zak phase calculations were conducted explicitly [78]. However, for a complex
elastic structure, the overall FEM calculations would be computationally extremely
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Figure 2.10: Exemplary phononic
band structure of a solid mass-spring
chain as in Figure 2.9. The lowest
ten eigenfrequencies per wave num-
ber k, obtained via FEM calculations,
are shown. In contrast to a mass-
spring model with only two longitu-
dinal (axial) DOF per unit cell, a solid
structure has infinitely many DOF,
which reduce to 3N DOF in a corre-
sponding FEM band structure calcu-
lation with N mesh nodes per unit
cell. Fundamental transverse (shear)
and rotational (torsional) bands as
well as other bands emerge, e.g., due
to higher-order backfoldings or local
resonances.

costly and bring parameter sweeps and optimization routines out of reach. Hence,
as an efficient alternative, we will rely on the symmetry of the displacements
fields to obtain the Zak phase via the band inversion procedure, as presented in
section 2.3.3.
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Chapter 3

Design of a Chiral

Topological Metamaterial

In this chapter, I will show the step-by-step design of a chiral mechanical metama-
terial beam that exhibits a 1D topologically nontrivial band gap and associated
protected modes at the boundary of a finite system. Such a metamaterial beam
can resonantly convert a small axial excitation to a large rotational oscillation and
will be used to design a proof-of-principle mechanical laser-beam scanner.

First, I will explain the general concept of metamaterials and introduce a 3D
chiral mechanical metamaterial cell that was developed by Tobias Frenzel et
al. [15–17]. Based on this metamaterial cell, I will derive a mass-spring model
that resembles two coupled Su-Schrieffer-Heeger (SSH) models. I will explore
the topological features of this model and identify the parameter regime that
provides the desired topologically protected edge modes. From the findings of the
mass-spring model, I will infer the design of a corresponding chiral metamaterial
beam and investigate its band structure and edge resonances via finite-element
method (FEM) calculations. I will close the chapter by summarizing the findings
for both the mass-spring model and the chiral metamaterial beam.

The key theoretical findings of this chapter have already been published previ-
ously [104]. In this thesis, the geometrical dimensions and material parameters
used for the metamaterial beam calculations have been adapted according to the
fabricated structures, as will be presented in chapter 4. I have conducted all calcu-
lations on the infinite and finite version of the coupled SSH model. Also, I have
developed the design of the metamaterial beam and conducted corresponding
FEM calculations. Together with Tobias Frenzel, I have worked out the chirally
coupled mass-spring model. Jörg Schmalian has strongly contributed to the
topological classification of the coupled SSH model. Martin Wegener has had an
advisory role in all aspects.
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3.1 3D Chiral Mechanical Metamaterials

A metamaterial can be defined as a rationally designed structure with extraordi-
nary effective material properties that go qualitatively or quantitatively beyond
those of its constituent materials [10]. In contrast to natural or artificial composite
materials, such as wood or concrete, a metamaterial is assembled out of tailored
building blocks which provide a specific functionality and thereby govern the
metamaterials’ behavior. Usually, these building blocks are arranged periodically
along one, two, or all three dimensions of space.

At the latest after the term metamaterial was coined in 2001 by Walser in the
context of electromagnetism [105], the concept was established in various fields
and evolved quickly. The plenty of proposals and realizations of metamaterials is
summarized and reviewed in several publications [10, 106, 107], some focusing
on optics and photonics [108–110], or acoustics and mechanics [12, 111–114].
Prominent examples in different fields are optical metamaterials with negative
refractive index, first shown in the microwave regime and later realized in the
visible spectrum [115, 116], thermal cloaks [117], and chainmail-like metamaterials
that reverse the sign of the effective Hall coefficient [118–120]. In mechanics,
some research seeks to push effective material parameters toward their theoretical
bounds, e.g., via ultralight, ultrastiff, and ultrastrong materials [11, 121], or via
auxetic metamaterials, i.e., materials with negative effective Poisson’s ratio [122,
123]. Other mechanical metamaterials exhibit remarkable properties in response to
acoustic waves or outer conditions, such as optimal sound absorbers or reusable
shock absorbers [124, 125], and metamaterials with negative effective thermal
expansion or negative effective compressibility [126, 127].

The design of a specific metamaterial is usually posed as an inverse problem
where the desired effective property and functionality is given as starting point and
the therefore required building block and its spatial arrangement is the outcome.
Depending on the target, the working principle of a metamaterial can be based on
a non-resonant or resonant mechanism and might only function in the presence
or absence of certain symmetries. Once a proper mechanism has been identified,
a common goal is to map the metamaterial’s behavior, at least in a certain regime
of operation, to effective material properties [10, 128]. However, especially for
structures that rely on dynamic and resonant effects, such as phononic crystals
with ordinary or even topological band gaps, as presented in the last chapter, it is
conceptually difficult to extract effective material parameters [10]. Also for the 1D
topological mechanical metamaterial that I will present in the following sections it
will not be the aim to infer an effective material description. Instead, the goal is to
obtain a specific functionality. Still, on the way there, the working mechanism of
chiral cubic mechanical metamaterials, which can indeed be described in terms of
an effective material [15, 16], will be used. Furthermore, the metamaterial cell will
be mapped to a mass-spring model with effective spring constants.

42



3 .1 3d chiral mechanical metamaterials

u

φ

zx

y

Figure 3.1: A chiral cubic metamate-
rial cell. The chiral cell is a uniaxial
version of the cell designed by To-
bias Frenzel et al. [15]. When push-
ing along the z-direction onto the
left plate while fixing the right one,
the axial push with displacement u
causes a rotation φ around the z-
axis. This push-to-twist coupling is
induced via the chiral ring elements
on the four sides and can be used to
convert an axial to a rotational mo-
tion. The wireframe shows the cell in
undeformed state.

3.1.1 Chirality and Push-to-Twist Coupling

Generally, an object is called chiral if it is distinct from its mirror image, in a sense
that it cannot be superimposed with its mirror image by means of translation or
rotation [129]. This happens, if the object lacks centrosymmetry, mirror symme-
tries, and rotation-reflection symmetries [130–132]. Chiral objects of both natural
and artificial kind are ubiquitous and appear on all scales, ranging from spiral
galaxies over screws, springs, and the human’s own hands, down to enantiomeric
molecules. Notably, more than half of modern medical drugs rely on chiral
molecules, and the effects and side effects of two distinct mirror-imaged molecules
can be drastically different due to chiral receptors in the human organism [133].
Indeed, in most cases, chirality imposes a preference onto a system, may it be the
preference of a biological receptor toward a certain enantiomer, or the direction
in which a screw should be driven. Similarly, in the case of chiral mechanical
metamaterials, we will make use of a preferential twist direction upon a push, the
so-called push-to-twist mechanism.

3D chiral mechanical metamaterials have recently been investigated in detail,
both theoretically and experimentally [15–17, 132, 134]. An exemplary character-
istic building block of such metamaterials is the chiral cubic cell as introduced
by Tobias Frenzel [15]. Metamaterials composed of this building block have a
pronounced push-to-twist mechanism in the static regime, as shown in Figure 3.1.
Additionally, in the dynamical regime, they exhibit acoustical activity, meaning
that the linear polarization axis of a transverse elastic wave will rotate upon prop-
agation in the metamaterial’s bulk [17]. Chiral metamaterials can be described via
a generalized effective medium theory, i.e., micropolar continuum mechanics [15,
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135, 136]. Within this theory, rotational degrees of freedom (DOF) φk are allowed
in addition to the translational DOF ul at each position of the material. The gener-
alized Hook’s law introduced in section 2.54 thereby gets extended by a second
equation and additional terms, including the tensors Bijkl = B′

klji to account for
the chiral coupling between rotation and translation [15]:

σij = Cijklϵkl + Bijkl φkl,

tij = Aijkl φkl + B′
ijklϵkl,

with ϵkl =
∂ul
∂rk

− εklm φm, φkl =
∂φk
∂rl

,

(3.1)

and the Levi-Civita symbol εklm. Here, tij is called the coupled stress tensor and
Aijkl is the corresponding generalized elasticity tensor. In this work, we will not
use the above continuum equations but rather a reduced and discretized version
that describes the uniaxial push-to-twist mechanism in an individual metamaterial
cell. For a single cubic cell as displayed in Figure 3.1, we can assign masses m
and moments of inertia j to adjacent plates. Fixing one of the two plates while
imposing a z-displacement u and an angle of rotation φ around the z-axis, an axial
force F and a torque τ is induced:

F = m
d2u
dt2 = −Du − Bφ,

τ = j
d2φ

dt2 = −Aφ − B′u.
(3.2)

The effective longitudinal (axial) spring constant D, the effective torsional spring
constant A, and the effective longitudinal-torsional coupling constants B and B′

are dependent on the exact geometry of the chiral cube cell. It holds B = B′ due
to energy conservation.

In section 3.3, I will use this effective mass-spring approach to design a topo-
logical mechanical metamaterial beam by combining the push-to-twist mechanism
with the topological features of the SSH model introduced in the last chapter.
Notably, for a complete description of the fundamental degrees of freedom of
a metamaterial beam, also transverse (shear) displacements would have to be
taken into account, as explained in section 2.5.3. Still, within the micropolar
continuum theory [136], the transverse DOF live in an orthogonal subspace, i.e.,
they are decoupled from the longitudinal and rotational DOF and do not have to
be included in the effective mass-spring model.
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Figure 3.2: Concept of a resonant mechanical laser-beam scanner. Using a topo-
logically protected edge mode, an axial excitation (blue arrow) at the left side is
transformed to a rotational motion (orange arrow). The rotation is localized to the
right end and resonantly enhanced with respect to the excitation. By the topological
protection, a perturbation in the form of a mirror can be added without destroying
the edge mode, allowing to scan a laser beam. Adapted from [137] (CC BY 4.0).

3.2 Combining Chirality and Topology

The aim of this work is to design a chiral metamaterial beam that converts axial to
rotational oscillations, serving to realize a resonant mechanical laser-beam scanner
that operates at frequencies in the kilohertz regime. As introduced in the previous
section, the conversion from axial to rotational motion is already provided by
the push-to-twist coupling mechanism of the chiral cubic cell [15]. Hence, the
simplest design approach for the laser-beam scanner would be to stack chiral cells
along one dimension to obtain a metamaterial beam. When exciting this beam
at one end with an axial oscillation, e.g., provided by a piezoelectric transducer,
this would convert to a torsional oscillation after a certain distance of propagation.
A mirror plate attached at that position would rotate and thereby allow to scan
a laser beam. However, this basic approach has two major downsides: First, in
the kilohertz regime, the axial excitation that can be provided by a piezoelectric
transducer is notoriously small, with amplitudes in the range of a few nanometers
only. On top, the excitation can also be undefined, meaning that it can contain
undesired transverse motion. Second, as one picks up the rotational motion at the
point of the mirror, the beam scanner’s mode of operation will be perturbed and
not working as designed anymore.

To overcome these two problems, it is advantageous to introduce a topologically
protected mode into the metamaterial beam. Via this mode, the rotational ampli-
tude can be resonantly enhanced with respect to the axial excitation amplitude
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while making it robust to potential modifications or defects of the structure. The
conceptual working principle of a resonant mechanical laser-beam scanner based
on such a topological edge mode is shown in Figure 3.2. It consists of a finite chiral
metamaterial beam that exhibits a topologically protected torsional mode, in the
following also called rotational or twist mode. As introduced in chapter 2, such a
protected mode has its frequency inside of a band gap and its rotation amplitude
has to be localized to one of the beam’s end. Due to the topological protection, we
can attach a mirror plate to this end, without significantly affecting the mode and
without pushing its frequency out of the band gap. In this configuration, the twist
edge mode can be excited axially (longitudinally) from the other end of the beam
via evanescent waves, while it is otherwise spatially and spectrally decoupled
from its surrounding. This decoupling makes sure that the resonant rotational
oscillation of the mirror is not perturbed by other undesired mechanical motion,
such as transverse oscillations.

3.3 The Coupled Su-Schrieffer-Heeger Model

To introduce the desired topological twist edge mode into a chiral metamaterial
beam, we design an extended version of the mechanical Su-Schrieffer-Heeger
model presented in section 2.3. Thereby, the topological effect of a diatomic basis
and the chiral push-to-twist mechanism are combined. For the chiral metamaterial
beam, the diatomic basis can be realized by stacking alternating cube cells, which
are distinct in their effective spring constants according to equation 3.2. Reducing
the configuration to an effective mass-spring model, as shown in Figure 3.3, the
system can be described via four degrees of freedom per unit cell. These are
the longitudinal displacements ui,a and ui,b and the rotations φi,a and φi,b of the
structure’s plates at the two sublattice sites a and b. The resulting equations of
motion for sublattice site a of unit cell i are

maüi,a =D1 (ui,b − ui,a) + D2 (ui−1,b − ui,a)

+ B1 (φi,b − φi,a) + B2 (φi−1,b − φi,a) ,
(3.3)

ja φ̈i,a =A1 (φi,b − φi,a) + A2 (φi−1,b − φi,a)

+ B1 (ui,b − ui,a) + B2 (ui−1,b − ui,a) ,
(3.4)

where D1 (D2), A1 (A2), and B1 (B2) are the intracell (intercell) effective coupling
constants of the two distinct chiral cell types. Equivalent equations can be derived
for sublattice site b.
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Figure 3.3: Mapping a chiral metamaterial beam to a diatomic mass-spring model.
(a) The metamaterial beam consists of chiral cube cells that are alternated by a subtle
structural difference (red ellipses). The vertical plates between the rings can be
mapped to discrete elements with a given mass and moment of inertia, coupled via
effective springs. (b) The resulting mass-spring model has both a longitudinal (axial)
DOF u (in blue) and a rotational DOF φ (in orange) at each of the two sublattice sites
a and b per unit cell (dashed gray box). The longitudinal and rotational subsystem
each resembles a mechanical SSH model, with additional coupling due to chirality
(dotted lines). Adapted from [104] with permission.

Using a wave ansatz as for the simple SSH model in equation 2.20, we get the
temporally and spatially Fourier-transformed equations in matrix form:

D̂(k)un(k) = ω2
n(k)un(k),

with un(k) =
(√

maun,a(k),
√

mbun,b(k),
√

jaφn,a(k),
√

jbφn,b(k)
)T

.
(3.5)

The Bloch vectors un(k) of the four bands with band index n contain the four
degrees of freedom, normalized with respect to the masses ma(b) and moments
of inertia ja(b) at the two sublattice sites. With this, the wave-number-dependent
dynamical matrix is given by

D̂(k) =



D1+D2
ma

−D1−D2e−ika
√

mamb

B1+B2√
ma ja

−B1−B2e−ika√
ma jb

−D1−D2eika
√

mamb

D1+D2
mb

−B1−B2eika√
mb ja

B1+B2√
mb jb

B1+B2√
ma ja

−B1−B2e−ika√
mb ja

A1+A2
ja

−A1−A2e−ika√
ja jb

−B1−B2eika√
ma jb

B1+B2√
mb jb

−A1−A2eika√
ja jb

A1+A2
jb


. (3.6)

Here, a is the lattice constant. Notably, the dynamical matrix perfectly resembles
two individual mechanical SSH models on the two 2×2 diagonal blocks. One
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SSH model represents the longitudinal DOF and the other one the rotational DOF,
with a chiral coupling of both via the off-diagonal blocks. In terms of the above
eigenproblem it is possible to investigate the band structure and its topology along
the lines of the simple SSH model in section 2.3.

3.3.1 Symmetry Classification

The analysis starts with the symmetry classification [42] of the dynamical matrix
D̂(k) in equation 3.6. Assuming only real-valued coupling constants and thereby
neglecting damping effects, the dynamical matrix is a Hermitian operator with
D̂†(k) = D̂(k). We find that

T̂D̂T(k)T̂−1 = D̂(−k) with T̂2 = (σ0 ⊗ σ0)
2 = +1, (3.7)

resembling bosonic time-reversal symmetry. A more general consideration includ-
ing damping effects will be discussed briefly in section 3.3.5. Following the results
of the simple SSH model, we require a second, spatial symmetry to be present in
order to generate distinct topological phases with a quantized Zak phase as their
Z2 topological index. Such a symmetry is established by forcing the masses and
moments of inertia at the two sublattice sites to be equal, i.e., ma = mb = m and
ja = jb = j. Then it holds

P̂D̂(k)P̂−1 = D̂(−k) and P̂2 = +1,

with P̂ = σ0 ⊗ σx =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .
(3.8)

As for the SSH model, the parity operator P̂ corresponds to an inversion or mirror
symmetry and exchanges the two sublattice sites in the Bloch vector:

P̂


√

m un,a(k)√
m un,b(k)√
j φn,a(k)√
j φn,b(k)

 =


√

m un,b(k)√
m un,a(k)√
j φn,b(k)√
j φn,a(k)

 . (3.9)

With the two symmetries T̂ and P̂, the coupled system is a topological crystalline
insulator. Due to the dimensionality of the dynamical matrix, the quantization of
the associated winding number and the formation of distinct topological phases
cannot be easily visualized and verified via a rotating vector d(k) as in section 2.3.1.
However, we can calculate the bands’ Zak phases. Additionally, by knowing the
parity operator P̂, the principle of band inversion as introduced in section 2.3.3
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(a) (b) (c)

Figure 3.4: Band structures and Zak phase evolution of two (a) uncoupled SSH models
(B1 = B2 = 0), accounting for longitudinal (blue) and rotational (orange) modes.
(b) By chirally coupling the two subsystems, the modes mix and a band gap opens
up via an avoided crossing between the second and third band. (c) The Zak phases
γn of the four bands are all quantized, with the second and third band, and thus
also the induced band gap, being nontrivial. The coupling constants that generate
the band structure in normalized frequencies are D̃1 = D1a2/m = 0.1157 Nm/kg,
D̃2 = 0.354D̃1, Ã1 = A1a2/j = 0.0293 Nm/kg, Ã2 = 1.081Ã1, B̃1 = B1a2/

√
mj =

0.0019 Nm/kg, and B̃2 = 6B1. Panel (a) and (b) adapted from [104] with permission.
Panel (c) adapted from [137] (CC BY 4.0).

can be applied to evaluate the topological phase of individual bands. At the high-
symmetry points at k = 0 and k = π/a, the eigenvectors can either be symmetric
or antisymmetric upon action of P̂.

3.3.2 Band Structure and Zak Phases

Panels (a) and (b) of Figure 3.4 show two exemplary band structures for the
system of two SSH models in the absence and presence of chiral coupling. The
chosen effective coupling constants resemble the behavior of the 3D chiral meta-
material cells that will be designed in section 3.4. Without the chiral coupling, the
longitudinal and rotational bands are independent. Each of the subsystems may
be in its topologically trivial or nontrivial phase, depending on the ratio of the
corresponding spring constants. It shall be noted once again, that the topological
phase also depends on the unit cell convention shown in Figure 3.3, as explained
in section 2.3.4. This will be considered later by setting the boundary conditions
of the finite system.
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Figure 3.5: Contours of the four complex components of the second band’s eigenvector.
These components are used to calculate the Zak phase evolution across the first
Brillouin zone from k = −π/a (black) to k = π/a (light blue). The first component is
normalized to be real-valued. At k = 0 (black crosses), the longitudinal components
dominate the band and the associated parity eigenvalue of the eigenvector is p0 = +1.
In contrast, the parity eigenvalue at k = π/a (black circles) is pπ = −1, indicating
a band inversion. There, the band has more rotational character. The second
component winds closely around the origin, leading to a steep Zak phase evolution
at the Brillouin zone boundaries, as show in Figure 3.4. Adapted from [137] (CC BY
4.0).

By switching on the chiral coupling, the longitudinal and rotational modes mix.
As inherited from the uncoupled system, the first and third band are rotationally-
dominated and the second and fourth band are longitudinally-dominated in the
vicinity of k=0. Due to an avoided crossing, also called anticrossing, a band gap
opens up between the lower and upper two bands. To check if this band gap is
topologically nontrivial, we explicitly calculate the Zak phase evolution for the
four bands via equation 2.32, as shown in Figure 3.4(c). Figure 3.5 exemplary
shows the contours of the four complex components of the Bloch eigenvector
that enter into the Zak phase calculation of the second band. Two of the four
components show a winding around the origin as for vector d(k) for the SSH
model. The nontriviality of the second band is indicated by a band inversion with
parity values of p0 = +1 and pπ = −1. We find that the Zak phases are quantized
as long as the mirror symmetry is preserved via equal masses and moments of
inertia. The topological index κ of the band gap, given by the Zak phases of the
subset of the two bands below the gap, is determined via equation 2.35. Indeed,
as the first band is trivial and the second band is nontrivial, the emerging band
gap is topologically nontrivial with κ = 1. Hence, a finite version of the coupled
SSH system can provide protected edge states.
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Figure 3.6: Topological phase diagrams of the four bands (cf. Fig. 3.4) for variation of
the longitudinal and rotational spring constant ratios, D2/D1 and A2/A1, respectively.
D1 and A1 are kept constant. The fourth band inherits its phase diagram mostly
from the SSH mechanism and is nontrivial for D2 > D1. The other three bands are
affected by the anticrossing, leading to complementary phase diagrams for the first
two bands. This guarantees a nontrivial band gap over a large parameter regime.
The crosses mark the effective coupling parameters used in Figure 3.4. Parts adapted
from [104] with permission.

3.3.3 Topological Phase Diagrams

Before considering a finite system, it is worth to understand the mechanisms that
determine the topological indices of the bands and the band gap. We sweep the
longitudinal and rotational spring constants for a fixed chiral coupling to obtain
a topological phase diagram for each band, as shown in Figure 3.6. Thereby,
we use the band inversion along equation 2.34 as indicator to rapidly calculate
the Zak phases of the individual bands for a large parameter set. As above, the
topological index κ of the band gap itself is determined by the Zak phases of the
two lower bands according to equation 2.35. Equal Zak phases of γ1 = γ2 = 0 or
γ1 = γ2 = π render the band gap trivial. For only one Zak phase equal to π, the
band gap becomes topologically nontrivial.

The topological phase transition behavior turns out to be much more detailed as
compared to the simple SSH model. The driving factor therefore is the anticrossing
of the second and third band. As these bands do not cross anymore, they inherit
each others parity values pπ at the Brillouin zone boundary. At the same time, the
parity values pπ of the first and second band are related via the SSH mechanism,
as both bands originally resulted from the acoustic and optical branch of the
rotational SSH system. Combining both effects, either the first or the second band
is nontrivial over a wide parameter range. This notable result means that this
band gap has a topological index of κ = 1 and is always nontrivial in this range.
Even a change of the unit cell convention would just flip which of the two lower
bands is nontrivial. Thus, in strong contrast to the simple SSH model, the coupled
SSH model is expected to exhibit protected edge states both when terminated
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at sublattice site a or b. Only for very small longitudinal and rotational intercell
coupling constants, the second and third band do not cross anymore and allow
for a zero Zak phase of both lower bands, generating a trivial band gap.

3.3.4 Topologically Protected Edge Modes

Following the topological phase diagrams and the bulk-boundary correspondence,
the emergence of protected edge states should be inevitable for the coupled SSH
model. However, to verify the bulk-boundary correspondence for the simple SSH
model in section 2.3.5, it was assumed that the springs of the finite system are
attached to fixed ends on both sides. Having the application for a laser-beam
scanner in mind (cf. Fig. 3.2), an open end of the metamaterial beam at the
mirror’s position is preferable. Only in that way the mirror is largely decoupled
from its surrounding and can rotate freely.

Following this motivation, we consider a finite version of the chirally coupled
SSH system, where the left end is fixed, e.g., to a piezoelectric transducer, and the
right end is open with a larger mass mr and a larger moment of inertia jr due to
the mirror. Then, the matrix equation for the real-space amplitudes read

Q̂U(z) = ω2
zU(z), with

U(z) =
(√

mu(z)
1,a ,
√

jφ(z)
1,a ,

√
mu(z)

1,b

√
mφ

(z)
1,b, ...,

√
mru

(z)
N,a,

√
jrφ

(z)
N,a

)T
,

Q̂ =



D̃l B̃l −D̃1 −B̃1 0 0 0 0
B̃l Ãl −B̃1 −Ã1 . . . 0 0 0 0

−D̃1 −B̃1 D̃d B̃d 0 0 0 0
−B̃1 −Ã1 B̃d Ãd −D̃1 −B̃1 0 0

...
. . . −B̃1 −Ã1 0 0

0 0 0 −D̃1 −B̃1 D̃d B̃d −D̃2 −B̃2
0 0 0 −B̃1 −Ã1 B̃d Ãd −B̃2 −Ã2
0 0 0 0 0 −D̃2 −B̃2 D̃r B̃r
0 0 0 0 0 −B̃2 −Ã2 B̃r Ãr


.

(3.10)

Here, Q̂ is the real space dynamical matrix, N the number of unit cells, and z
the solution number. The rotational and longitudinal DOF in the vector U(z) are
arranged corresponding to their spatial order. The matrix elements on the block
diagonal in the bulk (subscript d) and at the fixed left end (subscript l) are equal
and given by

D̃l = D̃d = D̃1 + D̃2, Ãl = Ãd = Ã1 + Ã2, and B̃l = B̃d = B̃1 + B̃2. (3.11)

At the right end, the coupling constants both on the block diagonals and block
off-diagonals are scaled according to mr and jr, and the coupling to the next

52



3 .3 the coupled su-schrieffer-heeger model

longitudinal

rotational

(a) (b)

am
p
li
tu
d
e

site
0 10 20 30 40 50

-1

0

1

am
p
li
tu
d
e

(c)

-1

0

1

Figure 3.7: Finite coupled SSH system with fixed left end at site 0 and an open right
end at site 49. To mimic an attached mirror, the right end has a larger mass and
moment of inertia mr = 2m and jr = 2j, respectively. (a) The eigenfrequencies of the
system with their corresponding quasi wave numbers, calculated via spatial Fourier
transformation, resemble the band structure of the infinite system. Two frequencies
lie within the band gap, corresponding to localized modes at (b) the right end and
(c) the left end. Adapted from [104] with permission.

element on the right is absent, such that

D̃r =
D2a2

mr
, Ãr =

A2a2

jr
, and B̃r =

B2a2√
mr jr

. (3.12)

Figure 3.7 shows the calculated eigenfrequencies of a such a finite system with 50
sites (N = 25). The system begins with a fixed sublattice site b (site 0) and ends
with a loose sublattice site a (site 49), corresponding to the boundary terminations
that will be chosen for the metamaterial beam in section 3.4 as well. Two edge
modes with their frequencies inside the band gap emerge. The longitudinal and
rotational amplitudes are clearly localized to the individual boundary. As inferred
from the Zak phases and topological phase diagrams, the edge states emerge both
for the termination by an a-site and by a b-site.

Edge Mode Robustness

The above results show that the edge modes seemingly emerge without further
fine tuning when the bulk is equipped with the proper symmetries. After all, this
is exactly the motivation for the design of a topological system. Still, the coupled
SSH system is a topological crystalline insulator and the topological protection
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Figure 3.8: Robustness of the topologically protected edge modes under variation of
the right end’s mass and moment of inertia by a factor µ. (a) Eigenfrequencies of the
bulk modes and detected edge modes in the spectral region of the two band gaps.
For µ < 1, the system has a quasi-open end. The bulk-boundary correspondence
does not hold and localized modes appear only in the form of accidental defect
modes, shown in (b). For a quasi-fixed end with µ > 1, the edge mode is guaranteed
and its frequency stabilizes toward the center of the band gap. (c) Approaching µ = 1
(dashed black line), the amplitudes at the last site can be maximized in trade-off
against a slightly increased penetration depth as compared to (d) for a larger factor µ.

relies on the preservation of spatial symmetries at the boundary, as indicated in
section 2.2.5. A certain sensitivity of the edge modes toward different boundary
conditions is already visible in Figure 3.7. For the two modes localized at the fixed
end and at the open end with larger mass, the eigenfrequencies are not equal. This
rises the question if there is a regime where the topological protection vanishes,
such that the frequencies are pushed out of the band gap and localized modes are
absent.

To study such effects, we change the boundary conditions in the finite system
described by equation 3.10. The left boundary is switched from a fixed to an open
end. Simultaneously, we vary the mass mr = µm and moment of inertia jr = µj of
the last element on the right side by a factor µ. Figure 3.8 shows the effects on
the eigenfrequencies and edge modes. The most significant change happens at
the left boundary, where no edge state appears anymore. This indicates that the
bulk-boundary correspondence is maximally violated. At the right boundary, the
mass-factor sweep shows that the bulk-boundary correspondence does also not
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hold true as long as µ < 1. Localized defect modes might occur at the boundary,
as shown in Figure 3.8(b). However, their eigenfrequencies are sensitive to small
changes of the mass factor and can be easily pushed out of the band gap. For mass
factors of µ > 1, the situation is fundamentally different. There, the edge mode at
the right boundary is guaranteed and its eigenfrequency converges toward the
center of the first band gap when increasing µ. In this regime, the frequency and
also the mode shape is remarkably stable. An 8-fold increase of the mass factor
reduces the eigenfrequency by less than 9% and the effect on the rotational and
longitudinal amplitudes is mostly limited to the last site, as shown in Figure 3.8(c)
and (d). By increasing the mass, the boundary amplitudes are reduced. Apart
from that, only the edge modes’ penetration depth into the bulk changes slightly.

The observed effects are linked to the presence or absence of the mirror sym-
metry at the boundary. This can be verified by the real-space dynamical matrix
Q̂ in equation 3.10. In sections 2.3.1 and 3.3.1, it was shown that the presence of
the mirror symmetry goes along with equal diagonal elements in the dynamical
matrix. The block-diagonal elements at the fixed left end given in equation 3.11 are
equal to the bulk block-diagonals, which perfectly preserves the spatial symmetry.
For an open left end, however, the boundary coupling term, e.g., via D̃2, vanishes:

D̃l → D̃1, Ãl → Ã1, and B̃l → B̃1. (3.13)

Hence, the open end lifts the equivalence of the block-diagonal elements and
thereby maximally violates the spatial symmetry, in the sense that the bulk-
boundary correspondence breaks down and the topological protection vanishes
completely.

The same holds true at the right boundary as long as the mass factor is small,
i.e., µ ≪ 1. Then, the boundary element can move instantly and also resembles
an open end. However, increasing the mass and moment of inertia at the right
boundary can be understood as a transition from this symmetry-breaking open
end to a symmetry-preserving fixed end. In the limit of an infinitely large mass
factor µ, the longitudinal and rotational amplitude of the last site is effectively
fixed to zero, re-establishing a system with fixed end and intact bulk-boundary
correspondence. Figure 3.10(a) shows that this holds as long as µ > 1. Hence, an
open end with an additional mass can be understood as a quasi-fixed end.

Altogether, putting a larger mass to an open end of the coupled SSH system,
e.g., for the metamaterial beam in the form of a mirror, is not only allowed but
crucial to establish the bulk-boundary principle by approximating the required
spatial symmetry. In this regime, the added mass can be chosen to optimize for
the desired edge amplitudes and the level of spectral and spatial isolation of the
topologically protected mode.
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3.3.5 Dissipation Effects

The calculations on the coupled SSH model in above sections have not included
dissipation effects. As argued in section 2.4, damping can be taken into account by
using complex spring constants, or more generally, complex coupling constants.
To mimic viscous material damping, the imaginary parts added to each coupling
constant are simply a fixed fraction of the corresponding real part. A calculation
along equation 2.52 reveals the same result for the generalized Zak phases of the
individual bands. Hence, as for the simple SSH model, the topological features
of the coupled SSH model do not change within this description, such that the
above discussion does not have to be repeated for the case of nonzero damping.
Only for more general damping mechanisms, represented by imaginary parts
which do not scale equally for all coupling constants, the system can change
significantly. This was investigated in the scope of the bachelor’s thesis of Steven
Kraus. The band structure, generalized Zak phases, and eigenvector contours are
shown in appendix A.6 for an exemplary non-Hermitian version of the coupled
SSH model. While such systems will not be further discussed in the course this
work, it is notable that the quantization of the generalized Zak phases and thereby
the distinction between the topological phases stays preserved for such a more
general damping. In section 3.4.3, material damping will be included in the FEM
calculations on the metamaterial beam to properly describe the resonant behavior
of the protected edge modes.

3.4 Chiral Metamaterial Beam

While the coupled Su-Schrieffer-Heeger model itself can be understood as an
interesting toy model that realizes a specific topological class in mechanics, we
will now use it as an effective model to design a device that converts longitudinal
to rotational oscillations, i.e., the resonant laser-beam scanner already presented
in Figure 3.2. This means that we have to translate the mass-spring model back
to a suitable 3D structure. For the design, we model the structure’s constituent
material as a linear elastic Cauchy continuum with a given Young’s modulus E
and Poisson’s ratio ν and use frequency-domain FEM calculations according to
section 2.5. To decouple the discussion from scaling effects due to material and
global size of the structure (via its lattice constant a), and for comparison with the
coupled mass-spring model, we use the normalized frequencies f̃ = f a/cl. Here,
cl is the phase velocity of a longitudinal wave in the bulk material, as introduced
in equation 2.60. The corresponding frequencies of an actual structure with a
given size and material can be inferred from the normalized ones when required
for the experiments in chapter 5.
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Figure 3.9: Close-up view of the metamaterial beam with two distinct chiral cube cell
types and the mirror at the finite beam’s end. The two vertical plates correspond to the
two different sublattice sites a and b of the coupled mass-spring model (cf. Fig. 3.3).
The beam is terminated with a cube cell of type 2. The geometrical dimensions in
units of the cell size l are d = 0.057l, b1 = 0.032l, b2 = 0.096l, r1 = 0.319l, r2 = 0.395l,
h = 0.9l, and e = 0.090l. The angles measured with respect to the corresponding
cube cell face diagonal are δ1 = 19.1◦ and δ2 = 6.7◦ for the two distinct cells. The
unit cell length (lattice constant) is a = 2l. The parameters are the result of the
theoretical design process [104] and a marginal adjustment corresponding to the
finally fabricated structures, shown in the next chapter. Adapted from [137] (CC BY
4.0).

The concept of a chiral cube cell with its push-to-twist mechanism and the con-
struction of diatomic metamaterial beam have already been shown in Figures 3.1
and 3.3. From the coupled SSH model, we know that the chiral coupling together
with a diatomic basis induces a band gap which is topologically nontrivial over
a large parameter range, as long as an effective mirror symmetry is present. A
finite version of the system then produces protected edge states in the regime
of a quasi-fixed end. Apart from these restrictions, the metamaterial beam can
be designed freely, e.g., to obtain a large band gap, to adjust the spatial and
spectral isolation of the edge mode, and to optimize the enhancement of the edge
mode’s rotational amplitude with respect to the longitudinal excitation at the
other end. In the following, I will first comment on the design aspects and results
for the band structure and Zak phases. Therefore, an infinitely periodic version
of the metamaterial beam is considered. Second, I will discuss the topologically
protected twist edge resonances of a corresponding finite metamaterial beam. The
relevant geometrical dimensions for both the bulk and boundary design of the
final metamaterial beam are shown in Figure 3.9.
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3.4.1 Infinitely Periodic Metamaterial Beam

As introduced in section 2.5.3, the band structure of an infinitely periodic metama-
terial beam is obtained via FEM calculations of the unit cell with Floquet-Bloch
periodic boundary conditions for the left and right face (cf. Fig. 3.3(a)). The meta-
material beam has to fulfill the symmetry criteria of the coupled SSH model and
should exhibit a large band gap. Therefore, the underlying chiral cell geometry,
the cell alternation principle, and also the shear-wave bands play an important
role. In what follows, I will briefly explain these aspects.

Chiral Cell Geometry

The push-to-twist mechanism does not necessarily require the rather complex ring
geometry as introduced by Tobias Frenzel et al. [15]. In fact, simpler chiral cube
cell designs have been proposed in other publications [138, 139] and shown to
exhibit even stronger chiral effects on elastic waves, i.e., in terms of their acoustical
activity [132]. A uniaxial version of such a simple cube cell is constructed by
connecting two plates by four beams, e.g., along the face diagonals, as shown in
appendix A.7. However, such a structure is less interconnected and less compact
as compared to the ring design. As a consequence, the band structure of a 1D-
periodic stack of such cells contains a large amount of local resonances at low
frequencies. As indicated in section 2.5.3, such local resonances can couple to the
fundamental mixed longitudinal-rotational bands in an unintended and undefined
way and thereby render the description in terms of an effective coupled SSH model
and distinct topological phases invalid.

As a consequence, the metamaterial beam design is based on the ring-geometry
cell. In general, the fundamental rotational and longitudinal bands can be reduced
in frequency by increasing the size of the two solid plates or by decreasing the
effective stiffness of the ring geometry. The masses and stiffness are adapted via
the plate thickness d and beam thickness b1 such that the frequencies of the lower
longitudinal and rotational bands are as large as possible without reaching the
spectral regime of higher-order backfoldings or local resonances.

Cell Alternation

The key design principle for the topological metamaterial beam is the alternation
of neighboring cells to effectively implement the diatomic basis of the coupled
SSH model. Thereby, the required symmetries have to be preserved. For a solid
structure, the mirror symmetry of equation 3.8, established by equal masses
and moments of inertia at the two sublattice sites, translates into an effective
mirror symmetry of the mass distribution within the unit cell. Notably, the mirror
symmetry acts on the effective 1D system, such that it is not necessarily lifted
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due to the chirality of the stacked 3D cube cells. However, in contrast to the
mass-spring model, the required change of the effective spring constants of a
single-material structure can only be achieved by a change in its mass distribution.
Thus, the aim is to induce a significant change in the effective spring constants
of two distinct cells by a subtle change in their mass distribution. Here, the
geometrical parameters of choice are the angles δ1 and δ2 (cf. Fig. 3.9), which
largely influence both the effective longitudinal spring constants and the chiral
coupling constants of the individual cells. The effective mirror symmetry of the
mass distribution stays preserved for δ1 ̸= δ2 in good approximation. In the final
configuration, the angles δ1 and δ2 are chosen such that the band gap width above
the second longitudinal-rotational band is maximized while keeping a pronounced
push-to-twist coupling.

Shear-Wave Bands

As stated in section 3.1.1, the shear (transverse) modes are decoupled from the
mixed longitudinal-torsional modes and hence are not immediately relevant in
the design procedure. Still, for the desired spectral isolation of the protected edge
modes, the metamaterial beam should have a band gap for all mode types. As the
shear modes are also subject to the diatomic design, protected shear edge modes
can arise due to the SSH mechanism. By design, both the acoustic and optical shear
bands are pushed below the topologically nontrivial band gap. Potential shear
edge modes thereby arise in the shear-mode band gap at much lower frequencies
and do not interfere with the twist edge modes.

Effective Coupling Constants

After finalizing the design of the infinitely periodic chiral metamaterial beam, the
system can be reduced back again to a coupled SSH model with structure-specific
effective coupling constants. In section 3.3 these effective coupling constants
have already been used (cf. Fig. 3.4). The normalized constants D̃1(2) and Ã1(2)
of the two metamaterial cell types are determined in good approximation from
additional band structure calculations. In these calculations, a periodic beam
composed of only one of the two cell types is constrained once to longitudinal and
once to lateral displacements only. This effectively decouples the longitudinal and
torsional modes. The associated normalized effective coupling constants of each
cell type can then be read off from the slopes of the fundamental bands emerging
from the Brillouin zone center, e.g., corresponding to

√
D1/m and

√
A1/j for

cell type 1. In this way, the effective masses m and effective moments of inertia
j are automatically included in the calculations. The chiral coupling constants
B̃1(2) can be inferred via equation 3.2 for the push-to-twist mechanism in the
static case, as shown in Figure 3.1. The resulting effective coupling constants are
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Figure 3.10: Band structure and eigenmodes of the designed metamaterial beam.
(a) The four colored bands resemble the result of the coupled SSH model (cf. Fig. 3.4).
The light-gray dotted bands are decoupled shear bands (lowest four bands), higher-
order backfoldings, and local resonances (above the band gap). Only the upmost
longitudinal band (yellow) is influenced by local resonances. The Zak phases of the
two relevant bands (orange and blue) indicate a topologically nontrivial band gap
with a relative band-gap width of 20%. The emerging edge modes’ eigenfrequencies
of a finite metamaterial beam with 7 cube cells (cf. Fig. 3.2) are indicated by the
dashed black lines. (b) The Zak phases are determined via the parity eigenvalues
of the Bloch displacement fields at k = 0 and π/a. Exemplary, the displacements at
the two plates corresponding to the two sublattice sites are shown by red arrows.
While the modes of the first band are symmetric with p0 = pπ = +1, the second
band shows a band inversion with p0 = +1 and an antisymmetric mode shape at
the Brillouin zone boundary, i.e., pπ = −1. This renders the band and the band
gap above topologically nontrivial. Both the band inversion and the change from a
longitudinal to rotational character along the second band agree with the results of
the coupled SSH model (cf. Fig. 3.5). Adapted from [104] with permission.

additionally fine-tuned such that the band structure of the coupled SSH model is
in best possible agreement with the one of the metamaterial beam.

3.4.2 Band Structure and Zak Phases

Figure 3.10(a) shows the calculated band structure for the metamaterial beam
following the above design aspects. The Zak phases of the individual bands are
inferred from the parity eigenvalues and the associated band inversion at the
high-symmetry points in k-space, as discussed in section 2.3.3 and 3.3.1. The
(anti-)symmetry under exchange of the two discrete sublattice sites transfers to
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an effective (anti-)symmetry of the rotational and longitudinal displacements of
the two plates, as shown in Figure 3.10(b). Both the band structure and Zak
phases resemble the results of the coupled SSH mass-spring model when using
the effective coupling parameters as listed below Figure 3.4. In accordance, the
system has a 1D topologically nontrivial band gap that is expected to produce
protected edge modes for a finite metamaterial beam. The relative band-gap width,
i.e., the ratio of the band-gap width to its center frequency, is as large as 20%.

3.4.3 Topologically Protected Twist Edge Resonance

In Figure 3.10(a), the eigenfrequencies of two protected edge states are already
indicated for a finite metamaterial beam design with 7 cells (cf. Fig. 3.2). To use the
structure as a resonant mechanical laser-beam scanner, the edge mode localized to
the mirror side has to exhibit a significant enhancement of the rotational (twist)
amplitude with respect to the longitudinal excitation at the opposite side.

To verify this, we impose a time-harmonic longitudinal excitation with fixed
amplitude in the frequency-domain FEM calculations and evaluate the resulting
azimuthal displacement at the corners of the plate supporting the mirror. By
sweeping the excitation frequency, we obtain the twist response spectrum across
the band gap, as shown in Figure 3.11. To illustrate the effect of damping as
introduced in section 2.5.2, the results are shown for three different complex
dynamical Young’s moduli E = E′(1 + i/Q), corresponding to different quality
factors Q. Indeed, the topologically protected twist mode is localized at the
mirror end of the finite beam and can provide a conversion from longitudinal to
rotational motion with a significant amplitude enhancement, if the quality factor
is large enough. For a quality factor of Q = 2000, the amplitude enhancement is
approximately 37.

Apart from the material quality factor, the twist enhancement also depends on
the termination of the metamaterial beam and its length, i.e., the number of chiral
cube cells it consists of. Additionally, so-called anchor losses can play a role. As
explained in the following, this has been taken into account in the design process
of the finite beam.

Beam Termination

The metamaterial beam’s open end can be altered in regard to two main aspects.
The first aspect is the variation of the mirror size and hence the effective mass and
moment of inertia at the last site. As already indicated by the finite coupled SSH
model (cf. Figure 3.8), an increase of this terminating mass primarily increases
the spectral isolation of the edge resonance with respect to bulk modes at higher
frequencies. However, at the same time the amplitudes at the last site decrease.
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Figure 3.11: Twist resonances of the finite metamaterial beam. (a) Logarithmic twist
response spectrum of the beam at frequencies around the band gap (white region).
The calculated azimuthal displacements at the mirror plate’s corners are normalized
to the longitudinal excitation at the other end. Four resonances can be observed.
(b) Resonances 1 and 4 are associated to bulk modes at the band edges. The other two
are the protected edge modes. The displacement fields are individually scaled up for
clarity. Resonance 2 is the desired mode with a large twist amplitude localized at
the mirror position. Its azimuthal amplitude enhancement increases approximately
linear with larger material quality factors Q, from around 0.37 for Q = 20, to 37 for
Q = 2000.

For the chosen mirror size and its additional lateral support structure as shown
in detail in Figure 3.9, the top-edge resonance shows a sufficient isolation from
neighboring resonances while maintaining a significant rotational amplitude at
the last site. If required, a lighter mirror providing a larger rotational amplitude
could be chosen in exchange for less spectral isolation.

The second aspect is the cell type used to terminate the metamaterial beam. The
investigations on the coupled SSH model in sections 3.3.1 and 3.3.4 have shown
that edge modes emerge in both possible configurations. Still, FEM calculations
reveal that the edge modes have a different characteristic. The termination with
cell type 2 (cf. Fig. 3.9) results in an edge mode which is clearly dominated
by a rotational amplitude. In contrast, a termination with cell type 1 leads to
a longitudinally-dominated edge mode, as shown exemplary in Figure 3.12(b).
There, the attached mirror does barely rotate. The different edge-mode character-
istic can be understood in terms of the coupled SSH model. While the 1D band
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Figure 3.12: (a) Twist edge reso-
nances for different metamaterial
beam lengths, assuming a quality fac-
tor of Q = 2000. For 5 cells, the res-
onance is shifted due to the residual
influence of the boundary at the op-
posite side. The normalized twist am-
plitude is maximum for 9 cells and
decreases for longer beams. (b) Edge
mode for 8 cells. By the termination
with cell type 1 instead of cell type
2, the edge mode at the right end is
longitudinally-dominated and hence
not suitable for a conversion to a ro-
tational oscillation. Additionally, the
mode is coupled to the edge mode at
the opposite end.

gap is topologically nontrivial in any case, the topological phases of the two bands
below the gap switches between the two configurations. As these bands a have
different mode characteristic, it is plausible that also the associated edge mode
characteristic is different.

Beam Length

The metamaterial beam length determines the coupling strength of the twist
edge mode to the excitation at the opposite end and thereby also the maximally
achievable rotational amplitude at the mirror plate. Within the damped harmonic
oscillator model along equation 2.42, this is captured via the force coupling term
|F̃|. This term is influenced by the spatial overlap of the edge mode profile
with the longitudinal excitation. As shown in Figure 3.7(b), the longitudinal
component of the edge mode and hence also the coupling strength changes
from site to site. In Figure 3.12(a), the edge mode resonance curve for 7 cells is
compared to results for beam lengths of 5 to 13 chiral cube cells. An exemplary
material quality factor of Q = 2000 is chosen. Only uneven numbers of cells
corresponding to terminations with cell type 2 are considered. As described above,
undesired longitudinally-dominated edge modes emerge otherwise. For 5 cells,
the obtained twist enhancement is approximately 21. Additionally, the mode’s
resonance frequency is strongly shifted as compared to longer metamaterial beams,
indicating a significant influence of the fixed end on the opposite side. The largest
enhancement of 44 is observed for 9 cells, followed by the already determined
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enhancement of 37 for 7 cells. As a trade-off between a large twist enhancement
factor and a compact design, the length of 7 cells has been preferred to 9 cells. For
beams with more than 9 cells, the amplitude enhancement decreases again. This
is a result of the nonzero material damping. It effectively decreases the coupling
term |F̃|, as the longitudinal excitation gets more and more attenuated across the
beam.

Anchor Losses

A remaining design aspect that has not been covered in the above considerations
are anchor or support losses [140]. This damping mechanism cannot be captured
via the material’s quality factor. It describes the dissipation of energy via the
anchoring of the structure to a bottom plate, which will be the piezoelectric
transducer in the experiments. A precise quantitative calculation of anchor losses
requires an exact modeling of the samples fixation to its anchoring [141] and is
beyond the scope of this thesis. A simple approximation can be given by FEM
calculations in which the metamaterial beam is placed on a large bottom plate,
as shown in Figure 3.13. For a given eigenmode of the metamaterial beam, it
is assumed that all the elastic energy that is located in the bottom plate will be
dissipated [140]. Following equation 2.44, the anchor-loss quality factor Qanc is
hence defined as the ratio of the elastic energy stored within the metamaterial
beam to the energy located in the bottom plate, i.e., Qanc = 2π Ebeam/Ebottom. In
the limit of an infinite beam length, the edge mode does not dissipate any energy
to its anchoring at the opposite end, such that the anchor loss is zero. Hence,
the anchor-loss quality factor of the edge resonance becomes infinitely large and
will only be limited by other damping mechanisms, such as material damping.
For a metamaterial beam consisting of 7 chiral cells, the approximate anchor-
loss quality factor of the desired twist edge mode is as large as Qanc ≈ 270 000.
For comparison, Figure 3.13 also shows that the approximate anchor losses for
the edge mode localized at the bottom plate result in a quality factor of only
Qanc ≈ 6400. The overall quality factor that includes all damping mechanisms
will hence be reduced according to equation 2.45. This underlines that the spatial
isolation of the twist edge mode is indeed obligatory when working toward large
quality factors.

3.4.4 Metamaterial Size

In the following chapters, I will show how to fabricate the designed metamaterial
structure out of fused silica to obtain resonances with quality factors exceeding
Q = 2000. To realize a converter for longitudinal to rotational motion or a proof-
of-principle laser-beam scanner that operates at high frequency, it is crucial to
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Figure 3.13: Anchor losses for (a) the
bottom-end and (b) the top-end edge
mode. The color bar indicates the
local logarithmic elastic energy den-
sity eelast normalized to the average
energy density ēelast within the struc-
ture. For the bottom-edge mode, a
much larger fraction of the total en-
ergy is located in the bottom plate.
Assuming dissipation of this fraction
results in a much smaller anchor-loss
quality factor of Qanc ≈ 6400 as com-
pared to the spatially isolated top-
edge mode with Qanc ≈ 270000.

scale the overall structure to an appropriate size. We take fused-silica glass as
a highly stiff constituent material with a Young’s modulus of Esilica = 70.8 GPa
(see section 5.3.2), a mass density of ρsilica = 2.2 g/cm3, and a Poisson’s ratio of
νsilica = 0.17 [142, 143]. Exemplary, we require an operation frequency of 270 kHz.
With the normalized frequency f̃ ≈ 0.046 of the topologically protected twist edge
resonance (cf. Fig. 3.11) and equation 2.60, we arrive at a metamaterial cube cell
with a total size of l = a/2 ≈ 500µm and structure elements as small as 16µm in
width (cf. Fig. 3.9). This sets the requirements for the fabrication process in the
next chapter.

3.5 Summary

In this chapter, I have shown how a 1D topologically nontrivial band gap can be
obtained for a mechanical metamaterial beam composed of 3D chiral cells. By
the combination of topology and chirality it is thereby possible to introduce twist
edge modes that can convert a small longitudinal excitation into a large rotational
motion. With a mirror attached, the designed structure can operate as a resonant
mechanical laser-beam scanner.

The topology of the metamaterial beam has first been investigated by mimicking
the chiral cube cells with their push-to-twist coupling by a mass-spring model
with longitudinal and rotational degrees of freedom. For alternating cube cells,
the resulting diatomic mass-spring model corresponds to two coupled mechanical
Su-Schrieffer-Heeger models. I have shown that the Zak phases of an infinitely
periodic system are quantized in the presence of the formal bosonic time-reversal
symmetry and an additional mirror symmetry with respect to the two sublattice
sites. In contrast to the simple SSH model, the study of the topological phase
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diagrams of the coupled SSH model has revealed that the emerging band gap
is guaranteed to be topologically nontrivial over a large parameter range, inde-
pendently of the chosen site of termination for a finite system. However, as the
topological phases rely on a spatial symmetry, the bulk-boundary correspondence
does not hold anymore if the boundary conditions do not preserve this symmetry.
I have shown that the mirror symmetry is violated in the limit of an open end.
The prerequisite for the appearance of topologically protected edge states is a
fixed end, which can be also approximated by an open end with additional mass
at the boundary site. Thus, I have drawn the conclusion, that adding a mirror to a
chiral topological metamaterial beam has not a perturbing but a stabilizing effect
on the emerging twist edge mode.

Apart from the requirements derived from the mass-spring model, the design
objective for the bulk of the metamaterial beam has been the formation of a
large 1D band gap for all mode types. I have shown that the band structure
and Zak phases resemble the results of the mass-spring model when using the
effective coupling constants of the designed metamaterial. As proof-of-principle, I
have presented finite metamaterial beam with a mirror plate at its end. With the
evidence of the emerging protected twist edge mode with its frequency inside
of the band gap, I have reached the main goal of this chapter. The robustness of
the edge mode offers freedom in the design when working toward a functional
resonant laser-beam scanner. To arrive at a chiral topological metamaterial beam
that operates with edge modes at frequencies as large as 270 kHz, an absolute
metamaterial cell size of 500µm is required. The optimal beam length, as well
as the size and mass of the mirror depend on the required spatial and spectral
isolation of the edge resonance. The provided amplitude enhancement and quality
factor is determined by the coupling strength of the mode to the longitudinal
excitation and the losses that will be present in a real world application, e.g., due
to viscoelastic material damping and anchor losses. It should be noted that it is not
within the scope of this work to design a final device with a rotational enhancement
globally optimized with respect to all possible influences in an experiment. To
do so, the contributions of anchor and material losses, air damping, and the
mirror size and shape, would have to be fine-tuned in extensive parameter studies.
Additionally, the metamaterial beam is not optimized toward an application as
completely functional resonant laser beam-scanner. A structure design refined in
this regard will be presented in chapter 6.
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Chapter 4

3D Glass Microstructures

In this chapter, I will show how to fabricate 3D microstructures out of glass
via microcasting of a fused-silica nanocomposite. After a short introduction to
existing fabrication techniques, I will give an overview of the process that was
developed and used within the course of my work. In the subsequent sections, I
will explain the individual process steps in detail. These steps include the usage
of the fused-silica nanocomposite as base material, standard 3D laser printing to
fabricate polymeric casts, and the novel helium-assisted microcasting approach,
followed by a thermal treatment of the 3D microstructures. I will conclude the
chapter by discussing the capability and limits of the presented fabrication process
both for my work and beyond.

The fabrication approach has been described in short previously [137]. Martin
Wegener proposed to utilize a glass nanocomposite. The idea for the helium-
assisted microcasting approach has emerged from a discussion in our research
group. Based on this, I have developed and optimized the process and fabricated
the 3D glass microstructures.

Figure 4.1: Micro-glasses made of glass.
This exemplary structure in front of the
eye of a needle was fabricated via the
helium-assisted microcasting approach
which has been developed within the
course of my work.
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4.1 Bringing Glass into Shape

A major goal in the course of my work has been to fabricate the chiral topological
metamaterial beam designed in the last chapter. As pointed out already, the
metamaterial must be fabricated out of a highly stiff material with small viscous
material damping. Only in this way, it can provide the desired resonant conversion
from a longitudinal to a rotational motion. Additionally, we require a structure
with an overall cell size of 500µm and elements as small as 16µm to push its
topological resonances to frequencies of around 270 kHz. Hence, we are looking
for a fabrication technique that can provide complex 3D structures with feature
sizes in the micrometer regime.

The probably most capable technique for this purpose is 3D laser lithography,
also called direct laser writing or two-photon 3D laser printing [144, 145]. How-
ever, to this date, the technique is only standardized and highly optimized for the
fabrication of polymeric structures. As I will show in chapter 5, polymer has a
relatively low stiffness and exhibits pronounced material damping. Therefore, we
are in need of an alternative fabrication process that is suitable for the fabrication
of 3D structures of more promising constituent materials, such as metals, ceramics,
or glasses. Materials of these three classes usually have a high stiffness. Especially
metals and glasses are known for their outstanding mechanical properties. Addi-
tionally, these materials are also interesting in terms of their electrical, thermal,
or chemical properties. As a consequence, 3D (micro-)fabrication of all these
materials is an active field of research [146–148]. Thereby, the focus is on additive
manufacturing, as techniques like graving or milling are commonly more limited
with respect to the 3D shapes and feature sizes that can be achieved [149].

One approach is the direct deposition of the pure material, e.g., via fused
filament fabrication or selective melting and sintering of powder. While this is in
principle possible for metals and glasses, the quality, resolution, and achievable
shapes for the resulting structures are limited [148, 150]. Thus, a more promising
way to go are indirect deposition techniques. Thereby, it is the aim to formulate
inks, sol-gel mixtures, or nanocomposites, also called slurries, that contain a large
amount of the desired material, or precursors thereof. Such slurries facilitate
the material deposition and are formulated to be suitable for various additive
manufacturing techniques. In particular, it is possible to formulate photoresists
which can be used for stereolithography, digital light processing, and also 3D laser
printing. By these techniques, 3D micro- and nanostructures were successfully
fabricated out of metal [151, 152], ceramics [153–155], and glass [156–160] in recent
years.
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A major downside of the indirect deposition approach is the thermal post-
treatment of the resulting structures. It is required to transform the slurry into
the desired target material. Depending on the material and slurry, the thermal
treatment serves to evaporate solvents, remove binder materials, and pyrolyze
or sinter the sample to a solid structure. Due to the loss and consolidation
of material within the process, the 3D structures shrink and thus are prone to
develop deformations or even cracks. While the latter can be reduced by properly
adjusting the slurry composition and the temperature treatment, a certain overall
shrinkage of the structure is unavoidable. As it directly determines the percentage
of shrinkage, the fraction of the target material, also called the solid load of the
slurry, should be as large as possible, while keeping the slurry applicable.

In the course of my work, we use a highly developed commercial glass slurry
that was shown to be suitable for the fabrication of 3D structures via carving,
molding, and micro-stereolithography [161–163]. A decisive feature of the slurry
is that the fabricated structures maintain their quality during thermal treatment
and their shrinkage is moderate. Notably, even two-photon 3D laser printing was
shown with a similar slurry [159]. However, in the current state it is not clear if
this technique can produce a complex high-quality 3D structure such as the chiral
topological metamaterial beam presented in the last chapter. In contrast to 3D
glass microstructures realized so far, the metamaterial beam unifies several critical
geometrical features. It has small structure elements, which are contrasted by a
more than two orders of magnitude larger overall size, and its function depends
on subtle structural differences. Additionally, the delicate metamaterial beam has
overhanging parts and a high aspect ratio in terms of its footprint and height. In
fact, even the fabrication of polymeric chiral cube cells via two-photon 3D laser
printing is not trivial and requires a sophisticated printing strategy [15, 17].

In what follows, I will show how to use the commercial glass slurry and two-
photon 3D laser printing of polymer microstructures to arrive at complex 3D
glass microstructures. To bring these two aspects together, I have developed a
novel fabrication process, the so-called helium-assisted microcasting. Figure 4.2
shows a schematic overview of the complete fabrication procedure. In the first
step, a polymeric shell of the target 3D microstructure is printed via two-photon
3D laser printing. This shell serves as a cast for the glass slurry. In the second
step, the cast is evacuated, filled with helium gas and a droplet of glass slurry
is applied to an inlet of the otherwise sealed cast. Subsequently, the sample is
exposed to air under ambient conditions. As the helium escapes through the
shell, the viscous glass slurry gets sucked throughout the whole microcast. After
the filling process is completed, the slurry is cured with ultraviolet (UV) light.
Finally, both the polymer cast and the polymeric binder in the slurry are thermally
debound in a tube furnace and the sample is sintered to a solid 3D glass structure
at temperatures up to 1225◦C.
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polymer cast helium glass slurry fused silica

(a) (b) (c) (d)

Figure 4.2: Schematic process steps for the fabrication of 3D glass microstructures
via helium-assisted microcasting. (a) A polymeric cast for the targeted structure is
fabricated by two-photon 3D laser printing. (b) The cast is evacuated and filled with
helium. After applying a droplet of glass slurry to an inlet, the structure is exposed
to ambient conditions again. (c) As the helium escapes through the shell, the slurry
is sucked into the cast. When the cast is completely filled, the slurry is UV-cured.
(d) By thermal treatment with temperatures up to 1225◦C, the polymer cast and the
polymeric binder are thermally debound and the shaped glass slurry is sintered to a
solid 3D glass microstructure. Adapted from [137] (CC BY 4.0).

4.2 3D Laser Printing

The process starts by fabricating polymeric microcasts of the targeted 3D structure.
As already motivated above, we use two-photon 3D laser printing for this purpose.
Thereby, solid polymer structures are 3D printed by focusing a femtosecond-
pulsed laser beam into a liquid and optically transparent photoresist [144, 145,
164]. The photoresist usually consists of a monomer mixture and a photoinitiator,
i.e., photosensitive molecules. In the focus of the laser beam, the photoinitiator
molecules are excited via two-photon absorption and form radicals. These radi-
cals initiate a polymerization and cross-linking of the monomers, leading to the
formation of solid polymer networks. The volume element that is solidified using
only one focus position is commonly called the voxel (volume pixel). By scanning
the laser focus through the photoresist, almost arbitrary 3D polymer structures
can be obtained.

4.2.1 Setup

In this work, the commercial 3D-laser-printing system Photonic Professional GT
(Nanoscribe GmbH) is used. As shown in Figure 4.3, the system is based on a
microscope in inverted operation. It uses a 80 fs-pulsed frequency-doubled erbium-
doped fiber laser with a wavelength of 780 nm. The photoresist is applied to a
glass substrate which is fixed to a sample holder. The microscope’s objective lens
focuses the laser beam inside the photoresist. By two galvanometer mirrors, the
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Figure 4.3: Schematic setup of a two-photon 3D laser printer. In the inverse mi-
croscope configuration, the beam of a femtosecond-pulsed laser is focused into a
photoresist by a microscope objective lens. Via two galvanometer (galvo) mirrors,
the laser focus can be scanned rapidly in lateral direction. Axial displacements are
accomplished by the microscope’s z-drive. Large lateral shifts are possible by moving
the sample holder via an xy-stage. The laser power is controlled by an acousto-optic
modulator (AOM). The printing process can be observed in-situ in transmission- or
reflection-illumination via an installed camera.

laser beam can be scanned rapidly within planes parallel to the substrate. In the
axial direction, the laser focus position is varied by the z-drive of the microscope.
For large shifts in the substrate plane, the sample holder can additionally be
moved via an xy-stage. To control the laser power and thus the local exposure of
the photoresist, the laser beam can be deflected by an acousto-optic modulator.

The choice of photoresist and objective lens mostly depends on the overall
dimensions, the minimum feature size, and the surface quality of the aimed-at 3D
structure. Given the 3D structure size has been targeted in the beginning of this
section with an overall size of several millimeters and structure elements of a few
micrometers, the usage of the commercial photoresist IP-S (Nanoscribe) together
with a 25× microscope objective lens (numerical aperture 0.8, Zeiss) suits best. The
structures are printed in dip-in mode, meaning that the objective lens is dipped
directly into the photoresist [165]. This lifts height restrictions in the printing
process and allows for the fabrication of structures with an overall height of several
millimeters. The structures are printed onto indium tin oxide-coated soda-lime
glass substrates (Nanoscribe). To promote adhesion of the printed polymer, the
substrates are silanized in a vacuum desiccator using 3-(trimethoxysilyl)propyl
methacrylate prior to use.

71



4 3d glass microstructures

4.2.2 Two-Photon Absorption and the Proximity Effect

Before discussing the final microcast design and the printing parameters, I will
shortly discuss a mechanism that limits the capabilities of two-photon 3D laser
printing, namely the proximity effect [166].

In principle, the achievable resolution and feature size in 3D laser printing is
governed by the two-photon absorption process [145]. Via two-photon absorption,
the exposure dose required to locally polymerize the photoresist depends quadrat-
ically on the intensity of the laser light. In can be shown conceptually that only
such a nonlinearity allows to laser-print truly 3D structures [167, 168]. In practice,
the process is much more complicated and involves not only the accumulated
dose as a result of the scanned laser focus but also diffusion processes within the
photoresist [169]. The main antagonists of the generated photoinitiator radicals
are oxygen molecules. As known from the Schwarzschild effect, oxygen quenches
excited photoinitiator molecules [170]. Also, it inhibits the polymerization reac-
tion [166]. To a certain degree, this is a welcome phenomena in 3D laser printing,
as it confines the solidified voxel upon exposure to a finite size. However, as the
laser is scanned rapidly through the photoresist, oxygen can be locally depleted,
such that undesired polymerization can occur in the vicinity of the laser focus.
This mechanism is called proximity effect. By this effect, structural elements of
the printed 3D structure which are close to each other, i.e., for the photoresist
IP-S in the range of a few micrometers, might not be printed as designed. This
is of tremendous importance for the 3D laser printing in this work. The overall
fabrication process depends crucially on shell-like structures with small channels.
These channels are required to be free from any polymerized material. Otherwise,
the helium-assisted infilling procedure will not work. To reduce the proximity
effect and avoid structural defects, it is advisable to minimize the dose that is
deposited by the laser, both locally and globally. This is one of the main objectives
for the microcast design and printing process presented in the following section.

4.2.3 Microcast Design

Figure 4.4 shows close-up views of the 3D printed polymeric microcast for the
targeted 3D chiral metamaterial beam. An overview of the structure with the
additional elements required for the cast process can be found in Figure 4.8(a). To
end up with a glass cube cell size of around l=500µm, the shrinkage of the slurry,
as determined in section 4.5, has to be precompensated. Therefore, the cube cell
size of the initial cast has to be as large as 667µm. The microcast is designed
via the computer-aided design (CAD) module of COMSOL Multiphysics and
subsequently imported as STL-files to the software Describe (Nanoscribe). There,

72



4 .2 3d laser printing

(a) (b)
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Figure 4.4: Optical microscopy images of 3D laser printed polymer microcast. (a) The
shells for the individual chiral cube cells of the metamaterial beam have additional
support posts, e.g., within the rings and in the interior of the cell. Thereby, the
cast is stabilized. (b) The shell thickness at the thin beams is as small as possible
to reduce the proximity effect and avoid blocked channels. For the measurements,
small marker crosses are added at the cubes’ corners.

the machine code of the actual printing process is generated according to the
desired 3D structure and printing parameters. In the simplest case, the microcast
would just be a polymer block with channels corresponding to the targeted 3D
structure. To minimize the dose deposited in the photoresist and the proximity
effect, the cast is reduced to a thin shell only. The shell’s thickness is 11µm, which
is just enough to guarantee that the cast is completely sealed except for the glass
slurry inlet. Support posts with a footprint of 19×19µm2 are added to stabilize
the fragile structure. Additionally, the posts help to fix overhanging elements
during the printing process, such as parts of the rings and the thick horizontal
plates. For the experiments in chapter 5, small marker crosses are added at the
corners of each cube cell.

The finest features and also the most critical elements of the structure are the
slender beams which connect the rings to the edges of the corresponding cube cell,
as shown in Figure 4.4(b). As explained in the previous chapter, the angles of these
beams are responsible for the required subtle difference between the two distinct
chiral cube cells. Thereby, also the emergence of the 1D topological band gap and
the protected edge states depends on these structural features. Additionally, the
width of the beams determines the effective stiffness of the cells. At the same time,
the interior of the shell is extremely prone to undesired polymerization, as the
distance between adjacent polymer walls is the smallest at these positions. As a
consequence, the thickness of the shell at the beams is further reduced to 7.7µm.
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Voxel Correction

To achieve a good agreement between the designed and printed 3D structure,
the size of the printing voxel has to be taken into account. For the printing
configuration and standard printing parameters, the voxel size is expected to be
around 1.5µm in axial direction and around 0.5µm in lateral direction. By simply
scanning the laser across regions that should be polymerized, the finite voxel size
will lead to a microcast shell which is slightly thicker as designed. In turn, the
final glass structure will be too thin. Thereby, the discrepancy between design
and result depends on the orientation and shape of the individual element to
be printed. Thus, this effect has to be compensated by correcting the structure
design according to the observed geometrical dimensions of previously fabricated
samples. Especially for the slender beams with their distinct angles, the nominal
channel width has to be different in order to produce beams of the same size in
the end.

4.2.4 Printing Parameters

In addition to the slender design of the microcast shell, the proximity effect has
to be further reduced by adjusting the printing parameters. The most important
parameters in the conventional printing mode are the laser power, the scan speed,
the lateral hatching distance of neighboring scan lines within a plane, and the axial
slicing distance between neighboring scanned planes. Due to the axial elongation
of the voxel, the slicing distance is usually larger as the hatching distance. To obtain
polymer structures with smooth surfaces and strong cross-linking, the printing
parameters are commonly chosen such that the hatching and slicing distance are
well below the voxel size and the deposited dose is well above the minimum dose
required to solidify the photoresist, i.e., the polymerization threshold. However,
this is equivalent to a certain overexposure of the photoresist and thus amplifies
the proximity effect. As a consequence, the microcasts are fabricated with a large
hatching and slicing distance of 0.5µm and 1.5µm, respectively. Furthermore,
the laser power at the back-focal plane of the microscope objective lens is set
to 36.25 mW. For the chosen scan speed of 14 cm/s, this is just slightly above
the polymerization threshold. To improve the bonding between neighboring
polymer layers and to speed up the printing, the hatching direction is alternated
within the individual planes and rotated by 90◦ from layer to layer. With the
above printing parameters, a complete cast including additional elements for the
helium-assisted microcasting can be fabricated within five hours. Figure 4.5 shows
scanning-electron micrographs of the printed microcast. It verifies that the printing
parameters have been pushed to their extremes, such that the exposure dose is just
large enough to generate a solid shell but leaves isolated voxel lines at the surface.
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(a) (b)
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Figure 4.5: Scanning electron microscope (SEM) images of the 3D laser printed
polymer microcast. (a) Perspective view onto the two upmost cube cells and the
mirror plate’s shell. (b) Close-up view of the shell. Due to the large hatching and
slicing distances and the low laser power, the individual voxel lines are visible on the
shell’s surface. The surface quality of the final 3D glass microstructure is essentially
limited by this roughness of the cast (cf. Fig. 4.9).

During the development process, which is described in the next section, the
polymer structures shrink by a few percent due to the low exposure dose and
the associated low cross-linking. This becomes relevant, if the laser power and
thus the cross-linking is inhomogeneous across the scanned field. Then, the
resulting inhomogeneous shrinkage can distort the microcast. To minimize such
inhomogeneities and distortions, the scan field is adjusted with respect to the
objective lens aperture via an offset of the galvanometer mirrors. For the chosen
objective lens, the available scan field has a size of around 400×400µm2. As the
lateral sample size exceeds this footprint, the structure is separated into blocks of
347×347µm2 which get stiched together during the printing process. The height
of these blocks is 227µm, which is a third of the cube cell size and well below the
objective lens’ free working distance of 380µm. The block positions are chosen
such that the critical structural elements, i.e., the channels for the slender beams,
are free of stitching edges.

4.2.5 Sample Development

After the printing process is complete, the remaining liquid photoresist is removed
from the cross-linked 3D polymer structure in a development step. For this
purpose, the samples are immersed in a solvent. Due to the high aspect ratio of

75



4 3d glass microstructures

the microcast channels, it has to be taken care of a sufficient development time.
The samples are developed for two hours in propylene glycol methyl ether acetate
(≥ 99%, Carl Roth) and for another 24 hours in acetone (ROTISOLV, ≥ 99.9%,
Carl Roth). Afterward, the samples are dried in air. High-purity acetone was
used to avoid the formation of any residuals in microcast channels during the
evaporation of the solvent. To promote the development process, the microcasts
can be immersed in upright position, with the slurry inlet hole at the bottom
end. Stirring and gentle heating can further speed up the dissolution of the liquid
photoresist.

In the course of this work, the samples were examined under an optical micro-
scope during the evaporation of the solvent. Thereby, the quality and functionality
of the printed cast was observed for further optimization. Bubbles which form in
the cast’s interior indicate holes in the shell. On the other hand, hindered evap-
oration indicates blocked channels, e.g., due to undesired polymer membranes
resulting from a too pronounced proximity effect. Both observations disqualify a
sample for further usage in the helium-assisted microcasting process.

4.3 Fused-Silica Nanocomposite

For the fabrication of the 3D glass structures, the two commercial fused-silica
glass slurries (L40 and L50, Glassomer) are used. The main results [137] shown in
chapter 5 are based on structures using Glassomer L40. Glassomer L50 was first
commercially available in the final phase of my work and has only been used for
the structures and experiments shown in chapter 6. The use of glass slurry L50 is
advantageous, as it has a lower viscosity and a higher solid load as compared to
L40. Thus, L50 further facilitates the helium-assisted infilling process and reduces
shrinkage of the fabricated structures. Both slurries are expected to provide com-
parable structures in terms of the mechanical properties of the resulting glass. The
formulation of prototype versions of the commercial products can be found in ref-
erences [161] and [162]. The four main ingredients of the slurries are the monomer
hydroxyethylmethacrylate, the solvent phenoxyethanol, a diacrylate as cross linker,
and amorphous silica nanoparticles. Additionally, a photoinitiator is added to
obtain a UV-curable mixture. The percentages of the individual ingredients are
optimized to obtain a free-flowing slurry with high solid load. The dynamic vis-
cosity of slurry is L40 around 2 Pa s [171], which is perceived as viscous as honey
or syrup. The thermal treatment of UV-cured slurry is described in section 4.5. By
measuring the weight of a droplet of slurry before and after thermal debinding,
solid loads of 54.9 ± 0.5% and 66.5 ± 0.4% for slurry L40 and L50, respectively, are
obtained. Figure 4.6 shows an SEM image of a droplet of the thermally debound
slurry L40. The silica nanoparticles have a diameter of approximately 100 nm.
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400 nm

Figure 4.6: Scanning electron micro-
graph of the surface of droplet of
glass slurry L40 after thermal debind-
ing at 600◦C. Only the amorphous
silica nanoparticles are left. They
have a diameter of around 100 nm
and are packed densely. For Glas-
somer L50, a larger particle size is
observed.

4.4 Helium-Assisted Microcasting

For well-defined 3D glass microstructures, it is not an option to simply pour slurry
into a patterned mold or over a 3D laser printed polymer structure, as it was done
previously to fabricate optical lens arrays and glass microfluidic channels [161].
Thus, the key challenge is to fill the viscous glass slurry into the 3D microcasts
in a controlled and reliable manner. To do so, I developed the helium-assisted
microcasting process. In this process, we make use of the different permeability of
polymer membranes for air and helium gas [172]. For air and carbon dioxide, this
was used previously in experiments on mechanical metamaterials with negative
effective compressibility [173].

In a first step, the developed microcast samples are put into a small plastic
box which is sealed with parafilm. A small hole is pierced into the film. Then,
the samples are evacuated in a desiccator using a membrane pump. To remove
humidity, the samples can be kept in the evacuated desiccator for half an hour.
Subsequently, the desiccator is flushed with helium gas (ALPHAGAZ 1 He,
99.999%, Air Liquide). After repeating the evacuation and helium flushing three
times, the sample box is taken out of the desiccator and put under a binocular
microscope. To maintain the helium environment, the sample box is flushed with
a constant flow of helium gas (around 0.5 l/min) via an inlet nozzle. The setup is
shown in Figure 4.7. The glass slurry is filled into a syringe with a 0.5×20 mm
cannula. While observed under the binocular microscope, the cannula is pierced
through the parafilm and a droplet of slurry is applied to the inlet funnel of the
microcast, as shown in Figure 4.8(a). Thereby, the microcast’s inlet is sealed by
the slurry. Afterward, the sample box is immediately opened such that the cast
is exposed to air. The helium starts to diffuse through the cast’s polymer shell
and the created vacuum sucks the glass slurry into the channels, as shown in
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Figure 4.7: Setup for the helium-
assisted microcasting. The microcasts
are kept in the sample box which is
flushed with helium via an inlet noz-
zle. Via a syringe, slurry droplets
are applied to the microcasts. The
process is observed with a binocu-
lar microscope and conducted under
yellow-light illumination to avoid cur-
ing of the glass slurry.

helium inlet

sample box

syringe

panels (b) to (d) of Figure 4.8. After around half an hour, the microcast is filled
completely and the glass slurry can be UV-cured. Therefore, a light-emitting diode
(WEPUV3-S2, Winger Electronics) with a peak emission at a wavelength of 400 nm
and a radiometric power of around 1.2 W is used. The samples are placed in a
distance of less than 5 cm to the LED.

As verified by the 3D metamaterial beam structure, the helium-assisted micro-
casting process works for complex branched structures. Any gas inclusions that
form in the channels due to the influx of slurry from different sides will eventually
vanish when the helium escapes. Also structures with dead ends, such as the
micro tuning forks discussed in section 5.3, can be filled reliably. Only for long
filling times of half an hour and more, the result can be deteriorated by bubbles
that remain in the microcast. The bubbles are associated to air that diffuses into the
sealed casts, or solvent that evaporates from the slurry. As roughly approximated
by the equation of Hagen-Poiseuille [174], the time required to fill a channel of
given length increases quadratically upon reduction of the channel’s width. Thus,
structures with high aspect ratios are the most critical. To avoid remaining bubbles
in the metamaterial beam’s microcast with channel lengths of more than 4 mm and
widths down to around 20µm, a buffer volume is added at the top (cf. Fig. 4.8(a)).
The buffer volume adds additional drag during the filling procedure and retains
potential bubbles. It can be clipped off with pliers after the UV-curing.
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Figure 4.8: Optical micrographs taken during the helium-assisted microcasting pro-
cess. (a) While kept in a helium environment, the glass slurry is filled into the inlet
funnel of the microcast. The slurry is gradually sucked into the cast, as shown (b)
after 60 s, and (c) after 150 s. (d) Almost the complete cast is filled after 20 min. The
buffer volume at the top in (a) helps to avoid the formation of bubbles in the relevant
parts of the cast. The glass slurry has been colored with a blue dye (Disperse Blue
134, Sigma-Aldrich) for illustration purposes. Adapted from [137] (CC BY 4.0).

4.5 Thermal Debinding and Sintering

For the thermal treatment, the UV-cured samples are transferred to sapphire
substrates and placed in an alumina crucible. The treatment is carried out in a tube
furnace (STF15/180, Carbolite Gero) along the lines of previous work [163]. The
steps are shown in Table 4.1. First, the thermal debinding with temperatures of up
to 600◦C is conducted in air under ambient conditions. In this step, the polymer
cast and the slurry’s polymeric binder and solvent are removed. Afterward,
ceramic insulation plugs are carefully inserted into both ends of the tube furnace.
The furnace is sealed with vacuum flanges and connected to a turbomolecular
pump connected via a gas nozzle. Then, the sintering is conducted under vacuum
(< 10−3mbar) at temperatures up to 1225◦C. It should be noted that the sintering
results are sensitive to changes in the range of ±10◦C in the maximum temperature.
Therefore, the calibration of the tube furnace’s temperature sensor should be
checked occasionally. In the thermally debound state, the 3D microstructures are
fragile and should not be exposed to any mechanical vibrations or shocks. Only by
the sintering process, the samples become mechanically stable. The SEM images
of a fracture surface in Figure 4.9 verify that the thermal treatment is sufficient
to sinter the delicate 3D microstructures. The fused-silica nanoparticles in the
structure’s interior are consolidated to bulk fused-silica glass, such that the surface
is smooth and homogeneous. In contrast, the fracture surface of a thermally
debound sample is grainy and consists of individual nanoparticles, as expected
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250 µm

(c) thermally debound

1 µm

1 µm

(b) sintered(a) sintered

Figure 4.9: Scanning electron micrographs of the metamaterial beam. (a) The sintered
beam was intentionally broken to check the sintering result. (b) The fracture surface
(left part of the image) of a broken beam looks smooth and homogeneous. At the
outer boundary of the beam (right part), the structure is rippled due to the microcast’s
surface (cf. Fig. 4.5). (c) In contrast, the individual silica nanoparticles are still visible
on the fracture surface (upper part of the image) of a sample that was only thermally
debound at 600◦C.

heating rate
(K/min)

target temperature
(◦C)

dwell time
(min)

thermal debinding (air) 0.5 150 120

0.5 320 240

0.5 600 120

-3 25 -
sintering (vacuum) 3 800 90

3 1225 10

-3 25 -

Table 4.1: Process steps of the thermal treatment, along the lines of previous
work [163].
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(a)

(c)

(b) (d)
600 µm 600 µm250 µm 250 µm

(c)

Figure 4.10: Optical micrographs of metamaterial beams under ring-light illumination
(a)(b) after thermal debinding and (c)(d) after sintering of the samples. The structures
are in excellent agreement with the original design (cf. Fig. 3.9). By sintering, the
material changes from porous and opaque to solid and transparent. The bright and
colored appearance in (c) is due to the rippled surface, causing scattering, refraction,
and interference of light. Panel (c) and (d) adapted from [137] (CC BY 4.0).

from the glass slurry (cf. Fig. 4.6). In accordance, the thermally debound samples
are opaque and strongly scatter light, while the final sintered fused-silica samples
are transparent, as shown in Figure 4.10. The sintered samples only scatter some
light at the rippled surfaces which are a result of the coarse polymeric microcast
(cf. Fig. 4.9). In this work, we only want to make use of the mechanical properties
of the glass structures, as characterized in section 5.3. The surface quality is not
expected to have a dominant effect on the bulk glass properties and is thus not of
great interest in the following. The relative linear shrinkage of the samples from
nominal cast size to the finally sintered samples is 22% for glass slurry L40.

As shown in Figures 4.10 (c) and (d), the resulting fused-silica 3D metamaterial
beams are in excellent agreement with the original design (cf. Fig. 3.9). The final
cube cell size is l = 505µm. The critical thin beams with a width of around
b1 = 16µm and the corresponding angles are produced in high fidelity via the
helium-assisted microcast approach. The observed maximum deviation in the
width of nominally equivalent beams is ±5%. The only major deformation that
was occasionally observed was an overall bending of the metamaterial beam. This
bending was linked to the influence of gravity during the sintering process. When
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Figure 4.11: Thermal treatment of
samples in upside-down position.
During the thermal debinding and
sintering process, the slurry reduces
to bare silica nanoparticles. As they
consolidate, the structure is prone to
deformations. To avoid deformations
due to gravity and thereby increase
the yield of the process, the samples
can be placed upside down in a slit
between two sapphire substrates.

(a)

(b)

sintered in upright position, some samples showed the tendency to bend toward
the side as imposed by gravity. While it is still possible to obtain excellent 3D
structures, e.g., the ones shown in Figure 4.10, deformed samples are avoided best
by thermally treating the samples upside down, as shown in Figure 4.11.

4.6 Toward Different Constituent Materials

Remarkably, none of the fabrication steps discussed above relies on the fact that
we use a slurry that contains fused-silica glass particles. In fact, the helium-
assisted microcast approach can be easily transferred to inks, sol-gel mixtures,
and nanocomposites for other materials. Together with Maximilian Bojanowski, I
conducted preliminary experiments on the fabrication of 3D structures out of the
semiconductor indium tin oxide (ITO) and out of silver. Exemplary results after
thermal treatment are shown in Figure 4.12. For the ITO structures, a self-mixed
slurry with ITO nanoparticles was used. The silver structures are based on a
commercial silver ink (Loctite ECI 1011 E&C, Henkel) for printed electronics and
are prone to deformations. A main reason for this is that the silver ink does not
contain curable monomers, such that the structure solidifies only by evaporation of
solvent. An adapted ink mixture could resolve the issue. Especially the resulting
ITO structures show the potential of the helium-assisted microcasting. The quality
is partially comparable to that of the glass structures. At some positions, cracks
and residuals of the slurry are visible. Both can be probably avoided by carefully
adjusting the parameters of the thermal treatment.

82



4 .7 summary and discussion

(b) (c)(a)

250 µm 300 µm 300 µm

Figure 4.12: Optical micrographs of 3D microstructures of constituent materials other
than fused-silica glass. Via the helium-assisted microcasting it is possible to fabricate
exemplary (a) micro tuning forks or (b) 3D chiral metamaterial beams out of indium
tin oxide. (c) Also 3D structures out of silver are possible.

4.7 Summary and Discussion

For fused silica as constituent material, I have shown that two-photon 3D laser
printing of polymeric casts combined with helium-assisted microcasting of a
commercial glass slurry provides 3D microstructures with high fidelity. The
quality of the final structures has been found to be mainly determined by the
roughness of the fabricated microcast. Hence, the fabrication of smooth glass
surfaces, e.g., for optical applications, requires further optimization. Achieving
optically smooth surfaces has almost become standard in 3D laser printing [175,
176]. The challenge for the microcasts is to reach this high surface quality without
triggering a too large proximity effect within the cast’s channels.

In the presented 3D laser printing setup, the proximity effect also limits the
minimal feature size of the final glass structures. Finer features should be possible
by using a different objective lens and photoresist (e.g., IP-Dip or IP-L, Nanoscribe).
However, thereby the printing times would increase significantly, such that this is
only an option for samples smaller than the ones discussed above. Apart from
the proximity effect, the outcome of the helium-assisted microcasting is limited by
the viscosity of the slurry and the associated filling times. The presented buffer
volume and the usage of Glassomer L50 ease this limitation to some extent. For
structures with even more extreme aspect ratios than the ones presented, the
filling time could be further reduced by applying a gradually increasing external
pressure during the procedure.

The potential of the helium-assisted microcasting in terms of its transferability
to other materials has been shown in the section above. In this sense, the approach
is a promising alternative to direct two- or multi-photon 3D laser printing of
nonpolymeric structures. The formulation of photoresists which are suitable
for 3D laser printing is complex and specific for each target material [177]. For
the microcasting, the optimization criteria of a slurry is mostly limited to its
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viscosity and its stability and shrinkage during the thermal treatment. For 3D
laser printing, a photoresist in addition has to be transparent and printable in a
convenient manner, i.e., with a reasonable scan speed and laser power. For instance,
an opaque slurry can be perfectly suitable for microcasting but is conceptually
useless for 3D laser printing.

Apart from semiconducting and metallic constituent materials, such as ITO
and silver, also ceramics can be fabricated from sol-gel mixtures or nanocompos-
ites [155, 178, 179]. Thereby, complex piezoelectric or even superconducting 3D
microstructures are in reach. Also, the helium-assisted microcasting could be
used to infiltrate polymeric shell structures with liquid metal or ferromagnetic
fluids [180, 181].
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5
Chapter 5

Ultrasound Experiments on

Topological Resonances

In this chapter, I will show the experimental demonstration of the aimed-at topo-
logically protected twist edge resonances for the fabricated 3D chiral fused-silica
metamaterial beams. First, I will shortly introduce the experimental setup that
is used to excite 3D microstructures at ultrasound frequencies and image the
resulting mechanical oscillations. Second, I will show how the displacements
at selected sample positions are determined via digital image cross-correlation.
Subsequently, I will present the measured resonance curves of micro tuning forks
and the derived material properties and mechanical quality factors of polymer
and fused silica. I will shortly discuss different damping mechanisms in the exper-
iment. Afterward, I will show the experimental results for the chiral topological
fused-silica metamaterial beams. Thereby, both the mechanical response spectrum
of the structure and the emerging twist edge resonances will be characterized.
At the end of the chapter, I will summarize and discuss the overall experimental
results.

The key experimental results have already been published previously [137]. I
have conducted all measurements and the data analysis. Martin Wegener has had
an advisory role. Contributions of Tobias Frenzel and Erik Jung are specified in
the corresponding sections.

5.1 Experimental Setup

In the experiments, we want to verify the existence of the topologically protected
twist edge modes in chiral 3D glass metamaterial beams, designed and fabricated
as shown in the last two chapters. From the metamaterial cell size of l = 505µm
and the expected stiffness of fused silica, one arrives at a resonance frequency of
the edge modes of around 270 kHz. The experimental setup shown in Figure 5.1
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infrared LED

top-view
objective lens

side-view
objective lens

sample

(b)(a)

sample

1 mm

piezo

Figure 5.1: Experimental setup. (a) The sample is glued onto a piezoelectric actuator
(piezo). The piezo is contacted with stranded copper wire at the sides and provides
a vertical actuation (black arrows) when driven with a sinusoidal voltage. (b) The
sample is imaged from the top and side via two optical microscopes. To extract
slow-motion videos, an infrared LED provides a stroboscopic illumination. The setup
was built by Tobias Frenzel [16, 17].

is capable of providing both the actuation and the imaging of 3D microstructures
at such frequencies. The system was built by Tobias Frenzel and used in previous
work to show acoustical activity in chiral mechanical metamaterials [16, 17]. It
combines an optical-microscopy setup with a stroboscopic illumination of the
excited samples, which effectively results in the acquisition of slow-motion videos.

The samples are glued (UHU Plast Special, UHU) onto a piezoelectric actuator
(2×3×5 mm3 PICMA Chip Actuator, Physik Instrumente) in upright position.
Via a frequency generator (33612A, Keysight) and a voltage amplifier (A 1230-
01 linear amplifier, Hubert), a sinusoidal voltage is applied to the piezoelectric
actuator, such that a time-harmonic axial motion is imposed at the bottom of the
sample. The actuation is synchronized to the stroboscopic illumination provided
by two infrared light-emitting diodes (VSLY 3850 LED, 850 nm center wavelength,
Vishay). The LEDs are driven with periodic rectangular pulses with a duty cycle
of 1.5%. The short duty cycle assures that the images are not blurred due to
the sample’s motion. The beat frequency between actuation and illumination
is set to 1 Hz. The microstructures are imaged in top-view and side-view via
two microscope objective lenses (Epiplan 10×/0.20, Zeiss, and Epiplan Neofluar
2.5×/0.075, Zeiss) and corresponding tube lenses (focal length 150 mm, AC254-
150-A-ML, Thorlabs). A higher magnification (Plan L 25×/0.40, Leitz Wetzlar) is
used to also detect the motion of the piezoelectric actuator with amplitudes in
the range of only a few nanometers. Digital optical images are acquired by two
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complementary metal-oxide semiconductor (CMOS) cameras (BFLY-PGE-50S5M-C
and BFLY-PGE31S4M-C, FLIR Systems), each set to a frame rate of 20 frames/s.
This means that a sample which is actuated with a frequency of 270 kHz undergoes
13500 oscillations between two subsequent images of an acquired slow-motion
video. To reduce drifts due to air flow, temperature variations, and mechanical
vibrations during the image acquisition, the setup is placed on an optical table
and can be covered by a housing.

Frequency Sweeps

In order to detect and characterize mechanical resonances, it is necessary to sweep
the excitation frequency while imaging the response of the microstructures. The
setup’s frequency generator is connected to a personal computer and controlled via
a home-written software (Matlab). Thereby, it is possible to change the excitation
frequency step-wise across the interval of interest. For the frequency sweeps in
this work, images are acquired for a time of 3 s for each frequency step. For the
given beat frequency and frame rate this corresponds to 60 sampling points over
3 oscillations of the induced time-harmonic motion. Before each acquisition, the
system is driven for one second to accommodate to the frequency change.

5.2 Digital Image Cross-Correlation

To extract the microstructures’ motion upon excitation from the acquired videos,
we use digital image cross-correlation [182–184]. This method was used previously
to detect local displacement vectors in mechanical metamaterials [126, 165, 173,
185] and is based on an open-access Matlab software package [186]. The analysis
starts with two digital images I1(x, y) and I2(x, y), with pixelated coordinates
x = nx p and y = ny p. Here, p is the pixel size in the object plane and nx and ny
are integers. To track a potential displacement (ux, uy) of an element of interest
between the two images, one evaluates the 2D cross-correlation function

C (∆x, ∆y) =
ˆ

ROI
I1 (x, y) I2 (x + ∆x, y + ∆y)dxdy. (5.1)

Thereby, the integral is performed only over a small region of interest (ROI)
which contains the element that will be tracked, as shown in Figure 5.2. Ad-
ditionally, the cross-correlation is normalized to the average brightness level of
the input images to make the procedure insensitive to potential changes in the
illumination. The shift (∆x, ∆y) = (∆nx p, ∆ny p) for which the cross-correlation
is maximized provides the element’s displacement with an accuracy limited by
the pixel size. However, for the experiments we rely on imaging a large field of
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Figure 5.2: Exemplary digital image cross-correlation for simple geometrical objects.
(a) To track a potential displacement of the black disk, one defines a region of
interest (ROI) that contains the object. (b) In the original image, the normalized
cross-correlation has its maximum for a zero shift (∆x, ∆y) = (0, 0). When the object
moves, this maximum is shifted to different pixel coordinates in subsequent images.

view, corresponding to small magnifications and large pixel sizes. For the 2.5×
objective lens in the setup as described above, the pixel size is around p = 1.5µm.
To extract displacements with subpixel accuracy, the cross-correlation function
is fitted by a 2D parabola over the 3×3 pixels around the maximum, as shown
in Figure 5.3. The position of the 2D parabola’s maximum corresponds to the
displacement vector (ux, uy) of the region of interest between the two images I1
and I2. By conducting this analysis for a complete image series and multiple
regions of interest, we obtain the time-dependent displacements for characteristic
points of a given sample.

Notably, the accuracy of the described cross-correlation analysis is not limited
by the resolution of the tracked objects and the images themselves but rather by
the signal-to-noise ratio. Thus, with a sufficient image quality, accuracies down to
1/100 of the pixel size are possible [126]. Together with Tobias Frenzel, I showed
that the error on the measured displacements can be pushed even below one
Ångström by tracking 8×8 ROI on a footprint of 40×40µm2 at frame rates of
80 frames/s using a white-light illumination [187].
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Figure 5.3: Digital image cross-
correlation with subpixel accuracy.
The normalized cross-correlation
C(∆x, ∆y) is fitted by a 2D parabola
(colored plane) for the 3×3 pixels
(blue bars and circles) around its
maximum. Due to noise and pixe-
lation of the images, the maximum
of the cross-correlation is slightly
smaller than unity. The coordinates
(ux, uy) where the 2D parabola has
its maximum (red bar and circle)
correspond to the subpixel-accuracy
displacement vector.

5.3 Micro Tuning Forks

Before characterizing fused-silica 3D chiral topological metamaterial beams, we
use the experimental setup and the image cross-correlation analysis to retrieve the
mechanical properties of fused silica at ultrasound frequencies. A corresponding
analysis is conducted for polymer. Thereby, we can reveal the benefit of fused
silica structures, fabricated along the lines of chapter 4, as compared to typical
3D laser-printed polymer structures. The approach was established together with
Eric Jung in the course of his bachelor’s thesis. There, we retrieved the mechanical
material parameters of polymer in the context of experiments on the acoustical
activity of chiral metamaterials [17].

For the material analysis, we measure the resonance curves of micro tuning
forks. By comparing the resonance frequencies to corresponding finite-element
method (FEM) calculations, we obtain the Young’s modulus of the tuning fork’s
constituent material. Moreover, we can characterize the material damping and
the associated quality factor from the resonance width according to the damped
harmonic oscillator model in section 2.4.1.

Tuning forks offer several advantages in terms of a characterization of their
constituent material. First, the forks have a simple geometry which allows for a
high fidelity both in the fabrication process and in the FEM calculations. Second,
the tuning forks can be actuated in their fundamental antisymmetric mode where
the two prongs oscillate in counterphase. The excitation of this mode can be
accomplished by an axial motion on the bottom, thus in the same way as required
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200 µm

Figure 5.4: Optical micrograph of polymer micro tuning forks. Via 3D laser printing,
four tuning forks of different sizes were fabricated to investigate the material damping
of polymer at different frequencies. The handle and the top faces of the two prongs
of each tuning fork are marked with crosses to track displacements.

for the 3D chiral metamaterial beams. In the antisymmetric mode, both anchor
losses due to mechanical vibrations of the fork’s handle and acoustic radiation
losses via the oscillating prongs are minimized [140]. Both loss effects would
add up to the material damping and thereby reduce the quality factor according
to equation 2.45. A third advantage lies in the measurement of the prongs’
displacement. As the tips of both prongs can be tracked simultaneously, drifts
between the sample and the imaging setup during the acquisition cancel out
when splitting the measured displacements into its symmetric and antisymmetric
components.

5.3.1 Mechanical Properties of Polymer Structures

Polymer tuning forks are fabricated via two-photon 3D laser printing, using
the same configuration as introduced in section 4.2. We use standard printing
parameters with a hatching distance of 0.3µm, a slicing distance of 0.5µm, and
a nominal laser power of 22.5 mW. The tuning forks were fabricated in four
different sizes, as shown in Figure 5.4. The resonance curve of the fundamental
antisymmetric mode is measured for each of the tuning forks. Thereby, the
displacement amplitude at the tips is normalized to the excitation amplitude
at the fork’s handle. By tracking both motions simultaneously in the side-view,
the phase lag between the time-harmonic excitation and the resonating tips is
determined as well. The results are shown in Figure 5.5(b) and (c). The resonances
are clearly visible both in the amplitudes and phase lags. The quality factors are
extracted by least-squares fits of the resonance curves according to the damped
harmonic oscillator model in equation 2.42. In the considered frequency interval,
similar quality factors of around Q = 21 ± 1 are observed. For the topological
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Figure 5.5: (a) Close-up view of the smallest polymer tuning fork (cf. Fig 5.4). (b)
Resonance curves (black dots) of the four polymer tuning forks of different size.
The least-squares fits (orange lines) result in quality factors between Q = 20 and
Q = 22. For all tuning forks, the amplitude enhancement is below 6. (c) The
measured frequency-dependent phase lags (black dots) between excitation and tip
displacement are as expected for a damped harmonic oscillator around its resonance.
Panel (a) adapted from [137] (CC BY 4.0).

twist edge mode of the chiral metamaterial beam we aim at a resonance frequency
of around 250 kHz. The smallest polymer tuning fork, shown in Figure 5.5(a), has
its resonance at a frequency of around 240 kHz. Using a mass density of ρpoly =

1.15 g/cm3 and a Poisson’s ratio of νpoly = 0.4 in corresponding FEM calculations
of the tuning fork [17], we obtain a complex dynamical Young’s modulus of
Epoly = 4.90 (±0.12)GPa + i 0.22 (±0.01)GPa for polymer. The systematic error
is derived from an estimated uncertainty of ±0.5µm on the measured width of
U-shaped element that connects the two prongs. Similar material parameters were
obtained for the polymer SU8 at frequencies up to 20 kHz [188].

The small quality factor of only Q = 22 rules out polymer as a constituent
material for a resonant converter from longitudinal to rotational oscillations, as
discussed in section 3.4.3. The measured amplitude enhancement between excita-
tion and displacement of the tuning fork’s tips is only slightly larger than four. For
the topological mode converter the enhancement factor would be expected to be
even below one (cf. Fig. 3.11). Hence, in the desired frequency regime, the viscous
damping of polymer is too pronounced to obtain any resonant enhancement. As
already indicated in chapter 4, the route to larger quality factors is to fabricate 3D
microstructures out of other materials, i.e., out of fused-silica glass.
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Figure 5.6: (a) Optical micrograph of a fused-silica tuning fork fabricated via helium-
assisted microcasting. (b) Associated resonance curves measured at 3 to 0 bar above
ambient pressure (I to II) in steps of 0.5 bar, and under vacuum (III). When reducing
the pressure, the quality factor increases from Q = 1882 (I) to Q = 3582 (II), indicating
that air damping governs the quality factor. Under vacuum (< 1 mbar), the quality
factor is as large as Q = 12450. Adapted from [137] (CC BY 4.0).

5.3.2 Mechanical Properties of Fused-Silica Structures

The characterization of fused silica as a constituent material for 3D microstructures
goes along the same line as for polymer. Fused-silica tuning forks are fabricated
via the helium-assisted microcast approach presented in chapter 4. The tuning
fork shown in Figure 5.6(a) has been designed to have the same geometry and
resonance frequency as the polymer tuning fork in Figure 5.5(a). As shown in
Figure 5.6(b), the fork exhibits a quality factor of Q = 3582 at ambient conditions.
Thus, in comparison to the polymer tuning forks, the quality factor is increased
by more than two orders of magnitude. Similarly, the amplitude enhancement
increases to above 1000. In fact, the measured quality factor is not limited due
to the viscous material damping of fused silica but due to air damping. This
becomes obvious from tuning fork resonance measurements at different pressure
levels, as shown in Figure 5.6(b). For these measurements, the tuning forks
were imaged from the top through the window of a pressure chamber that was
used in previous work [173, 185]. The resulting quality factors show a clear
dependence on the air pressure, ranging from Q = 1882 at 3 bar above ambient
pressure to Q = 12450 in vacuum (< 1 mbar). There, the amplitude enhancement
at the resonance frequency exceeds 3000. Hence, the measurements confirm
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Figure 5.7: Fused-silica tuning fork
oscillating in the fundamental anti-
symmetric mode (a) in FEM calcula-
tions and (b) in the acquired images.
To illustrate the oscillation (black ar-
rows), the two images with the ex-
tremal displacements of the prongs
are overlayed. The excitation ampli-
tude of 7 nm at the bottom (white
arrows, scaled up by a factor of 5000)
is more than three orders of magni-
tude smaller and hence not visible
as displacement. Panel (b) adapted
from [137] (CC BY 4.0).

that the limitations due to material damping are lifted when using fused-silica
microstructures.

By comparing the resonance frequency to corresponding FEM calculations
of the tuning fork, we arrive at dynamical Young’s modulus of fused silica
of Esilica = 70.8 (±2.7)GPa at frequencies around 240 kHz. A mass density of
ρsilica = 2.2 g/cm3 and a Poisson’s ratio of νsilica = 0.17 is assumed [142, 143].
Again, the systematic error is derived from the estimated accuracy of the measured
geometrical dimensions. The dynamical Young’s modulus is in good agreement
with the value of E = 72.9 GPa for bulk fused-silica glass [143]. This means that
the fabricated fused silica has a stiffness which is almost a factor of 15 larger
as compared to polymer. Following equation 2.24, the resonance frequencies of
fused-silica samples are three times higher as for a polymer structure of the same
size.

In all of the above measurements, the excitation was tuned such that the
prong displacements stayed well below 1µm. This ensures that the strains and
stresses occurring in the microstructures are small enough to justify the linear-
elastic description of the material. Thereby, the associated FEM calculation can
be assumed to be valid and damage to the microstructures is avoided. To still
visualize the large enhancement factors obtained for the fused-silica tuning forks,
the image acquisition was exemplarily conducted for larger excitation amplitudes,
as shown in Figure 5.7. The large displacement of the prongs is clearly visible for
an excitation amplitude of only 7 nm. In fact, the fused-silica tuning forks fracture
for even larger excitation amplitudes.
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Figure 5.8: (a) Optical micrograph of a fused-silica tuning fork with thicker prongs.
(b) The resonance curves at ambient conditions and under vacuum correspond to
quality factors of Q = 4294 and Q = 17280, respectively. Comparison with Figure 5.6
shows that the quality factor is geometry-dependent due to damping mechanisms
such as anchor losses. Adapted from [137] (CC BY 4.0).

5.3.3 Damping Mechanisms

As shown above, air damping limits the quality factor at ambient conditions, such
that it is not possible to isolate the contribution of the viscous material damping
of fused silica. In vacuum, the damping decreases significantly. However, the
overall quality factor is still assumed to be a combination of different damping
mechanisms according to equation 2.45. For pure viscous material damping, the
quality factor is independent of the tuning fork’s geometry. In contrast, other
damping mechanisms scale with the overall size of the tuning fork or the aspect
ratio of its prongs [140]. Such a behavior is also found for the fabricated fused-silica
tuning forks. As shown in Figure 5.8, a higher quality factor of 17280 in vacuum
is observed for a tuning fork with thicker prongs. The relevant scale-dependent
damping mechanism may potentially be anchor loss [140, 141], which has been
briefly discussed in terms of the metamaterial beam design in section 3.4.3. Also,
residual air damping at pressures below 1 mbar and minor asymmetries between
the tuning fork prongs may play a role. However, it is not within the scope of
this work to isolate the various potential damping contributions for the fabricated
microstructures. In this sense, it is not possible to assign a quality factor to
fused silica which accounts only for the viscous material damping. Nevertheless,
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Figure 5.9: Tracking the motion of a
3D chiral metamaterial beam. The
displacement vectors upon actuation
are evaluated in side-view at the cor-
ners of the seven horizontal plates
(small red boxes). For normalization,
the axial displacement at the bottom
plate is determined in a separate mea-
surement by averaging over multiple
ROI. The top with the added mirror
plate is additionally imaged in top-
view to verify the rotational character
of the induced motion.

we use the complex dynamical Young’s modulus in FEM calculations of fused-
silica samples to account for all damping contributions of an individual structure.
From the highest measured quality factor (cf. Fig. 5.8), we can at least give an
upper limit for the imaginary part of the complex dynamical Young’s modulus of
E′′

silica < 4.1(±0.2)MPa at frequencies of around 300 kHz.

5.4 Topological Twist Edge Resonances

Given the promising results of the fused-silica micro tuning forks, we want to
measure the resonant behavior of 3D chiral topological metamaterial beams. Hav-
ing the application of a resonant mechanical laser-beam scanner in mind, it is
not practicable to actuate the samples in a vacuum chamber. Hence, we con-
duct the measurements at ambient conditions and accept the limitations due to
air damping. In Figure 5.1, the microstructure was already shown as mounted
in the experimental setup. The expected resonance frequencies are calculated
from the cube cell size of l = 505µm of the fabricated metamaterial structure,
the normalized frequencies following the design in section 3.4, and the material
parameters of fused silica as derived above. To detect the metamaterial beam’s
motion, we track the displacements at the corner of each of its horizontal plates
in side-view, as shown in Figure 5.9. Potential drifts between the sample and
the imaging setup are removed from the measurements by subtracting the base
line from the tracked oscillations. The vertical component of the displacement
vector corresponds to a longitudinal (axial) motion and the horizontal component
corresponds to a transverse or a rotational (azimuthal) motion. To distinguish
between transverse and rotational motion, the sample is additionally imaged from
the top. All displacements are normalized to the excitation by determining the
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Figure 5.10: (a) Calculated band structure of an infinite metamaterial beam with the
two edge modes (dashed black lines) within the 1D topological band gap (light-red
region). The frequencies are obtained by scaling the normalized frequencies (cf.
Fig. 3.10) according to the structure size and the determined dynamical Young’s
modulus of fused silica. (b) Measured mechanical response spectrum of the finite 3D
chiral metamaterial beam, averaged over the seven horizontal plates and decomposed
into its rotational (azimuthal) and longitudinal component. Bulk modes and two
pronounced resonances with frequencies inside of the band gap region are visible.
The response of the individual plates shows the localization of the edge modes (c)
at the top edge (plate #7) and (d) at the bottom edge (plate #1). The amplitudes in
(c) are scaled by a factor of 2 with respect to those in (d) for illustration purposes.
Adapted from [137] (CC BY 4.0).

frequency-dependent axial amplitude at the bottom plate of the sample in a sepa-
rate measurement. Therefore, we use an objective lens with higher magnification
(see section 5.1) and average the displacement over multiple ROI to increase the
measurement accuracy [187].

5.4.1 Mechanical Response Spectrum

In a first frequency sweep, the sample is actuated at frequencies from 70 to 320 kHz
in steps of ∆ f = 1 kHz. The resulting mechanical response spectrum averaged
over all horizontal plates of the microstructure is shown in Figure 5.10. For com-
parison, the band structure obtained via FEM calculations (see section 3.4) is also
displayed. The spectrum reveals several resonances. While most of the resonances
are associated to bulk modes, we find two resonances with its frequencies within
the expected 1D topological band gap of a corresponding infinitely periodic meta-
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Figure 5.11: Close-up views of (a) the top-edge resonance at plate #7 and (b) the
bottom-edge resonance at plate #1 (cf. Fig. 5.10). The top-edge resonance with a
quality factor of Q = 2850 enhances the azimuthal displacement at the plate’s corner
by a factor of 190 with respect to the longitudinal excitation at the bottom. The
bottom-edge resonance exhibits a larger enhancement but has a smaller quality factor
of Q = 1697, probably due to anchor losses. Additionally, the amount of longitudinal
motion is larger.

material beam. These two resonances are resolved in detail by a finer frequency
sweep with a step size of ∆ f = 0.01 kHz. We use a small excitation amplitude of
around 1 nm to induce displacements well below 1µm. Thereby, we stay in the
linear-elastic regime and avoid any damaging of the structure. Panels (c) and (d) of
Figure 5.10 show the resulting response spectra for the individual microstructure
plates. The resonance at around 277.8 kHz is localized to the upper end of the
microstructure. This clearly indicates the desired topologically protected edge
mode at the mirror position. Similarly, the resonance at a slightly lower frequency
of 261.8 kHz is localized to the bottom end of the microstructure. This observation
confirms the calculations for the coupled SSH model and the microstructure as
presented in chapter 3.

The resonance curve of the top plate, shown in close-up view in Figure 5.11(a), is
of particular interest for a potential laser-beam scanner application. The maximum
amplitude enhancement from the axial excitation to the azimuthal displacement at
the corner is 190. This allows for the desired resonant conversion from longitudinal
to rotational motion. By a least-square fit, we obtain a quality factor of Q = 2850.
Notably, the edge resonance localized at the bottom plate, shown in Figure 5.11(b),
exhibits a lower quality factor of Q = 1697, but a larger amplitude enhancement of
690. Both effects are associated to the much stronger coupling of this edge mode
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to the bottom plate and the piezoelectric transducer. As discussed in section 3.4.3,
the strong coupling increases the amplitude enhancement while decreasing the
quality factor due to anchor losses. Altogether, the overall beam length of seven
cube cells proves to be suitable to obtain a large amplitude enhancement while
still maintaining a high quality factor for the top edge resonance. This confirms
the design principles presented in section 3.4.3.
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Figure 5.12: Mode characterization of the top-edge resonance. (a) Side-view optical
microscopy image of the fused-silica metamaterial beam. The red boxes mark the
ROI that were tracked via image cross-correlation. (b) Tracked longitudinal (blue)
and rotational (orange) time-harmonic displacements of the individual plates at
the resonance frequency of 277.85 kHz for an excitation amplitude of 1 nm at the
bottom. The time scale corresponds to the real-time oscillation of the sample. (c) The
derived normalized amplitudes (circles) agree well with those of corresponding
FEM calculations (crosses), scaled by a global factor. Positive (negative) amplitudes
correspond to an oscillation in phase (counterphase) with respect to the longitudinal
component of plate #1. (d) The red arrows indicate the calculated normalized
displacement vectors at the plate’s corners. The normalized total displacement field
is scaled up for clarity. Adapted from [137] (CC BY 4.0).
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Figure 5.13: Mode characterization of
the bottom-edge resonance at a fre-
quency of 261.82 kHz. (a) As for the
top-edge resonance (cf. Fig 5.12),
the measured normalized longitudi-
nal (blue) and azimuthal (orange)
displacement amplitudes and phase
relations of the individual plates
(circles) are in good agreement
with corresponding FEM calculations
(crosses), scaled by a global factor.
(b) The normalized total displace-
ment field and the displacement vec-
tors at the corners show the overall
shape of the resonance and are scaled
up for clarity. Adapted from [137]
(CC BY 4.0).

5.4.2 Mode Characterization

To provide further evidence of the topologically protected edge resonances, we
compare the longitudinal and rotational displacement amplitudes of the indi-
vidual microstructure plates at the resonance frequency to corresponding FEM
calculations. From the measured time-harmonic displacements, the phase lags
between the plates can be derived as well. The results for the top-edge resonance
are shown in Figure 5.12. As the resonances correspond to standing waves along
the metamaterial beam, the individual plates oscillate either in phase or in coun-
terphase. Both the measured amplitude ratios and phase relations are in good
agreement with the FEM calculations. The same holds true for the bottom-edge
resonance, as shown in Figure 5.13.

Only the absolute amplitudes values obtained from measurements and FEM
calculations differ by a global factor. Notably, the measured amplitudes are larger
than the calculated ones, i.e., by a factor of 1.5 for the bottom-edge resonance. The
reason for this could not be tracked down in detail. It is clear that accounting
for all damping mechanisms via a fixed imaginary part of complex dynamical
Young’s modulus is only an approximation. However, FEM calculations that
explicitly include the individual, potentially nonlinear damping contributions,
such as air damping, are computationally extremely expensive and beyond the
scope of this work.
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100 µm

(a) (b)
displacement (x150)

Figure 5.14: (a) Optical micrograph of the fused-silica metamaterial beam in top-view.
At the top-edge resonance frequency of 277.85 kHz, the displacements of the four
corners were tracked for a time span of three oscillations. The azimuthal motion
is clearly visible and agrees with (b) corresponding FEM calculations (red arrows).
Adapted from [137] (CC BY 4.0).

In the results presented so far, it was assumed that the horizontal displacements
in the side-view images correspond to the projection of the plates’ azimuthal
motion. Despite the good agreement of the calculated and measured mode shapes,
it is worth to check the sample’s motion in top-view. The displacement of the top
plate for the top-edge resonance is shown in Figure 5.14. The top plate with the
mirror attached indeed performs the desired rotational oscillation. Each of the
four corners is clearly displaced in azimuthal direction. Thus, the 3D metamaterial
beam functions as a resonant converter from longitudinal to rotational motion.

100

https://creativecommons.org/licenses/by/4.0/


5 .5 summary and discussion

5.5 Summary and Discussion

In this chapter, I have shown the mechanical characterization of 3D microstructures
at ultrasound frequencies. Using an optical-microscopy setup with stroboscopic
illumination and subsequent digital image cross-correlation, it has been possible
to track the samples’ motion from acquired slow-motion videos.

The benefit of fused-silica glass as constituent material compared to poly-
mer has been demonstrated by measuring the resonance curves of micro tun-
ing forks. At frequencies of around 240 kHz, a dynamic Young’s modulus of
Epoly = 4.90 (±0.12)GPa and a quality factor of Q = 22 have been obtained for
polymer. In contrast, the fused-silica material results in a much higher stiffness
with Esilica = 70.8 (±2.7)GPa and the corresponding tuning-fork resonances ex-
hibit quality factors of more than Q = 17000 under vacuum. Furthermore, I have
shown that the quality factors of fused-silica structures at ambient conditions are
limited by air damping. Still, the quality factors are more than two orders of
magnitude larger as compared to the polymer tuning forks at the same conditions.

The measurements on the 3D chiral topological fused-silica metamaterial beam
have verified the existence of the aimed-at topological twist edge resonances at
both ends of the beam. The frequencies of around 262 kHz and 278 kHz of the
two localized resonances are within the expected band gap of a corresponding
infinite metamaterial structure. A top-edge resonance’s quality factor of Q = 2850
has been obtained at ambient conditions. The associated enhancement from
longitudinal excitation to rotational (azimuthal) oscillation at the top is almost
200. The potential application of a 3D chiral metamaterial beam as a resonant
mechanical laser-beam scanner will be discussed in the next chapter.

Altogether, the characterization of the emerging edge resonances and the com-
parison to corresponding FEM calculation confirms both the metamaterial beam
design procedure of chapter 3 and the high quality of the fused-silica 3D structures
fabricated along the lines of chapter 4. Also, the good agreement between calcu-
lated and measured absolute frequencies validates the derived dynamical Young’s
modulus of fused-silica. The only significant discrepancy between measurement
and FEM calculation are the absolute values of the displacement amplitudes. More
sophisticated FEM calculations would be necessary to account explicitly for the
individual damping mechanisms, especially for air damping. Thereby, the residual
discrepancy could be explained and eliminated. However, such FEM calculations
are computationally extremely expensive and beyond the scope of this thesis.

While a pronounced amplitude enhancement has been obtained for all fused-
silica microstructures, the achievable maximum absolute amplitudes could not
be investigated systematically. The used actuation amplitudes are far below the
limits of the experimental setup. The driving voltage of 0.1 V corresponding to
around 1 nm actuation amplitude at a frequency of 250 kHz could be increased by
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at least a factor of 80 without damaging the piezoelectric transducer. However, the
large induced strains and stresses within the structure would lead to failure and
damage to the microstructures. A qualitative estimation for the feasible maximum
displacements has been given by the fused-silica micro tuning fork experiments.
There, the displacement of the tuning fork’s tips has been in the order of the
prongs’ width.

For the smaller actuation amplitudes that have been used otherwise, i.e., for the
frequency sweeps, the microstructures showed a good long-time stability. During
the whole characterization procedure, the 3D chiral metamaterial beams have
been actuated for a time span of around one hour, corresponding to more than a
hundred million oscillations. Within this time, no changes have been observed in
the mechanical response and the associated resonance frequencies. This indicates
that a long-term actuation of the fabricated fused-silica 3D microstructures is
possible.
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Chapter 6

Toward a Functional

Laser-Beam Scanner

The 3D fused-silica metamaterial beam presented in the last chapters can be
understood as a proof of principle to generate robust edge resonances that convert
longitudinal to rotational oscillations. Of course, a resonant mechanical laser-beam
scanner which functions in practice requires a more careful design. As stated
earlier, it is not within the scope of this work to engineer a ready-to-use device.
Still, I will briefly discuss an alternative 3D structure that is refined with respect
to its application, as shown in Figure 6.1. Also, I will show experiments on such a
structure and discuss its performance.

laser beam

mirror

z
x

y

Figure 6.1: Refined design with a two-sided support to reduce mirror warping. The
elliptical mirror is optimized for an angle of incidence of 45◦ of the laser beam. The
structure can be excited longitudinally at one end (blue arrow), while the opposite
end is kept fixed.
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Figure 6.2: FEM calculations on mir-
ror warping. The color indicates
the modulus of the structure’s local
angle of rotation around the z-axis.
(a) Design with one-sided support.
In resonant operation, the mirror
plate warps significantly, as shown
by the inhomogeneous coloring. For
an exemplary rotation angle ampli-
tude of θmech = 10◦ averaged over
the mirror plate, the local rotation
varies by more than ±2◦. (b) Re-
fined design with two-sided support.
The variation is reduced to less than
±0.5◦. In contrast to (a), the warp-
ing can conceptually be reduced fur-
ther by engineering additional sup-
port structures.
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6.1 Requirements

The design objective for a high-frequency resonant laser-beam scanner is to scan a
laser spot across as many points in space as possible in a given time. This objective
is captured in the figure of merit [189]

FoM = Dmirror · fres · θopt, (6.1)

with the mirror diameter Dmirror, the frequency fres in resonant operation, and the
full optical scan angle θopt. In reflection mode, this angle corresponds to four times
the mechanical rotation angle amplitude θmech of the mirror plate. To maintain
a diffraction-limited laser spot, the maximum mirror deformation δsurf has to
be small compared to laser’s wavelength λ, i.e., δsurf < λ/10. High-performing
resonant 1D micro-electronic-mechanical-system (MEMS) scanners usually reach
figures of merit from 500 to around 3000 mm kHz ◦ [189]. As the frequencies of
a metamaterial beam’s eigenmodes scale inversely proportional to is global size,
the first two factors in equation 6.1 stay constant upon an overall scaling of the
structure. One way to increase the operation frequency and thus the FoM is to
realize the metamaterial structure out of a highly stiff material. This objective
has been fulfilled by using fused-silica as constituent material. In terms of the
design, the main challenge for a high-frequency laser-beam scanner is to minimize
deformations and warping of the mirror surface upon rotation, while keeping
the optical scan angle θopt as large as possible. As illustrated in Figure 6.2(a),
the mirror plane will not undergo a uniform rotation for the metamaterial beam
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longitudinalrotational Figure 6.3: Coupled mass-spring
model for the two-sided support de-
sign, exemplary for 20 sites and both
ends fixed. The mode exhibits the de-
sired symmetric rotation at the two
sides of the mirror (dashed black
lines).

discussed in the last chapters. In contrast, it exhibits a systematic torsion along the
z-axis which deforms the mirror. This torsion is a result of the one-sided support
of the mirror combined with its own inertia. When the mirror’s bottom plate is
driven time-harmonically, the mirror’s top will always exhibit a phase lag when
operating in a resonant mode. As the mirror itself has a finite stiffness, it will
unavoidably warp to a certain extent.

6.2 Two-Sided Mirror-Support Design

Figure 6.2(b) illustrates that the warping can be reduced by supporting the mirror
symmetrically on both sides. This design principle was worked out together with
Steven Kraus within the scope of his bachelor’s thesis. To obtain a symmetric
rotational mode, the metamaterial beam structure is mirrored with respect to the
center of the mirror plate. Thereby, the chirality of the cells situated right from the
mirror is flipped as compared to those situated on the left side. A related design
was also used for static twist experiments on chiral metamaterials [15].

Mass-Spring Model

The two-sided support design is described by an adapted version of the finite
coupled SSH model as in equation 3.10. The chirality flip of half of the cells
corresponds to a sign inversion of the associated chiral coupling constants. The
mirror is taken into account by a larger mass and moment of inertia, mc = 1.5m
and jc = 1.5j, of its two support plates. The effective coupling constants of the cell
itself are set to Dc = 2D1, Ac = A1, and Bc = 0. Notably, the arising symmetric
rotational mode, shown in Figure 6.3 must not be understood as a boundary
mode between two domains of different topological phase, as the beams on both
sides of the mirror are in the same topological phase. In fact, the mode is a
symmetric superposition of two coupled edge modes emerging at the quasi-fixed
ends imposed by the center-mirror.
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Figure 6.4: Optical micrographs of a
fused-silica metamaterial beam with
two-sided support of the mirror plate.
(a) The sample’s motion is tracked at
the corners of horizontal plates and
(b) at two additional positions at the
elliptical mirror plate (without reflec-
tive coating). Due to the large aspect
ratio of the microstructure, the two
upmost plates cannot be tracked.
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In addition to the two-sided support design, the mirror shape is optimized to
increase its effective diameter while reducing its weight. By the elliptical shape,
the mirror’s projection is circular when illuminated under an angle of 45◦. Hence,
in operation, the laser-beam enters at one face of the cube cell and is reflected
under 90◦, superimposed by a time-harmonic deflection with a full scan angle
of θopt. In analogy to section 3.4.3, the beam length is optimized with respect to
the rotational amplitude enhancement in the presence of damping. Notably, for
the resulting configuration with only four cube cells on each side of the mirror,
the spatial decoupling of the mirror with respect to its surrounding is not given
anymore. Nevertheless, the design still guarantees a certain robustness of the
rotational mode and its eigenfrequency with respect to variations of the mirror
cell.

6.3 Ultrasound Experiments

A fused-silica 3D microstructure following the above design is shown in Figure 6.4
with the relevant positions to be tracked. The structure was fabricated via helium-
assisted microcasting using Glassomer L50 and thermally treated in upside-down
position (cf. Fig 4.11).

To demonstrate the operation principle, it is sufficient to excite the 3D micro-
structure as before without fixing the upper end. The measured time-harmonic
longitudinal and rotational displacements at the desired resonance are shown in
Figure 6.5. The resonance exhibits the aimed-at symmetric rotation of the mirror
support at both sides.
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Figure 6.5: (a) Optical micrograph of
the structure with two-sided support
as acquired in the experimental setup.
The tracked ROI are marked by the
small red boxes. (b) Measured longi-
tudinal and rotational displacements
at the resonance frequency of around
275 kHz. The rotational motion at
the mirror support (positions #4 and
#7) and the mirror itself (positions #5

and #6) is symmetric, confirming the
design objective.

6.4 Scanning Performance and Discussion

From the figures of merit of up to around FoM = 3000 mm kHz ◦ reported for
resonant mechanical 1D laser-beam scanners [189], we can estimate the perfor-
mance of the realized refined 3D chiral metamaterial beam. To reach this large
FoM according to equation 6.1, the structure with its mirror diameter in projection
of around Dmirror = 0.5 mm and a resonance frequency of fres = 275 kHz would
have to provide a mechanical rotation amplitude of θmech = θopt/4 = 5.5◦. As for
the metamaterial beams in the last chapter, the limit for the maximum amplitudes
was not tested to avoid potential damage to the structures. The small azimuthal
amplitudes of 0.2µm shown in Figure 6.5 correspond to a mirror plate rotation of
only θmech = 0.03◦. While the maximum displacements observed for fused-silica
tuning forks (cf. Fig 5.7) look promising, large FoM are most probably out of
reach for the current fused-silica metamaterial beam. Here, metal as constituent
material could help to achieve larger deformations and thus larger rotation angles
without structure damage.

A second issue that has not been discussed so far is the quality of the fabricated
mirror plane. As a result of the microcast’s surface quality (cf. Fig. 4.5), the mirror
surface exhibits a roughness which is large as compared to the wavelength of
visible light. This problem has to be overcome by adapting the 3D laser printing
parameters while avoiding a too pronounced proximity effect. As an alternative
route, the 3D microstructure could be designed with only a frame holder. A

107



6 toward a functional laser-beam scanner

suitable planar reflective plate could then be attached to the microstructure after
the fabrication process.

The above discussion clearly shows that the engineering of a functional resonant
mechanical laser-beam scanner requires further investigation. Still, the utiliza-
tion of a 3D chiral microstructure with a protected twist edge mode can offer
advantages over current design approaches. By to the fixation of the resonance
frequency via the topological protection it is possible to maintain an operation at
high frequencies even for large mirrors. Additionally, the opportunity to design
3D microstructures allows for advanced support architectures around the mirror
plate. Thereby, the compensation of mirror warping could be addressed more
thoroughly as compared to conventional 2D (planar) scanner designs [190].
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Chapter 7

Conclusion and Outlook

In this thesis, I have implemented topological effects on the basis of 3D chiral
mechanical metamaterials. Inspired by a topological prototype model, I have
designed a metamaterial beam that exhibits topologically protected twist edge
resonances. To validate my theoretical findings, I have successfully realized corre-
sponding metamaterial microstructures out of fused-silica glass and characterized
the emerging high quality-factor topological resonances via experiments at ultra-
sound frequencies.

In chapter 2, I have introduced the basics of topological band theory. The
concepts of topological phases, topological invariants, and the bulk-boundary
correspondence of topological insulators have been established. In this context, I
have discussed the role of symmetry for the classification of topological phases.
The Zak phase has been introduced as the relevant topological invariant for 1D
periodic systems. In the following, I have focused on a diatomic 1D mass-spring
model, i.e., the mechanical analog of the topological Su-Schrieffer-Heeger model.
I have identified the model’s symmetries required for the formation of distinct
topological phases and I have shown the emergence of a topologically nontrivial
band gap and associated protected edge modes. Thereby, the peculiar property of
the Su-Schrieffer-Heeger, namely its dependence on the boundary termination,
has been revealed. With regard to the design and realization of a topological
metamaterial, I have discussed the influence of damping and recapitulated the
basics of continuum mechanics.

The design route for a chiral topological metamaterial has described shown in
chapter 3. After a short introduction on metamaterials in general, I have explained
the working principle of a chiral cubic metamaterial cell, namely its push-to-
twist mechanism. Subsequently, the aim of combining chirality and topology to
create topologically protected twist edge modes has been formulated. It has been
pointed out that such modes allow for a resonant conversion from longitudinal to
rotational motion and thereby serve to realize a resonant mechanical laser-beam
scanner. Therefore, a proof-of-principle design has been presented. A chiral
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metamaterial beam can be actuated in axial direction at one end by a piezoelectric
transducer. Thereby, it evanescently excites a twist edge resonance at the other
end, leading to the rotation of an attached mirror.

The starting point for the design has been the diatomic Su-Schrieffer-Heeger
model. By mapping a chiral metamaterial beam with alternating cube cells to
an effective mass-spring model, I have derived a chirally coupled Su-Schrieffer-
Heeger model for the system’s longitudinal and rotational degrees of freedom.
Along the lines of chapter 2, I have analyzed the symmetry and topological
invariant of the coupled model. A quantized Zak phase and thereby also distinct
topological phases have been found in the presence of formal bosonic time-reversal
symmetry and an additional mirror symmetry. I have shown that a 1D topological
band gap emerges for the coupled mass-spring model due to an avoided crossing
of its bands. By the calculation of topological phase diagrams, it has been found
that the topological nontriviality of the band gap is independent of the boundary
termination within a large parameter regime. This is in strong contrast to the
ordinary Su-Schrieffer-Heeger model. I have verified the existence of longitudinal-
rotational edge modes by calculations on a finite coupled model. As a result of
the dependence on a mirror symmetry, the bulk-boundary correspondence is only
preserved in the limit of a quasi-fixed end of the mass-spring system. Thereby, I
have concluded that adding mass to the end of a system, such as the mirror of a
potential laser-beam scanner, even stabilizes the frequency and localization of the
topological edge modes. This is the topological mode protection that I have made
use of in the following.

Derived from the findings of the mass-spring model, I have presented the design
of the aimed-at chiral topological metamaterial beam. The design challenges for
the 3D structure have briefly discussed. Finally, the expected emergence of a 1D
topological band gap and the associated protected twist edge modes has been con-
firmed by finite-element method calculations. I have shown that material quality
factors of Q = 2000 and more are required to obtain a pronounced enhancement
from a longitudinal excitation to a rotational motion at the metamaterial beam’s
opposite ends.

In chapter 4, I have introduced the process for the fabrication of 3D fused-silica
glass microstructures. This process uses a commercial glass nanocomposite and
two-photon 3D laser printing of polymeric microcasts. I have presented the novel
helium-assisted microcasting approach that has been developed in the course of
my work. By this approach, it is possible to fill the glass nanocomposite into
the polymer casts in a controlled and reliable manner. On the basis of chiral
metamaterial beams, it has been demonstrated that the overall fabrication process
is suitable to fabricate complex and delicate 3D glass microstructures of high
quality. I have shown scanning-electron-micrographs and optical micrographs of
corresponding structures after thermal debinding and after final sintering. The
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proximity effect has been identified as limiting factor in terms of the achievable
feature size of the 3D structures. The surface roughness of the final fused-silica
samples is determined by the quality of the 3D laser-printed polymer microcast.
A decisive strength of the developed fabrication process is its transferability to
other constituent materials. As proof of principle, 3D microstructures out of
indium-tin-oxide and silver have been presented.

Chapter 5 comprises the experimental validation of the designed chiral meta-
material and its topological twist edge resonances. I have introduced the optical
microscopy setup that uses a stroboscopic illumination at ultrasound frequencies
to acquire slow motion videos of piezo-actuated microstructures. Via digital image
cross-correlation, the displacement of the samples can be tracked at characteristic
positions.

The material properties of fused silica and polymer have been characterized
by the resonance curves of micro tuning forks. It has been found that fused
silica has a dynamic Young’s modulus of Esilica = 70.8 (±2.7)GPa at frequencies
of around 240 kHz. This material stiffness is almost a factor of 15 larger as
compared to 3D laser-printed polymer. Even more importantly, I showed that the
mechanical quality factor of polymer tuning fork resonances is limited to values
of Q = 22. In contrast, quality factors as large as Q = 17000 have been obtained
for fused-silica tuning forks under vacuum. Pressure sweeps have revealed that
air damping is the dominant loss mechanism, such that the quality factors are
reduced to around Q = 3000 at ambient conditions. This value is still more than
two orders of magnitude larger as for polymer samples and large enough to
expect a pronounced resonant behavior of corresponding metamaterial beam edge
modes.

Indeed, topologically protected twist edge resonances have been detected by
the measurements on a fused-silica chiral metamaterial beam. The resonance
frequencies of around 270 kHz lie within the expected topological band gap of an
infinite beam and are localized to the two opposite ends. The twist edge resonance
that makes the attached mirror plate rotate has shown a quality factor of Q = 2850
and an enhancement factor from longitudinal to rotational (azimuthal) motion of
almost 200. Both the mode shape and resonance frequencies are in good agreement
with corresponding finite-element method calculations. This confirms the high
quality of the fabricated glass 3D microstructures.
An aspect that has not been investigated in detail is the contribution of specific loss
mechanisms to the overall determined quality factors and absolute amplitudes.
Apart from material and air damping, anchoring losses have been identified as
potential cause for damping. However, a quantitative discussion of such effects
has been beyond the scope of this work.
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7 conclusion and outlook

In chapter 6, I have given an brief outlook toward the realization of a functional
mechanical laser-beam scanner. After discussing the requirements and a common
figure of merit for such a device, I have presented a refined structure design and
corresponding measurements of its actuation. I have concluded that much higher
absolute rotation amplitudes are required for a performant laser-beam scanner,
which potentially cause structure damage. However, the design and fabrication
of 3D microstructures has also been identified as an opportunity for advanced
laser-beam scanner designs.

Outlook

The core achievement of this work has been the realization of topological res-
onances in fused silica metamaterials, eluding the material damping which is
predominant in common 3D laser-printed polymer microstructures. While a lot
of attention is still drawn to the design of mechanical metamaterials with exotic
static properties [114], the presented results encourage to explore exceptional
dynamic and resonant metamaterial mechanisms in depth as well. Interestingly,
topological protection was realized in plenty of phononic systems [8]. However,
in most cases the apparent advantages of such systems, such as the utilization
of robust wave guides, are wiped out by dissipation losses. Here, high-stiffness
and low-loss microstructures will help to exploit the potential of one-, two-, and
three-dimensional topological systems. Following recent advances [191], the high
quality factors could even bring quantum entanglement of (topological) mechan-
ical resonances in 3D microstructures into reach. For this and other purposes,
also the upcoming higher-order topological insulators are of major interest. In
these systems, it is possible to induce and couple protected states localized at
planes, edges, and points of a single platform. Notably, the extension of the
Su-Schrieffer-Heeger model to higher dimensions is one possibility to design such
higher-order topological insulators [43, 192].

In contrast to applications that rely on minimizing dissipation, the opening
field of non-Hermitian topological systems can make use of damping mechanisms.
The potential of such systems was not unveiled in the course of this thesis and
should be elaborated in future work. The influence of damping on the topological
phases offers the opportunity to design edge modes that are switched on or off
in the presence or absence of damping. A corresponding structure could act as a
transistor for elastic waves, that is a device that transmits a wave in the presence
of damping, e.g., as exposed to air, but is without edge states and hence insulating
otherwise.
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The fabrication process involving the helium-assisted microcasting as developed
within this work invites to investigate the potential of microstructures of materials
other than polymer and fused silica. The transferability to materials such as
semiconductors and metals paves the way to complex 3D microelectronic devices,
such as compact 3D microactuators and microsensors, or 3D photodiode arrays.
Via ceramics, also piezoelectric or even superconducting 3D metamaterials are in
reach.
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Appendix A

Appendix

A.1 Chern Number

In the integer quantum Hall effect, one has to consider the case of a 2D band
structure with the Chern number as a topological invariant. In 2D, the reciprocal
space can be represented by the surface of a torus to fulfill the periodicity condition
for the two components of the wave vector k. Equation 2.12 for the Berry phase
can now be transformed from a contour integral to a surface integral via the Stokes
theorem, obtaining the Berry flux

ϕB
n =

‹
S

Fn(k)dS, (A.1)

where the so-called Berry curvature is the curl of the Berry connection, Fn(k) =
∇k × An, which is a pseudoscalar in 2D [34]. Here, the Berry flux is integrated
over the whole reciprocal space, meaning the surface S is the closed surface of
the Brillouin zone torus. Interestingly, this means that the associated loop C of
the contour integral in equation 2.12 is contracted to a point and vanishes, which
is not the case for the Zak phase in 1D [34]. Indeed, in the topologically trivial
phase, the Berry flux of a 2D system has to be zero. However, in the nontrivial
phase, the phase of the Bloch eigenstates are not orientable over the whole base
space, as it is the case for the surface of the Möbius strip. Stokes theorem is not
strictly applicable anymore and occurring phase vortices in the Berry curvature
can lead to Berry fluxes discretized to integer multiples of 2π, where the integer
is called the Chern number [31]. It was shown by Berry, that such phase vortices
arise due to the virtual interaction of eigenstates of different bands of the band
structure [32]. The bands exchange phase and thereby wind up in the sense of the
Möbius strip.
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A.2 Pauli Matrices

The identity matrix σ0 and the Pauli matrices σx, σy, σz are given by

σ0 =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (A.2)

A.3 Zak Phase Calculation via Band Inversion

The following proof goes along the lines of personal notes of Jörg Schmalian [69].
It shows that the Zak phase of a band n is determined by the parity eigenvalues
p(n)0 and p(n)π at the two high symmetry points in the Brillouin zone. The proof
holds true for systems obeying formal time-reversal symmetry T̂ and an additional
parity symmetry P̂, as observed for both the SSH model in section 2.3 and the
coupled SSH model in section 3.3.
We consider the phase factor C(n)

N obtained from the Zak phase γn for N = 2π/dk
discretized wave numbers ki = −π + i dk, as in equation 2.14. We use a lattice
constant of a = 1 for convenience and get

C(n)
N = e−iγn =

π−dk

∏
ki=−π

⟨un(ki)|un(ki + dk)⟩ . (A.3)

From equation 2.27 we know that parity operator P̂ links eigenstates of wave
numbers with opposite sign, such that we can write

|un(−ki)⟩ = eiϕ(ki)P̂ |un(ki)⟩ , (A.4)

where ϕ(ki) is some wave-number-dependent phase [43]. Additionally, as stated in
equation 2.33, P̂ is an eigenoperator for the two states at the high symmetry points
k = 0 and k = π. To make use of this, we decompose the product in equation A.3
into two parts containing only negative and only positive wave numbers, and the
two factors containing the high symmetry points of the negative part:

C(n)
N = ⟨un(π)|un(−π + dk)⟩ ⟨un(−dk)|un(0)⟩

·
−2dk

∏
ki=−π+dk

⟨un(ki)|un(ki + dk)⟩ ·
π−dk

∏
ki=0

⟨un(ki)|un(ki + dk)⟩ .
(A.5)

In the first factor, we used that the eigenstate at k = −π is equivalent to the one
at k = +π. By equation A.4, all eigenstates at negative wave numbers can be
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a .3 zak phase calculation via band inversion

transformed to corresponding positive ones. For two neighboring states we get

⟨un(−ki)|un(−ki + dk)⟩ = e−iϕ(ki)eiϕ(ki−dk) ⟨un(ki)|P̂2|un(ki − dk)⟩
= e−iϕ(ki)eiϕ(ki−dk) ⟨un(ki)|un(ki − dk)⟩ ,

= e−iϕ(ki)eiϕ(ki−dk) ⟨un(ki−1 + dk)|un(ki−1)⟩ ,

(A.6)

with P̂2 = 1. When plugging this into equation A.5, all phase factors of the
eigenstates from k = −π + dk to k = −dk vanish, as each emerges once from a
bra- and once from a ket-state and thus with opposite sign. At k = π and k = 0,
however, the states do not need to be transformed, such that we are left with two
factors containing the parity operator P̂:

C(n)
N = ⟨un(π)|P̂|un(π − dk)⟩ ⟨un(dk)|P̂|un(0)⟩

·
π−2dk

∏
ki=dk

⟨un(ki + dk)|un(ki)⟩ ·
π−dk

∏
ki=0

⟨un(ki)|un(ki + dk)⟩ .
(A.7)

Now the remaining two parity operators can be applied to the high symmetry
states ⟨un(π)| and |un(0)⟩, yielding the real-valued parity eigenvalues p(n)π and
p(n)0 according to equation 2.33. The residual factors can be condensed as

C(n)
N = p(n)π p(n)0

π−dk

∏
ki=0

| ⟨un(ki)|un(ki + dk)⟩ |2. (A.8)

Assuming a fine discretization dk, the terms containing the scalar products of
neighboring eigenstates are all close to unity, such that their product will also
converge to unity:

C(n) = lim
N→∞

C(n)
N = p(n)π p(n)0 . (A.9)

Thus, the phase factor C(n) accumulated once across the first Brillouin zone is
solely determined by the two parity eigenvalues which can both assume values of
±1. For equal parity eigenvalues, the band n is topologically trivial with C(n) = 1
and has a Zak phase of γn = 0 according to equation A.3. For different parity
values, corresponding to a so-called band inversion, the phase factor is C(n) = −1
and the associated Zak phase is γn = π. Thus, the Zak phase can be directly
expressed in terms of the parity values:

γn =
π

2

(
1 − p(n)0 p(n)π

)
. (A.10)
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A.4 Phase Convention for Non-Hermitian Systems

To avoid a spoiled Zak phase in non-Hermitian systems with arbitrary imaginary
parts of the coupling constants, the eigenvectors have to be normalized appropri-
ately. As found by Steven Kraus, the raw numerical left and right eigenvectors,〈

u′
n,L

∣∣∣ and
∣∣∣u′

n,R

〉
, respectively, can be transformed as follows:

⟨un,L| =

〈
u′

n,L

∣∣∣∣∣∣∣∣∣u′
n,L

〉∣∣∣ · e
i(−φL+φR+φLR)

2√∣∣∣〈u′
m,L

∣∣∣u′
n,R

〉∣∣∣ ,

|un,R⟩ =

∣∣∣u′
n,R

〉
∣∣∣∣∣∣u′

n,R

〉∣∣∣ · e
i(−φL+φR−φLR)

2√∣∣∣〈u′
m,L

∣∣∣u′
n,R

〉∣∣∣ ,

(A.11)

with the phase angles

φLR = arg
(〈

u′
m,L
∣∣u′

n,R
〉)

, φL = arg
(

u′1
n,L

)
, φR = arg

(
u′1

n,R

)
. (A.12)

Here, u′1
n,L and u′1

n,R are the first components of the raw eigenvectors in ket-notation.

A.5 Finite-Element Method Calculations

To provide an idea how a continuum mechanics problem can be transformed
into a discretized version, the key steps of the finite-element method are shortly
summarized along the lines of references [100] and [103].

For an exact solution, the equation of motion derived in section 2.5.1 has to
be fulfilled at every point of the material body domain R. This condition can be
eased by writing the equation for each component i of the displacement ui in
integral form: ˆ

R

(
ρ

∂2ui

∂t2 − ∂

∂rj
σij − fi

)
δvidV = 0. (A.13)

Of course, only requiring the complete integral to be zero instead of the integrand
itself would be far off the actual problem to be solved. Thus, the integrands are
multiplied by a test function δvi, which can be chosen such that it samples the
integral over small domains only. Equation A.13 is called the weak form of the
problem. Using the equations of continuum mechanics 2.53 to 2.55 and partial
integration, the weak form can be rewritten asˆ

R
ρ

∂2ui

∂t2 δvidV +

ˆ
R

Cijkl
∂uk
∂ri

∂δvi

∂rj
dV −

ˆ
∂R

tiδvidS = 0, (A.14)
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a .5 finite-element method calculations

using Einstein summation convention. For simplicity, the body force field with
its components fi is assumed to be zero. Only forces per unit area ti acting on
the boundary ∂R are taken into account. In the context of mechanics, the above
equation corresponds to the principle of virtual work, with the test function δvi as
virtual displacement [100]. As the test function should sample the integral over
small domains only, we write both δvi(r) and the displacement field component
ui(r) as a superposition of shape functions θa(r) for each node a,

ui(r) =
N

∑
a

ua
i θa(r), and δvi(r) =

N

∑
a

δva
i θa(r). (A.15)

Each shape function samples the above integral in its domain around node a and
is zero at all other nodes b ̸= a. In this way, the solution of the partial differential
equation at a node a will be directly given by the factor ua

i , and can be interpolated
at some arbitrary point r between the nodes. Plugging ansatz A.15 into the weak
form equation A.14 and require it to hold true for arbitrary δvi results in

Mabüb
i + Kaibkub

k − Fa
i = 0, (A.16)

with Mab =

ˆ
R

ρθa(r)θb(r)dV,

Kaibk =

ˆ
R

Cijkl
∂θa(r)

∂rj

∂θb(r)
∂rl

dV,

and Fa
i =

ˆ
∂R

tiθ
a(r)dS.

(A.17)

Here, the components of the mass matrix Mab, stiffness matrix Kaibk, and force
vector Fa

i are known, as they all follow from the problem to be solved, given
the defined node positions and shape functions. As the shape functions can be
defined in a convenient manner, the partial differentials in equation A.17 can be
solved easily. Comparison with section 2.3.5 shows that the resulting problem is
similar to a 3D generalization of the finite 1D mass-spring model in the presence
of boundary conditions. The mass matrix replaces the point masses and the
stiffness matrix accounts for the coupling of the displacements components ua

i at
the individual nodes a. In the case of solid mechanics, only neighboring nodes
are connected such that Kaibk will be a sparse matrix with only a few off-diagonal
entries as in equation 2.38. Solving the whole finite-element problem thus comes
down to solving the matrix equation A.16.
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Figure A.1: Non-Hermitian coupled SSH model. The real valued coupling constants
of the Hermitian SSH model (cf. Fig. 3.4) were changed to complex constants
with arbitrary imaginary parts: (1 + 0.3i)D̃1, (1 + 0.1i)D̃2, (1 + 0.4i)Ã1, (1 + 0.2i)Ã2,
(1 + 0.05i)B̃1, and (1 + 0.1i)B̃2. (a) The band structure shows the real parts (solid
lines) and imaginary parts (dotted lines) of the bands’ frequencies. The imaginary
parts are scaled up by a factor of 5 for illustration purposes. The generalized Zak
phases are indicated for each band. (b) Evolution of the Zak phase across the first
Brillouin zone. As for the Hermitian model, the Zak phases are quantized. (c)
Exemplary contours of the four right eigenvector components for the second band,
from k = −π (black) to k = +π (light blue).

A.6 Non-Hermitian Coupled Su-Schrieffer-Heeger Model

The discussion on the band structure and Zak phases of the Hermitian coupled
SSH model has been conducted in section 3.3.2. Figure A.1 shows corresponding
results for a non-Hermitian version of this model with exemplary imaginary
parts for each coupling constant. The generalized Zak phases of each band are
calculated according to equation 2.52 using the eigenvector phase convention
given in section A.4. The calculations show that the generalized Zak phases stay
quantized in the non-Hermitian case. Thereby, also the distinct topological phases
stay intact.
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a .7 alternative chiral cube cell

u

φ

zx
y

Figure A.2: Alternative uniaxial chi-
ral cube cell. The simple geometry is
potentially advantageous for an ex-
perimental realization. However, in
the dynamic regime, the structure
exhibits low-frequency resonances
of the connecting beams, which
couple with the mixed rotational-
longitudinal modes and thereby in-
terfere with the formation of topo-
logically nontrivial bands and band
gaps.

A.7 Alternative Chiral Cube Cell

An alternative chiral cube cell is shown in Figure A.2. This design goes along
several previous publications [132, 138, 139]. It was briefly investigated within
this work as potential building block for the chiral topological metamaterial beam
but found unsuitable to induce large 1D band gaps for all mode types.
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