8 research outputs found

    Heat flow dynamics in thermal systems described by diffusive representation

    Get PDF
    The objective of this paper is to analyze the dynamics of heat flow in thermal structures working under constant temperature operation. This analysis is made using the tools of sliding mode controllers. The theory is developed considering that the thermal system can be described using diffusive representation. The experimental corroboration has been made with a prototype of a wind sensor for Mars atmosphere being controlled by a thermal sigma-delta modulator. This sensor structure allows to analyze experimentally the time-varying case since changes in wind conditions imply changes in the corresponding thermal models. The diffusive symbols of the experimental structures have been obtained from openloop measurements in which pseudo-random binary sequences of heat are injected in the sensor. With the proposed approach it is possible to predict heat flux transient waveforms in systems described by any arbitrary number of poles. This allows for the first time the analysis of lumped and distributed systems without any limitation on the number of poles describing it.Peer ReviewedPostprint (author's final draft

    Diffusive representation and sliding mode control of charge trapping in Al2O3MOS capacitors

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The objective of this paper is to introduce a modeling strategy to characterize the dynamics of the charge trapped in the dielectric of MOS capacitors, using Diffusive Representation. Experimental corroboration is presented with MOS capacitors made of Alumina in three different scenarios. First, the model predictions are compared with the trapped charge evolution due to arbitrary voltage excitation. Second, the predictions are compared with the measurements of a device in which a sigma-delta control of trapped charge is implemented. Finally, the time evolution when the device is simultaneously controlled and irradiated with X-rays is compared with the predictions. In all cases, a good matching between the models and the measurements is obtained.Peer ReviewedPostprint (author's final draft

    Static and Dynamic Current-Voltage Modeling of a Proton Exchange Membrane Fuel Cell Using an Input-Output Diffusive Approach

    No full text
    DOI: 10.1109/TIE.2015.2480383 URL: http://ieeexplore.ieee.org/document/7273869/ Filiació URV: SI Inclòs a la memòria: SI Informació addicional: Article number 7273869This paper deepens in the study of the recently described diffusive proton exchange membrane fuel cell (FC) model. This model has demonstrated a close agreement to the experimental data provided by a real FC. The diffusive model is approximated by a finite-dimensional model that allows formulating an optimization problem of least square error type to estimate the model distribution. The diffusive model is identified by means of experimental measurements of current (input) and voltage (output) in the FC. It is well known that the FC static current-voltage characteristic has three operation regions, with only the ohmic region being strictly linear, so that it is very difficult to approximate the whole operation range with a linear model. Therefore, a new method is presented in this paper extending the diffusive approach by means of a linear parameter-varying model with the aim to overcome the limitations of linear time-invariant models. In addition, discrete-time expressions for the new diffusive model approach are derived. The obtained model is simple and can be used in systems that require real-time emulators or complex long-time simulations. Experimental results using the Ballard Nexa 1.2-kW FC illustrate the advantages of the new diffusive model approach with respect to previous reports

    Sigma-Delta control of charge trapping in heterogeneous devices

    Get PDF
    Dielectric charging represents a major reliability issue in a variety of semiconductor devices. The accumulation of charge in dielectric layers of a device often alters its performance, affecting its circuital features and even reducing its effective lifetime. Although several contributions have been made in order to mitigate the undesired effects of charge trapping on circuit performance, dielectric charge trapping still remains an open reliability issue in several applications. The research work underlying this Thesis mainly focuses on the design, analysis and experimental validation of control strategies to compensate dielectric charging in heterogeneous devices. These control methods are based on the application of specifically designed voltage waveforms that produce complementary effects on the charge dynamics. Using sigma-delta loops, these controls allow to set and maintain, within some limits, the net trapped charge in the dielectric to desired levels that can be changed with time. This allows mitigating long-term reliability issues such as capacitance-voltage (C-V) shifts in MOS and MIM capacitors. Additionally, the bit streams generated by the control loops provide real-time information on the evolution of the trapped charge. The proposed controls also allow compensating the effects of the charge trapping due to external disturbances such as radiation. This has been demonstrated experimentally with MOS capacitors subjected to various types of ionizing radiation (X-rays and gamma rays) while a charge control is being applied. This approach opens up the possibility of establishing techniques for active compensation of radiation-induced charge in MOS structures as well as a new strategy for radiation sensing. A modeling strategy to characterize the dynamics of the dielectric charge in MOS capacitors is also presented. The diffusive nature of the charge trapping phenomena allows their behavioral characterization using Diffusive Representation tools. The experiments carried out demonstrate a very good matching between the predictions of the model and the experimental results obtained. The time variations in the charge dynamics due to changes in the volatges applied and/or due to external disturbances have been also investigated and modeled. Moreover, the charge dynamics of MOS capacitors under sigma-delta control is analyzed using the tools of Sliding Mode Controllers for an infinite sampling frequency approximation. A phenomenological analytical model is obtained which allows to predict and analyze the sequence of control signals. This model has been successfully validated with experimental data. Finally, the above control strategies are extended to other devices such as eMIM capacitors and perovskite solar cells. Preliminary results including open loop and closed loop control experiments are presented. These results demonstrate that the application of the controls allows to set and stabilize both the C-V characteristic of an eMIM capacitor and the current-voltage characteristic (J-V) of a perovskite solar cell.La carga atrapada en dieléctricos suele implicar un problema importante de fiabilidad en muchos dispositivos semiconductores. La acumulación de dicha carga, normalmente provocada por las tensiones aplicadas durante el uso del dispositivo, suele alterar el rendimiento de éste con el tiempo, afectar sus prestaciones a nivel de circuital e, incluso, reducir su vida útil. Aunque durante años se han realizado muchos trabajos para mitigar sus efectos no deseados, sobre todo a nivel circuital, la carga atrapada en dieléctricos sigue siendo un problema abierto que frena la aplicabilidad práctica de algunos dispositivos. El trabajo de investigación realizado en esta Tesis se centra principalmente en el diseño, análisis y validación experimental de estrategias de control para compensar la carga atrapada en dieléctricos de diversos tipos de dispositivos, incluyendo condensadores MOS, condensadores MIM fabricados con nanotecnología y dispositivos basados en perovskitas. Los controles propuestos se basan en utilizar formas de onda de tensión, específicamente diseñadas, que producen efectos complementarios en la dinámica de la carga. Mediante el uso de lazos sigma-delta, estos controles permiten establecer y mantener, dentro de unos límites, la carga neta atrapada en el dieléctrico a valores prefijados, que pueden cambiarse con el tiempo. Esto permite mitigar problemas de fiabilidad a largo plazo como por ejemplo las derivas de la curva capacidad-tensión (C-V) en condensadores MOS y MIM. Adicionalmente, las tramas de bits generadas por los lazos de control proporcionan información en tiempo real sobre la evolución de la carga. Los controles propuestos permiten también compensar los efectos de la carga atrapada en dieléctricos debida a perturbaciones externas como la radiación. Esto se ha demostrado experimentalmente con condesadores MOS sometidos a diversos tipos de radiación ionizante (rayos X y gamma) mientras se les aplicaba un control de carga. Este resultado abre la posibilidad tanto de establecer técnicas de compensación activa de carga inducida por radiación en estructuras MOS, como una nueva estrategia de sensado de radiación. Se presenta también una estrategia de modelado para caracterizar la dinámica de la carga dieléctrica en condensadores MOS. La naturaleza difusiva de los fenómenos de captura y eliminación de carga en dieléctricos permite caracterizar dichos fenómenos empleando herramientas de Representación Difusiva. Los experimentos realizados demuestran una muy buena correspondencia entre las predicciones del modelo y los resultados experimentales obtenidos. Se muestra también como las variaciones temporales de los modelos son debidas a cambios en las formas de onda de actuación del dispositivo y/o a perturbaciones externas. Además, la dinámica de carga en condensadores MOS bajo control sigma-delta se analiza utilizando herramientas de control en modo deslizante (SMC), considerando la aproximación de frecuencia de muestreo infinita. Con ello se obtiene un modelo analítico simplificado que permite predecir y analizar con éxito la secuencia de señales de control. Este modelo se ha validado satisfactoriamente con datos experimentales. Finalmente, las estrategias de control anteriores se han extendido a otros dispositivos susceptibles de sufrir efectos de carga atrapada que pueden afectar su fiabilidad. Así, se han llevado a cabo experimentos preliminares cuyos resultados demuestran que la aplicación de controles de carga permite controlar y estabilizar la característica C-V de un condensador eMIM y la característica corriente-tensión (J-V) de una célula solar basada en perovskitas.Postprint (published version

    Sigma-Delta control of charge trapping in heterogeneous devices

    Get PDF
    Dielectric charging represents a major reliability issue in a variety of semiconductor devices. The accumulation of charge in dielectric layers of a device often alters its performance, affecting its circuital features and even reducing its effective lifetime. Although several contributions have been made in order to mitigate the undesired effects of charge trapping on circuit performance, dielectric charge trapping still remains an open reliability issue in several applications. The research work underlying this Thesis mainly focuses on the design, analysis and experimental validation of control strategies to compensate dielectric charging in heterogeneous devices. These control methods are based on the application of specifically designed voltage waveforms that produce complementary effects on the charge dynamics. Using sigma-delta loops, these controls allow to set and maintain, within some limits, the net trapped charge in the dielectric to desired levels that can be changed with time. This allows mitigating long-term reliability issues such as capacitance-voltage (C-V) shifts in MOS and MIM capacitors. Additionally, the bit streams generated by the control loops provide real-time information on the evolution of the trapped charge. The proposed controls also allow compensating the effects of the charge trapping due to external disturbances such as radiation. This has been demonstrated experimentally with MOS capacitors subjected to various types of ionizing radiation (X-rays and gamma rays) while a charge control is being applied. This approach opens up the possibility of establishing techniques for active compensation of radiation-induced charge in MOS structures as well as a new strategy for radiation sensing. A modeling strategy to characterize the dynamics of the dielectric charge in MOS capacitors is also presented. The diffusive nature of the charge trapping phenomena allows their behavioral characterization using Diffusive Representation tools. The experiments carried out demonstrate a very good matching between the predictions of the model and the experimental results obtained. The time variations in the charge dynamics due to changes in the volatges applied and/or due to external disturbances have been also investigated and modeled. Moreover, the charge dynamics of MOS capacitors under sigma-delta control is analyzed using the tools of Sliding Mode Controllers for an infinite sampling frequency approximation. A phenomenological analytical model is obtained which allows to predict and analyze the sequence of control signals. This model has been successfully validated with experimental data. Finally, the above control strategies are extended to other devices such as eMIM capacitors and perovskite solar cells. Preliminary results including open loop and closed loop control experiments are presented. These results demonstrate that the application of the controls allows to set and stabilize both the C-V characteristic of an eMIM capacitor and the current-voltage characteristic (J-V) of a perovskite solar cell.La carga atrapada en dieléctricos suele implicar un problema importante de fiabilidad en muchos dispositivos semiconductores. La acumulación de dicha carga, normalmente provocada por las tensiones aplicadas durante el uso del dispositivo, suele alterar el rendimiento de éste con el tiempo, afectar sus prestaciones a nivel de circuital e, incluso, reducir su vida útil. Aunque durante años se han realizado muchos trabajos para mitigar sus efectos no deseados, sobre todo a nivel circuital, la carga atrapada en dieléctricos sigue siendo un problema abierto que frena la aplicabilidad práctica de algunos dispositivos. El trabajo de investigación realizado en esta Tesis se centra principalmente en el diseño, análisis y validación experimental de estrategias de control para compensar la carga atrapada en dieléctricos de diversos tipos de dispositivos, incluyendo condensadores MOS, condensadores MIM fabricados con nanotecnología y dispositivos basados en perovskitas. Los controles propuestos se basan en utilizar formas de onda de tensión, específicamente diseñadas, que producen efectos complementarios en la dinámica de la carga. Mediante el uso de lazos sigma-delta, estos controles permiten establecer y mantener, dentro de unos límites, la carga neta atrapada en el dieléctrico a valores prefijados, que pueden cambiarse con el tiempo. Esto permite mitigar problemas de fiabilidad a largo plazo como por ejemplo las derivas de la curva capacidad-tensión (C-V) en condensadores MOS y MIM. Adicionalmente, las tramas de bits generadas por los lazos de control proporcionan información en tiempo real sobre la evolución de la carga. Los controles propuestos permiten también compensar los efectos de la carga atrapada en dieléctricos debida a perturbaciones externas como la radiación. Esto se ha demostrado experimentalmente con condesadores MOS sometidos a diversos tipos de radiación ionizante (rayos X y gamma) mientras se les aplicaba un control de carga. Este resultado abre la posibilidad tanto de establecer técnicas de compensación activa de carga inducida por radiación en estructuras MOS, como una nueva estrategia de sensado de radiación. Se presenta también una estrategia de modelado para caracterizar la dinámica de la carga dieléctrica en condensadores MOS. La naturaleza difusiva de los fenómenos de captura y eliminación de carga en dieléctricos permite caracterizar dichos fenómenos empleando herramientas de Representación Difusiva. Los experimentos realizados demuestran una muy buena correspondencia entre las predicciones del modelo y los resultados experimentales obtenidos. Se muestra también como las variaciones temporales de los modelos son debidas a cambios en las formas de onda de actuación del dispositivo y/o a perturbaciones externas. Además, la dinámica de carga en condensadores MOS bajo control sigma-delta se analiza utilizando herramientas de control en modo deslizante (SMC), considerando la aproximación de frecuencia de muestreo infinita. Con ello se obtiene un modelo analítico simplificado que permite predecir y analizar con éxito la secuencia de señales de control. Este modelo se ha validado satisfactoriamente con datos experimentales. Finalmente, las estrategias de control anteriores se han extendido a otros dispositivos susceptibles de sufrir efectos de carga atrapada que pueden afectar su fiabilidad. Así, se han llevado a cabo experimentos preliminares cuyos resultados demuestran que la aplicación de controles de carga permite controlar y estabilizar la característica C-V de un condensador eMIM y la característica corriente-tensión (J-V) de una célula solar basada en perovskitas

    Identification and control of diffusive systems applied to charge trapping and thermal space sensors

    Get PDF
    The work underlying this Thesis, has contributed to the main study and characterization of diffusive systems. The research work has been focused on the analysis of two kind of systems. On the one hand, the dynamics of thermal anemometers has been deeply studied. These sensors detect the wind velocity by measuring the power dissipated of a heated element due to forced convection. The thermal dynamics of different sensor structures have been analyzed and modeled during the Thesis work. On the other hand, we have dealed with microelectromechanical systems (MEMS). The dynamics of charge trapped in the dielectric layer of these systems has also been studied. It is know, that this undesired effect has been associated to diffusion phenomena. In this Thesis a characterization method based on the technique of Diffusive Representation (DR), for linear and nonlinear time-varying diffusive systems, is presented. This technique allows to describe a system with an arbitrary order state-space model in the frequency domain. The changes in the dynamics of a system over time may come as a result of the own actuation over the device or as a result of an external disturbance. In the wind sensor case, the time variation of the model comes from the wind, which is an external disturbance, whereas in the MEMS case, changes in the actuation voltage generate time-variation in the model. The state-space models obtained from DR characterization have proven to be able to reproduce and predict the behaviour of the devices under arbitrary excitations. Specifically, in the case of wind sensors, the thermal dynamics of these sensors, under constant temperature operation, has been predicted for different wind velocities using Sliding Mode Controllers. As it has been observed, these controllers also help to understand how the time response of a system, under closed loop, can be accelerated beyond the natural limit imposed by its own thermal circuit if the thermal filter associated to the sensor structure has only one significative time constant. The experimental corroboration of the thermal analysis is presented with various prototypes of wind sensors for Mars atmosphere. On one side, the time-varying thermal dynamics models of two different prototypes of a spherical 3-dimensional wind sensor, developed by the Micro and Nano Technologies group of the UPC, have been obtained. On the other side, the engineering model prototype of the wind sensor of the REMS (Rover Environmental Monitoring Station) instrument that it is currently on board the Curiosity rover in Mars has been characterized. For the characterization of the dynamics of the parasitic charge trapped in the dielectric layer of a MEMS device, the experimental validation is obtained through quasi-differential capacitance measurements of a two-parallel plate structure contactless capacitive MEMS.El trabajo que subyace a esta Tesis, ha contribuido principalmente al estudio y la caracterización de los sistemas difusivos. El trabajo de investigación se ha centrado en el análisis de dos tipos de sistemas. Por un lado, la dinámica de los anemómetros térmicos ha sido estudiada en profundidad. Estos sensores detectan la velocidad del viento a través de la medida de la potencia disipada en un elemento caliente debido a la convección forzada. Durante el trabajo de esta Tesis, se ha analizado y modelado la dinámica térmica de diferentes sensores . Por otro lado, se han tratado también los sistemas microelectromecánicos (MEMS). Se ha estudiado la dinámica de la carga atrapada en la capa dieléctrica de estos sistemas. Este fenómeno lento e indeseado está asociado a fenómenos de difusión. En esta Tesis se presenta un método de caracterización basado en la técnica de Representación Difusa (DR), para sistemas difusivos lineales y no lineales que varían en el tiempo. Esta técnica permite describir un sistema con un modelo de variables de estado de orden arbitrario en el dominio frecuencial. Los cambios en la dinámica de un sistema a lo largo del tiempo pueden ser debidos a la propia actuación sobre el dispositivo o como resultado de una perturbación externa. En el caso del sensor de viento, la variación de tiempo del modelo proviene de la propia variación del viento, la cual es una perturbación externa, mientras que en el caso de los dispositivos MEMS, los cambios en la tensión de actuación generan variaciones en el tiempo en el modelo. Los modelos de variables de estado obtenidos a partir de la caracterización con Representación Difusiva tienen la capacidad de reproducir y predecir el comportamiento de dichos dispositivos ante excitaciones arbitrarias. En concreto, en el caso de los sensores de viento, la dinámica térmica de estos sensores, operando a temperatura constante, se ha predicho para diferentes velocidades de viento, usando la teoría de los Sliding Mode Controllers (Controladores de Modo Deslizante). Tal y como se ha observado, estos controladores ayudan también a comprender cómo la respuesta temporal de un sistema, en lazo cerrado, puede acelerarse más allá del límite natural impuesto por su propio circuito térmico si el filtro térmico asociado a la estructura del sensor tiene solo una constante de tiempo significativa. La corroboración experimental del análisis térmico se presenta con varios prototipos de sensores de viento para la atmósfera de Marte. Por un lado, se han obtenido los modelos de la dinámica térmica variable en el tiempo de dos prototipos diferentes de un sensor de viento 3D esférico, desarrollado por el grupo de Micro y Nano Tecnologías de la UPC. Por otro lado, se ha caracterizado el prototipo de modelo de ingeniería del sensor de viento del instrumento REMS (Rover Environmental Monitoring Station) que está actualmente abordo del rover Curiosity en Marte. Para la caracterización de la dinámica de la carga atrapada en la capa dieléctrica de un dispositivo MEMS, la validación experimental se ha obtenido a través de medidas cuasi-diferenciales de la capacidad de un dispositivo MEMS con estructura de dos placas paralelas

    Identification and control of diffusive systems applied to charge trapping and thermal space sensors

    Get PDF
    The work underlying this Thesis, has contributed to the main study and characterization of diffusive systems. The research work has been focused on the analysis of two kind of systems. On the one hand, the dynamics of thermal anemometers has been deeply studied. These sensors detect the wind velocity by measuring the power dissipated of a heated element due to forced convection. The thermal dynamics of different sensor structures have been analyzed and modeled during the Thesis work. On the other hand, we have dealed with microelectromechanical systems (MEMS). The dynamics of charge trapped in the dielectric layer of these systems has also been studied. It is know, that this undesired effect has been associated to diffusion phenomena. In this Thesis a characterization method based on the technique of Diffusive Representation (DR), for linear and nonlinear time-varying diffusive systems, is presented. This technique allows to describe a system with an arbitrary order state-space model in the frequency domain. The changes in the dynamics of a system over time may come as a result of the own actuation over the device or as a result of an external disturbance. In the wind sensor case, the time variation of the model comes from the wind, which is an external disturbance, whereas in the MEMS case, changes in the actuation voltage generate time-variation in the model. The state-space models obtained from DR characterization have proven to be able to reproduce and predict the behaviour of the devices under arbitrary excitations. Specifically, in the case of wind sensors, the thermal dynamics of these sensors, under constant temperature operation, has been predicted for different wind velocities using Sliding Mode Controllers. As it has been observed, these controllers also help to understand how the time response of a system, under closed loop, can be accelerated beyond the natural limit imposed by its own thermal circuit if the thermal filter associated to the sensor structure has only one significative time constant. The experimental corroboration of the thermal analysis is presented with various prototypes of wind sensors for Mars atmosphere. On one side, the time-varying thermal dynamics models of two different prototypes of a spherical 3-dimensional wind sensor, developed by the Micro and Nano Technologies group of the UPC, have been obtained. On the other side, the engineering model prototype of the wind sensor of the REMS (Rover Environmental Monitoring Station) instrument that it is currently on board the Curiosity rover in Mars has been characterized. For the characterization of the dynamics of the parasitic charge trapped in the dielectric layer of a MEMS device, the experimental validation is obtained through quasi-differential capacitance measurements of a two-parallel plate structure contactless capacitive MEMS.El trabajo que subyace a esta Tesis, ha contribuido principalmente al estudio y la caracterización de los sistemas difusivos. El trabajo de investigación se ha centrado en el análisis de dos tipos de sistemas. Por un lado, la dinámica de los anemómetros térmicos ha sido estudiada en profundidad. Estos sensores detectan la velocidad del viento a través de la medida de la potencia disipada en un elemento caliente debido a la convección forzada. Durante el trabajo de esta Tesis, se ha analizado y modelado la dinámica térmica de diferentes sensores . Por otro lado, se han tratado también los sistemas microelectromecánicos (MEMS). Se ha estudiado la dinámica de la carga atrapada en la capa dieléctrica de estos sistemas. Este fenómeno lento e indeseado está asociado a fenómenos de difusión. En esta Tesis se presenta un método de caracterización basado en la técnica de Representación Difusa (DR), para sistemas difusivos lineales y no lineales que varían en el tiempo. Esta técnica permite describir un sistema con un modelo de variables de estado de orden arbitrario en el dominio frecuencial. Los cambios en la dinámica de un sistema a lo largo del tiempo pueden ser debidos a la propia actuación sobre el dispositivo o como resultado de una perturbación externa. En el caso del sensor de viento, la variación de tiempo del modelo proviene de la propia variación del viento, la cual es una perturbación externa, mientras que en el caso de los dispositivos MEMS, los cambios en la tensión de actuación generan variaciones en el tiempo en el modelo. Los modelos de variables de estado obtenidos a partir de la caracterización con Representación Difusiva tienen la capacidad de reproducir y predecir el comportamiento de dichos dispositivos ante excitaciones arbitrarias. En concreto, en el caso de los sensores de viento, la dinámica térmica de estos sensores, operando a temperatura constante, se ha predicho para diferentes velocidades de viento, usando la teoría de los Sliding Mode Controllers (Controladores de Modo Deslizante). Tal y como se ha observado, estos controladores ayudan también a comprender cómo la respuesta temporal de un sistema, en lazo cerrado, puede acelerarse más allá del límite natural impuesto por su propio circuito térmico si el filtro térmico asociado a la estructura del sensor tiene solo una constante de tiempo significativa. La corroboración experimental del análisis térmico se presenta con varios prototipos de sensores de viento para la atmósfera de Marte. Por un lado, se han obtenido los modelos de la dinámica térmica variable en el tiempo de dos prototipos diferentes de un sensor de viento 3D esférico, desarrollado por el grupo de Micro y Nano Tecnologías de la UPC. Por otro lado, se ha caracterizado el prototipo de modelo de ingeniería del sensor de viento del instrumento REMS (Rover Environmental Monitoring Station) que está actualmente abordo del rover Curiosity en Marte. Para la caracterización de la dinámica de la carga atrapada en la capa dieléctrica de un dispositivo MEMS, la validación experimental se ha obtenido a través de medidas cuasi-diferenciales de la capacidad de un dispositivo MEMS con estructura de dos placas paralelas.Postprint (published version

    MODELLING AND FAULT DIAGNOSIS APPROACH FOR PROTON EXCHANGE MEMBRANE FUEL CELL SYSTEMS INCORPORATING AMBIENT CONDITIONS

    Get PDF
    Proton exchange membrane fuel cell (PEMFC), as a source of electrical power, provides numerous benefits such as zero carbon emission and high reliability as compared to wind and solar energy. PEMFC operates at very low temperature, high power density, and has very high durability as compared to other fuel cells. Being a non-linear power source with high sensitivity to ambient conditions variation, the prediction of PEMFC voltage and temperature is a complicated issue. The most common PEMFC models are classified as mechanistic models, semi-empirical models, and purely empirical methods. The mechanistic models are complex and require differential equations to predict the voltage and temperature of PEMFC. However, the semi-empirical models are less complicated and can be used easily for the online prediction of PEMFC outputs. Therefore, the first part of this thesis attempt to model the voltage of PEMFC using simple and effective semi-empirical equations. The initial feature of the proposed technique is to incorporate the features of a mechanistic model with less complex equations. The model considers the internal currents and the internal voltage drop associated with the PEMFC. Besides, activation and concentration voltage drops are addressed based on theoretical functions. Thus, the proposed model provides an additional benefit that not only does the output voltage model satisfy the voltage for both loaded and unloaded conditions but also the component voltage drops waveforms match with the theoretical waveforms given in the mechanistic models. The second part of the thesis focuses on modelling the PEMFC temperature. Previously most temperature models use complex equations incorporating PEMFC output voltage which is not a good option as the temperature must be predicted using only load current and ambient temperature. The model proposed in this thesis is developed through an algorithm that tracks the online changes in the load current and ambient temperature. It provides the accurate temperature of PEMFC by using a simple first-order equation with the help of a tracking algorithm. Quantum lig tening search algorithm (QLSA) is used for the optimization of constant parameters for both voltage and temperature models. The PEMFC performance is affected by factors such as variations in ambient temperature, pressure, and air relative humidity and thus they are vital for predicting PEMFC performance. The thesis also attempts to directly predict the variations in PEMFC voltage under varying ambient conditions at different load resistance. For this purpose, statistical analysis is used to propose empirical equations that can predict the variations in PEMFC voltage for varying ambient conditions. In this context of the model development, the parameters which are significantly varying with ambient changes are identified with the help of statistical regression analysis and represented as ambient temperature and air relative humidity dependent parameters. The enhanced semi-empirical voltage model is verified by performing experiments on both the Horizon and NEXA PEMFC systems under different conditions of ambient temperature and relative humidity with root mean square error (RMSE) less than 0.5. Results obtained using the enhanced model are found to closely approximate those obtained using PEMFCs under various operating conditions, and in both cases, the PEMFC voltage is observed to vary with changes in the ambient and load conditions. Inherent advantages of the proposed PEMFC model include its ability to determine membrane-water content and water pressure inside PEMFCs. The membrane-water content provides clear indications regarding the occurrence of drying and flooding faults. For normal conditions, this membrane water content ranges between 12.5 to 6.5 for the Horizon PEMFC system. Based on simulation results, a threshold membrane water- content level is suggested as a possible indicator of fault occurrence under extreme ambient conditions. Limits of the said threshold are observed to be useful for fault diagnosis within the PEMFC systems
    corecore