82,972 research outputs found

    Fault Localization in Multi-Threaded C Programs using Bounded Model Checking (extended version)

    Full text link
    Software debugging is a very time-consuming process, which is even worse for multi-threaded programs, due to the non-deterministic behavior of thread-scheduling algorithms. However, the debugging time may be greatly reduced, if automatic methods are used for localizing faults. In this study, a new method for fault localization, in multi-threaded C programs, is proposed. It transforms a multi-threaded program into a corresponding sequential one and then uses a fault-diagnosis method suitable for this type of program, in order to localize faults. The code transformation is implemented with rules and context switch information from counterexamples, which are typically generated by bounded model checkers. Experimental results show that the proposed method is effective, in such a way that sequential fault-localization methods can be extended to multi-threaded programs.Comment: extended version of paper published at SBESC'1

    Metamodel-based model conformance and multiview consistency checking

    Get PDF
    Model-driven development, using languages such as UML and BON, often makes use of multiple diagrams (e.g., class and sequence diagrams) when modeling systems. These diagrams, presenting different views of a system of interest, may be inconsistent. A metamodel provides a unifying framework in which to ensure and check consistency, while at the same time providing the means to distinguish between valid and invalid models, that is, conformance. Two formal specifications of the metamodel for an object-oriented modeling language are presented, and it is shown how to use these specifications for model conformance and multiview consistency checking. Comparisons are made in terms of completeness and the level of automation each provide for checking multiview consistency and model conformance. The lessons learned from applying formal techniques to the problems of metamodeling, model conformance, and multiview consistency checking are summarized

    Building Blocks for Control System Software

    Get PDF
    Software implementation of control laws for industrial systems seem straightforward, but is not. The computer code stemming from the control laws is mostly not more than 10 to 30% of the total. A building-block approach for embedded control system development is advocated to enable a fast and efficient software design process.\ud We have developed the CTJ library, Communicating Threads for JavaÂż,\ud resulting in fundamental elements for creating building blocks to implement communication using channels. Due to the simulate-ability, our building block method is suitable for a concurrent engineering design approach. Furthermore, via a stepwise refinement process, using verification by simulation, the implementation trajectory can be done efficiently

    A dynamic systems engineering methodology research study. Phase 2: Evaluating methodologies, tools, and techniques for applicability to NASA's systems projects

    Get PDF
    A study of NASA's Systems Management Policy (SMP) concluded that the primary methodology being used by the Mission Operations and Data Systems Directorate and its subordinate, the Networks Division, is very effective. Still some unmet needs were identified. This study involved evaluating methodologies, tools, and techniques with the potential for resolving the previously identified deficiencies. Six preselected methodologies being used by other organizations with similar development problems were studied. The study revealed a wide range of significant differences in structure. Each system had some strengths but none will satisfy all of the needs of the Networks Division. Areas for improvement of the methodology being used by the Networks Division are listed with recommendations for specific action

    Virtual Communication Stack: Towards Building Integrated Simulator of Mobile Ad Hoc Network-based Infrastructure for Disaster Response Scenarios

    Full text link
    Responses to disastrous events are a challenging problem, because of possible damages on communication infrastructures. For instance, after a natural disaster, infrastructures might be entirely destroyed. Different network paradigms were proposed in the literature in order to deploy adhoc network, and allow dealing with the lack of communications. However, all these solutions focus only on the performance of the network itself, without taking into account the specificities and heterogeneity of the components which use it. This comes from the difficulty to integrate models with different levels of abstraction. Consequently, verification and validation of adhoc protocols cannot guarantee that the different systems will work as expected in operational conditions. However, the DEVS theory provides some mechanisms to allow integration of models with different natures. This paper proposes an integrated simulation architecture based on DEVS which improves the accuracy of ad hoc infrastructure simulators in the case of disaster response scenarios.Comment: Preprint. Unpublishe

    Verifying Web Applications: From Business Level Specifications to Automated Model-Based Testing

    Full text link
    One of reasons preventing a wider uptake of model-based testing in the industry is the difficulty which is encountered by developers when trying to think in terms of properties rather than linear specifications. A disparity has traditionally been perceived between the language spoken by customers who specify the system and the language required to construct models of that system. The dynamic nature of the specifications for commercial systems further aggravates this problem in that models would need to be rechecked after every specification change. In this paper, we propose an approach for converting specifications written in the commonly-used quasi-natural language Gherkin into models for use with a model-based testing tool. We have instantiated this approach using QuickCheck and demonstrate its applicability via a case study on the eHealth system, the national health portal for Maltese residents.Comment: In Proceedings MBT 2014, arXiv:1403.704
    • 

    corecore