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Abstract—The objective of this paper is to analyze the
dynamics of heat flow in thermal structures working under
constant temperature operation. This analysis is made using
the tools of sliding mode controllers. The theory is developed
considering that the thermal system can be described using
diffusive representation. The experimental corroboration has
been made with a prototype of a wind sensor for Mars at-
mosphere being controlled by a thermal sigma-delta modulator.
This sensor structure allows to analyze experimentally the time-
varying case since changes in wind conditions imply changes
in the corresponding thermal models. The diffusive symbols
of the experimental structures have been obtained from open-
loop measurements in which pseudo-random binary sequences
of heat are injected in the sensor. With the proposed approach
it is possible to predict heat flux transient waveforms in many
applications.

Index Terms—diffusive representation, heat flow, thermal
anemometry, sliding control, fractional order operators

I. INTRODUCTION

The analysis of the dynamics of heat flow in thermal
structures is important in many areas such as Fuel-Cell based
systems, [1], motors, [2], [3], Scanning Thermal Microscopy
or Differential Scanning Calorimetry, [4]. In Scanning Thermal
Microscopy, for example, nanotopography imaging is achieved
by tracking temperature or heat flow changes in large arrays
of cantilevers with integrated heater-thermometers kept at
constant temperature, [5]. The heating can also operate in
open-loop, [6], so that a constant power is injected into the
heaters while the temperature of the cantilevers is monitored.
Changes in the thermal conductance between the cantilever
and the substrate beneath the cantilever tip can therefore be
monitored by following the temperature of the cantilever.
Constant temperature operation is generally preferred, in order
to avoid interference with the environment of the sample,
[7]. In this mode, the heat flow is the signal providing the
topographical information of the sample.

Another area of interest is thermal anemometry, [8]–[12].
The main objective in thermal anemometers is to measure the
convection heat transfer to a fluid in order to infer its velocity.
In this work we will use, as a test structure, a first prototype
made with two hemispheres of a spherical wind anemometer
for Mars atmosphere, described elsewhere [9].

Both open and closed-loop strategies can be implemented
on these sensors. In the open loop configuration a constant
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heat is injected in a part of the sensor structure while the
resulting temperature is being monitored. In the closed loop
configuration a control circuit is used to keep this temperature
constant by adapting the heat injection.

The objective of this paper is to analyze the dynamics
of heat flow under constant temperature operation (closed
loop configuration) in thermal structures described by models
of arbitrary order. This will be done using two different
analytical tools: Diffusive representation (DR) and the theory
of sliding mode controllers (SMC). Diffusive representation is
a theory that allows to approximate rational and non-rational
convolution operators, [13]–[15]. In particular, it has proven
to be very well suited for practical thermal model extraction.
This is an important point since the final sensor response
depends on the complete description of the thermal filter. In
this regard, DR is an excellent tool that allows to approximate
even fractional order systems, in practical implementations.

On the other hand, SMCs are ubiquitous to many applica-
tions [16]. These nonlinear controllers alter the dynamics of
the system by applying a discontinuous control signal so that
under some conditions the system ’slides’ on a certain control
surface. This is generally done in order to obtain a certain
wanted behaviour of the system.

The study of the dynamics will be undertaken consider-
ing that the thermal controller is a sigma-delta modulator.
Sigma-delta modulators have been used as analog-to-digital
converters for several decades [17]. They are a class of
converters producing a sequence of symbols generated from
an analog signal, constituting an analog-to-digital conversion.
The discrete-time iterative maps that sigma-delta modulators
produce can explain the noise-shaping characteristics of these
modulators. However, the dynamics of heat flow is better ana-
lyzed in what is usually called the infinite sampling frequency
approximation (sampling frequency higher that the effective
bandwidth of the thermal filter). It will be shown in this paper
that heat flow in sensors can be understood as a Filippov
solution of a sliding mode controller.

The main novelty of this paper resides in the fact that the
analysis is valid for thermal filters described by any arbitrary
number of poles, hence extending the findings in [8]–[12].

This paper will first provide a summary of closed-loop
anemometry in section II. Section III will present a brief
review of the theory of diffusive representation. Section IV will
present the results on the inference of thermal models from
the sensor test structure. The analysis of the dynamics with
these models is divided in two parts. Section V presents the
analysis of the dynamics of heat flow using the tools of SMCs.
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Figure 1. Photograph of the prototype of the spherical sensor anemometer.

Section VI shows that the iterative maps associated with
thermal sigma-delta modulators, working with arbitrary order
thermal filters, obey the general equations of standard sigma-
delta modulators. Finally the experimental corroboration is
presented in Section VII.

II. CLOSED-LOOP OPERATION OF THERMAL
ANEMOMETERS

As it has been previously mentioned, thermal sen-
sors/actuators may work in an open or a closed-loop confi-
guration mode. In the first case, also called Constant Power
Anemometry (CPA), [18], a constant power is injected in a
part of the sensor structure. The output of the sensor is the
resulting temperature at that point. Changes in the convection
heat transfer to the fluid generate changes in temperature,
which is the output signal. Using this approach, the dynamic
response of the sensor is directly determined by the thermal
circuits associated with the physical structure of the sensor.
These thermal circuits can be very slow.

Another control variant was proposed for thermal anemome-
ters, [18], [19], in which the temperature of a part of the
sensor structure (or a temperature difference) is kept constant
and the output signal is the necessary heat flow to keep this
temperature constant. The main purpose of this approach is to
increase the sensor bandwidth, [20], [21]. Intuitively, and as a
zero-th order approximation, a constant temperature operation
of a single pole thermal circuit keeps constant the value in
all its nodes, [8]. Therefore, changes in the convection heat
transfer must be immediately compensated by changing the
heat flow into the structure. This implies that the sensor
bandwidth is limited only by the actuation electronics and
not by the thermal structure. The general case, though, may
include thermal structures which must be described by more
than one pole. For example, in [20], [21] the dynamics of hot-
wire anemometers working in CTA mode is analyzed up to a
third order.

The experimental part of this work has been carried out
using a prototype of a spherical wind sensor, [9]. Although
the sensor was designed to operate in Mars atmosphere, it may
also operate in Earth applications such as in the stratosphere or
in wind power generation. As it can be seen in Figure 1, this

Figure 2. Schematics of the sensor anemometer showing the placement of
the Pt resistors within the structure.

spherical sensor is conformed by two hemispheres connected
to a PCB, providing mechanical support and the electrical
connections between the sensor and the read-out circuit. These
hemispheres were fabricated in silver using a 3D stereo-
lithography printing process. A polishing is made in order
to reduce emisivity [22] and finally a 100 nm gold layer is
sputtered on top of their surface in order to avoid the oxidation
of the silver.

Figure 2 shows the scheme of the sensor assembly. A 100 Ω
RTD sensor is integrated in each hemisphere (RH1 and RH2)
allowing to heat them and sense their temperature. In the
normal operation mode of this sensor, both hot elements are
maintained at a constant temperature target (above the air
temperature) by a closed loop circuit while monitoring the
electrical power needed to obtain such target. At the same time,
two more RTD are attached to the PCB, Rcore1 and Rcore2, in
order to heat the core of the sphere, where the wires connecting
RH1 and RH2 are soldered. These heaters are maintained
at the same temperature as the hemispheres, thus reducing
the conduction heat flux between the hemispheres and the
supporting structure. The aim of this approach is to make
conduction losses negligible compared with those produced
by convection.

III. REVIEW OF VARIABLE-ORDER MODELING OF
CONVOLUTION OPERATORS USING DIFFUSIVE

REPRESENTATION

Thermal systems belong to the class of causal convolution
systems, H(∂t), understood as operators, such that given an
input signal u provide an output of the form:

u 7−→ H(∂t)u : [H(∂t)u](t) =

∫ t

0

h(t− s)u(s)ds (1)

and the Laplace transform of the corresponding impulse
response is H(p) = (Lh)(p).

Diffusive Representation is a theory devoted to obtain exact
and approximate state realizations of a wide class of integral
operators, [13], [23], that may be of rational or non-rational
nature. When it exists, a unique mathematical object, called
γ-symbol, is associated with the operator, where γ is a closed
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simple arc in C− dividing the complex plane in two sets: its
exterior domain Ω+

γ , and, Ω−γ = C \ Ω+
γ . In particular H(p)

must be holomorphic in Ω+
γ . Under some additional conditions

it can be shown that the response of the system to an excitation
u can be described as:

∂tψ(t, ξ) = γ(ξ)ψ(t, ξ) + u(t), ψ(0, .) = 0
(H(∂t)u)(t) = 〈η, ψ(t, .)〉∆′

γ ,∆γ

(2)

where ξ ∈ R and η ∈ ∆′γ is the diffusive γ−symbol,
with ∆′γ being the dual of the vector space, ∆γ , to which
all functions ψ(ξ, t) ∈ ∆γ belong, [13, p.59]. In the case of
thermal systems all the poles of H(p) = H(∂t) are placed on
the negative region of the real axis. Taking this into account
we may use the following arc:

γ(ξ) = |ξ|ejsgn(ξ)(π−0+), ξ ∈ R (3)

which clearly allows to place any poles in the negative real
axis within the region Ω−γ ⊂ C, [23]. Taking this path into
account, any thermal system (1) may be expressed in a state
space realization of the form:

∂tψ(t, ξ) = −ξψ(t, ξ) + u(t)
(H(∂t)u)(t) =

∫∞
0
η(ξ)ψ(ξ, t)dξ

(4)

with ξ ≥ 0 and ψ(0, .) = 0. Let us assume that M is
a Hilbert subspace of ∆′γ , and that Q is a Hilbert subspace
of ∆γ containing H(p). We may define an injective operator
Uγ :M→Q, such that if η ∈M then:

Uγ(η) =

∫ ∞
0

η(ξ)

p+ ξ
dξ (5)

and the associated frequency response is:

H(Ω) =

∫ ∞
0

ηH(ξ)

jΩ + ξ
dξ (6)

where we have that Uγ(ηH) = H(p). It must be noted that
since ξ is a continuous variable it is possible to handle infinite
order systems, such as in the case of fractional operators.

A. Numerical approximations

Under some conditions it is possible to construct finite order
approximations of fractional order operators arbitrarily close
to the original operator H(∂t)u, [13].

1) Finite order approximation of operators from the dis-
cretization of γ−symbols: Given a sequence of L-dimensional
subspaces of atomic measures, ML ⊂M, defined on certain
meshes, {ξl}, l = 1..L, of the ξ variable, if

⋃
LML is dense

in M (or what is the same the union of the supports of the
meshes is dense in R: ∪LSupp(ML) = R ) and if:

ηL −→
L→∞

η (7)

in the strong sense, then we have that Uγ(ηL)→ Uγ(η), [13,
p. 83]. This means that good finite-order approximations of γ−
symbols provide good approximations of the corresponding
operator.
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Figure 3. Experiment carried out to infer the diffusive symbol associated
with the structure. Bottom: current injected into the Pt heater (Ilow=10 mA
and Ihigh=20 mA). Top: time evolution of the temperature of the Pt resistor,
in blue, with the corresponding 7 poles model obtained with the optimization
procedure based on diffusive representation, in red.

In the case of thermal operators, the finite-order approxi-
mations of γ−symbols are of the form:

∂tψk(t) = −ξkψk(t) + u(t)

(HL(∂t)u)(t) =
∑L
k=1 ηkψk(t)

(8)

for k = 1, · · · , L and with ψk(0) = 0. How good the
approximation can be will depend on how the frequency mesh
ξk has been chosen. In thermal systems it is usual to make a
geometric frequency mesh, within the band of interest, [24].

B. Inference of finite order approximations of γ−symbols of
operators

Under some conditions finite-order approximations
can be obtained from pseudo-inverting the Uγ operator
(Uγ
∗Uγ)−1Uγ

∗:

ηnopt = arg min
ηn∈Mn

∥∥∥∥∫ ∞
0

ηn(ξ)

p+ ξ
dξ −H(p)

∥∥∥∥
Q

(9)

If the operator Uγ
−1 is bounded, then the solution of the

above problem is strongly convergent to η. However, this
is not generally the case, [13]. Nevertheless, stable optimal
approximations can be obtained using a convenient penaliza-
tion: (Uγ

∗Uγ + εI)−1Uγ
∗.

IV. PRACTICAL INFERENCE OF DYNAMICAL MODELS
BASED ON DIFFUSIVE REPRESENTATION

A number of works have been focused on obtaining diffu-
sive symbols of operators by means of measurements. The
measurements have been made in time, [24], or in the fre-
quency domains, [25], [26]. In this work we have opted for
time-domain characterizations of the thermal system.

A predetermined current sequence is injected at the Pt
resistor of one of the hemispheres (open loop actuation). This
sequence is based on a Pseudo Random Binary Sequence
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Figure 4. Evolution of the Root Mean Square Error of the pseudo-inversions
corresponding the measurements obtained with the sensor structure, as a
function of the order of the model.
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v = 0.5 m/s
v = 0.7 m/s
v = 0.9 m/s
v = 1.1 m/s
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v = 1.5 m/s

Figure 5. Zoom of the 70-pole diffusive symbols resulting from 10 geometric
shifts of 7-order models obtained from pseudoinversion of experimental
measurements of the sensor structure. Each curve corresponds to a different
wind velocity

(PRBS). The core and the other hemisphere are controlled
to keep a constant target temperature. This condition is
interesting in the case of anemometers where it is important to
reduce the heat conduction to the structure, at least compared
to heat convection. If the structure is always kept at the same
temperature, as a first order approximation, conduction losses
can be neglected.

We focus now on the results obtained for six wind speeds:
0.5, 0.7, 0.9, 1.1, 1.3 and 1.5 m/s. For each wind speed an
open loop experiment has been carried out with a duration of
1 hour. The temperature of the corresponding Pt resistor is
sampled at fS = 20 Hz. The ’bit’ period of the 12-bit PRBS
sequence is 1 s.

As an example, Figure 3 shows the waveform obtained with
an experiment made under low wind velocity condition: 0.5
m/s. Figure 4 shows the evolution of the root mean square error
of the fittings as a function of the model order. No appreciable
gain is obtained beyond N=10.

Figure 5 shows a zoom in the range f ∈ [10−3, 1] [Hz]
of the diffusive symbols of the sensor for different wind
velocity conditions. These models have been obtained from
10 frequency mesh shifts of models of order 7.

With this approach then it is possible to infer diffusive
symbols with higher number of poles. On the other hand we
have observed that diffusive symbols of 7 poles are sufficient
to obtain a good match with the open-loop response of the
sensor and allows to distinguish among different wind velocity
conditions.

V. CONSTANT TEMPERATURE OPERATION: THERMAL
SIGMA-DELTA MODULATION

We are interested in the analysis of the heat flow in thermal
structures under constant temperature operation. In order to
enforce a constant operation many different possible controls
can be implemented. In this work we will focus on first-
order thermal sigma-delta modulation since it presents various
advantages for the implementation of Constant Temperature
Anemometry, [8]. This modulation is a very simple discrete-
time control in which at each sampling period, TS , the current
temperature of the structure, Tn = T (nTS), is compared with
the desired target temperature, ∆T .

• If Tn ≥ ∆T then the heater is switched OFF during
the following sampling period (Poff is injected into the
heater),

• If Tn < ∆T then the heater is switched on during
the following sampling period (Pon is injected into the
heater).

In order to be able to adapt the sensor to different flow and
temperature conditions it is usual to have a quiescent power:
Poff 6= 0.

Now, let us analyze the dynamics of the system for general
case of finite order thermal systems. Under the infinite sam-
pling approximation and for a constant wind, the bitstream bn
may be seen as a continuous time variable:

bn −→
TS→0

b(t) =
sgn(σ(t))

2
(Pon − Poff) +

1

2
(Pon + Poff) (10)

where σ(t) = ∆T − [H(∂t)b](t). Taking into account the
finite set of frequencies of the thermal filter, {ξk}, the discrete
time map now becomes:

∂tψk(t) =

{
−ξkψk(t) + Pon, σ > 0

−ξkψk(t) + Poff, σ < 0
(11)

If we define Ψ(t) = (ψ1(t), · · · , ψN (t))T ∈ ∆γ ≡ RN and
using the diffusive symbol we have:

σ(Ψ(t)) = ∆T − 〈η,Ψ(t)〉∆′
γ ,∆γ

=

= ∆T −
N∑
k

ηkψk(t) (12)
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A. Reachability conditions

The obvious objective of a constant temperature operation
is to place the thermal system within the control surface
σ(Ψ(t)) = 0, i.e., [H(∂t)b](t) = ∆T , or what is the same
to have Ψ(t) ∈ S where S := {f ∈ ∆γ : σ(f) = 0}.

However, depending on the maximum and minimum avai-
lable heat injections, Pon and Poff, this may or may not be
possible. First, we see that, regardless of the initial condition
of the system, in finite time or asymptotically:

ψk(t) ∈
[
Poff

ξk
,
Pon

ξk

]
(13)

The thermal system will reach the control surface S in finite
time if:

Poff

N∑
k

ηk
ξk

< ∆T < Pon

N∑
k

ηk
ξk

(14)

This follows from the fact that the control surface σ =
0 divides in two parts the state space. On one side of the
hyperplane, σ > 0, the system evolution is:

∂tψk(t) = −ξkψk(t) + Pon (15)

The above equation, for each ξk, simply describes a linear
system actuated with a constant control. Therefore we have
that:

ψk(t) = ψk(0)e−ξkt +
Pon

ξk
(1− e−ξkt), for t > 0 (16)

This means that from any initial Ψ(0) such that σ(Ψ(0)) > 0
the control surface σ = 0 will be reached if the asymptotic
point of this trajectory, ψk(∞) = Pon

ξk
, lies on the other side of

the hyperplane, i.e., we have the second inequality of condition
(14). A similar analysis can be carried out for the case where
the initial condition lies in the region σ < 0, obtaining the
first inequality of expression (14).

This means that if conditions (14) are fulfilled, the control
surface S, will be continuously reached in time (there is no
t0 such that for all t > t0 it is ψk(t) /∈ S). This amounts to
not having an asymptotically stable equilibrium point of the
system ψ̇k(t) = −ξkψk(t) + Pon, (resp. ψ̇k(t) = −ξkψk(t) +
Poff), inside the set σ > 0, (resp. σ < 0).

B. Attractive sliding region within the control surface S
In this section we will apply the techniques used for

obtaining fast switching in relay feedback systems that can be
found in [27] and [28]. This will provide us with conditions
that guarantee the existence of a sliding region within the
control surface. First, we must note that:

∂tσ(Ψ(t)) =

=

{∑N
k ηkξkψk(t)− PonΓ, σ (Ψ(t)) > 0∑N
k ηkξkψk(t)− PoffΓ, σ (Ψ(t)) < 0

(17)

where Γ =
∑N
k ηk. This means that the intersection of the

following subset of the state space ∆γ :

Ω :=

{
f ∈ ∆γ : Poff <

1

Γ

N∑
k

ηkξkfk < Pon

}
(18)

with the control surface S, i.e. Ω ∩ S , is attractive. This is
due to the fact that if Ψ(t) ∈ Ω and σ(t) < 0 we will have
σ̇(t) > 0, whereas if σ(t) > 0 then we will have σ̇(t) <
0. Therefore it is σσ̇ ≤ 0 in Ω. This means that Ω ∩ S, is
attractive. It must be noted that if ηk ≥ 0 conditions in (18)
are always fulfilled since we have (13). This means that the
reachability conditions imply that σ(∞) = 0. Intuitively we
see that if the system we are analyzing measures an absolute
temperature (not a difference of temperatures in two parts of
a structure, for example) and we are able to reach the desired
target temperature, then a thermal sigma-delta modulator will
always reach an equilibrium point within the control surface.

C. Sliding motion

Under a sliding motion, and considering a Filippov solution
with an equivalent control ueq, we will have the condition
σ̇ = 0, or what is the same:

σ̇(t) = −
N∑
k

ηkψ̇k(t) =

N∑
k

ηk(ξkψk(t)− ueq(t)) = 0 (19)

From the last equation we find that the equivalent control, in
the sense of Filippov, depends on the current value of ψk(t):

ueq(t) = Γ−1
N∑
k

ηkξkψk(t) (20)

This is the equivalent control that must be applied to the
system in order to keep it on the control surface σ = 0.

Considering now that the equivalent control is being applied,
the dynamics of the system, within the control surface σ = 0,
is determined by the following set of equations for ξk > 0:

ψ̇k(t) + ξkψk(t) =
1

Γ

N∑
l

ηlξlψl(t) (21)

If the system reaches an equilibrium point, in which
ψ̇k(t) = 0 we will have that ψk(t) = ψQk , and therefore there
will be a constant equivalent control ueq(t) = uQ:

ψQ(ξk) =
uQ
ξk
,

uQ = ∆T∑N
k ηk/ξk

(22)

D. Effect of external disturbances and model uncertainties

Let us now assume that the thermal system has some
model uncertainties and external disturbances represented by
an additional term, Θ(Ψ, t) = (θ1(Ψ, t), · · · , θN (Ψ, t))T .
Since the initial conditions are zero, Ψ(0) = 0, we have that
the thermal system can also be expressed as:
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∂tψk(t) = −ξkψk(t) + ηk
2 (Poff + Pon)

+ηk
2 (Pon − Poff)sgnσ + θk(Ψ, t)

σ(Ψ(t)) = ∆T −
∑N
k ψk(t)

Assuming a sliding regime is taking place, so that ∂tσ = 0,
the equivalent control is now:

ueq =

∑N
k ξkψk(t)− Γ

2 (Poff + Pon)− χ(Ψ, t)
Γ
2 (Pon − Poff)

∈ [−1, 1]

(23)
with χ(Ψ, t) =

∑
k θk(Ψ, t). And the new dynamics within

the control surface is then:

∂tψk(t) = −ξkψk(t) + ηk
2 (Poff + Pon) + θk(Ψ, t)

+ηk
Γ

[∑
l ξlψl(t)−

Γ
2 (Pon + Poff)− χ(Ψ, t)

]
As it can be seen, the role of a matched disturbance is

played by a disturbance proportional to the diffusive symbol,
i.e. θk(Ψ, t) = αηk for some α ∈ R, in which case
θk(t)− ηkχ(Ψ, t)/Γ = 0. Under this condition, the dynamics
of the system would remain undisturbed while the equivalent
control would instantaneously absorb the changes due to the
disturbance.

In a more general case, any disturbance will generate a
change in the dynamics of the system and also a change in
the equivalent control.

VI. ITERATIVE MAPS WITH ARBITRARY ORDER THERMAL
MODELS

Once we have undertaken the sliding mode study of the sys-
tem including a full thermal model, we may analyze whether
for a constant wind condition, and once in the final equilibrium
point, i.e. expressions (22), the dynamics associated with the
discrete-time map is the one associated with a sigma-delta
modulator.

σ̇ =

{∑N
k ηkξkψk(t)− ΓPon, σ > 0∑N
k ηkξkψk(t)− ΓPoff, σ < 0

(24)

which means that:

σn+1 ≈

{
σn + tS(ΓuQ − ΓPon), σ > 0

σn + tS(ΓuQ − ΓPoff), σ < 0
(25)

and therefore:

σn+1 = σn + ∆T
Γ∑N
k
ηk
ξk

tS

−ΓtS
2

(Poff + Pon + (Pon − Poff)sgn(σn)) (26)

Then the dynamics of the bitstream around the equilibrium
corresponds to one of a sigma-delta modulator. By defining:

un := 2
ΓtS

σn
Pon−Poff

δ := 2 ∆T∑N
k

ηk
ξk

1
Pon−Poff

− Poff+Pon
Pon−Poff

∈ [−1, 1] (27)

Figure 6. First-order sigma-delta modulator.

we obtain the same equation of a first-order sigma-delta
modulator:

un+1 = un + δ − sgn(un) (28)

where un is the sequence associated with the integrator of the
sigma-delta modulator, see Figure 6.

VII. EXPERIMENTAL RESULTS

The purpose of this section is to compare the experimental
results obtained using the sensor structure described in Section
II, with the predictions of the sliding mode analysis. Since this
structure is a prototype of a wind sensor, the measurement
consists in switching on the thermal sigma-delta converter
to a specific target temperature, ∆T , under constant wind
conditions. In a first phase, the temperature is below the
desired value, and the heater is constantly on. Once the control
surface is reached, the second phase begins and the heater
signal begins to switch in time and the typical bitstream is
obtained. In the performed experiments, once the bitstream
of the second phase has been stabilized, the wind velocity
is changed. With this change, the thermal system and its
dynamics change accordingly.

Two experiments have been carried out under different
target temperatures, ∆T , and different wind velocity condi-
tions. In both experiments, the temperature controllers of one
of the hemispheres and the core keep at the same constant
temperature their respective Pt heaters. At t = 0 the remaining
controller is switched on.

In experiment I, the wind is changed from 0.8 to 0.3 m/s.
The target temperature is ∆T = 4.7K. On the other hand,
experiment II has been carried out using six different wind
velocities. The wind is changed in steps of 0.2 m/s from 0.5
to 1.5 m/s and when the maximum wind velocity is reached,
the wind velocity is switched back to 0.5 m/s again. The target
temperature in this case is ∆T = 6.9K.

The wind velocities used in both experiments then, have
ranged from 0.3 to 1.5 m/s. The experiments were made at
room temperature and the air pressure was set to 45 mbar.
Taking into account the particular geometry of the sensor, the
obtained Reynolds numbers range from 8.4 to 42.2. Under
typical Martian conditions (6 mbar, CO2 and 220 K) [29], the
range of velocities that provide the same Reynolds numbers
go from 0.65 to 3.25 m/s.

The experimental control waveforms can be observed in
Figures 7 and 8 and there is good agreement with the pre-
diction made by the sliding analysis. The thermal models
have been inferred from PRBS measurements as explained in
Section IV for eight wind velocities: 0.3, 0.5, 0.7, 0.8, 0.9, 1.1,
1.3 and 1.5 m/s. In the sliding mode analysis, first, the point
at which the system reaches the control surface is calculated.
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Figure 7. Equivalent control of experiment I. In this case the temperature
of the core and one of the hemispheres is kept at ∆T = 4.7K. At t = 0
the controller of the remaining hemisphere is switched on (∆T = 4.7K,
Σ−∆ clock frequency 20 KHz, average power samples obtained from 1000
consecutive sampling periods). At t=800s the wind is changed from 0.8 m/s
to 0.3 m/s. The blue curve shows the experimental average power injected
into the heater. The red curve shows the result of applying the sliding mode
analysis to this measurement using a diffusive symbol of 10 poles.

From a zero initial condition, a constant u(t) = Pon is applied
till the control surface σ = 0 is reached. The intersection
point of this initial trajectory with the surface, Ψ(0) ∈ S, is
the initial condition for the sliding movement on the control
surface following expressions (20) and (21) for the first wind
step of each experiment.

Once the bitstream at the output of the sigma-delta modu-
lator is stable, the wind is changed. In experiment I, the change
is produced only once at tC1 = 800s, from 0.8 to 0.3 m/s. In
experiment II, however, ten wind velocity changes have been
made. The instants when the wind change are tCi = 300i,
i = 1, · · · , 10.

In both experiments, the thermal sigma-delta of the
hemisphere is switched on at tC0

= 0. As mentioned before,
the sliding analysis is made taking into account equations
(20) and (21). Due to the fact that the thermal filters change
when the wind velocity is changed, the initial conditions
for the dynamics of the system at each wind interval have
to be found. These values are obtained from a fitting of
the experimental measurements, with the additional affine
constraint (ηi)TΨ(tCi

+) = ∆T , where (ηi)T are the diffusive
symbols corresponding to the wind of the i-th interval.

Figures 7 and 8 show the comparison between the
experimental equivalent controls generated from the two ex-
periments, compared with the sliding mode analysis. In both
cases it is possible to explain the dynamics of the sensor as
a result of how it is operated and the how the wind changes
during the experiments.

VIII. CONCLUSIONS

The dynamics of the heat flow of a sensor structure working
at constant temperature has been analyzed using the tools of
sliding mode controllers. The dynamical finite-order thermal
models based on diffusive representation have been extracted
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Figure 8. Equivalent control of experiment II. In this case the temperature
of the core and one of the hemispheres is kept at ∆T = 6.9K. At t = 0
the controller of the remaining hemisphere is switched on (∆T = 6.9K,
Σ−∆ clock frequency 20 KHz, average power samples obtained from 1000
consecutive sampling periods). Every 5 min, the wind is changed in 0.2 m/s
steps. Wind speed is changed from 0.5 to 1.5 m/s and from 1.5 to 0.5 m/s.
The blue curve shows the experimental average power injected into the heater.
The red curve shows the result of applying the sliding mode analysis to this
measurement using a diffusive symbol of 10 poles.

from open-loop measurements using pseudo-random binary
sequences. The experimental results have been obtained with
a prototype of a wind sensor. With the proposed approach
it is possible to understand the time evolution of the control
bitstreams as a function of changes in wind velocity.
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