236,917 research outputs found

    Proportional-integral-plus control applications of state-dependent parameter models

    Get PDF
    This paper considers proportional-integral-plus (PIP) control of non-linear systems defined by state-dependent parameter models, with particular emphasis on three practical demonstrators: a microclimate test chamber, a 1/5th-scale laboratory representation of an intelligent excavator, and a full-scale (commercial) vibrolance system used for ground improvement on a construction site. In each case, the system is represented using a quasi-linear state-dependent parameter (SDP) model structure, in which the parameters are functionally dependent on other variables in the system. The approach yields novel SDP-PIP control algorithms with improved performance and robustness in comparison with conventional linear PIP control. In particular, the new approach better handles the large disturbances and other non-linearities typical in the application areas considered

    Data-based mechanistic modelling, forecasting, and control.

    Get PDF
    This article briefly reviews the main aspects of the generic data based mechanistic (DBM) approach to modeling stochastic dynamic systems and shown how it is being applied to the analysis, forecasting, and control of environmental and agricultural systems. The advantages of this inductive approach to modeling lie in its wide range of applicability. It can be used to model linear, nonstationary, and nonlinear stochastic systems, and its exploitation of recursive estimation means that the modeling results are useful for both online and offline applications. To demonstrate the practical utility of the various methodological tools that underpin the DBM approach, the article also outlines several typical, practical examples in the area of environmental and agricultural systems analysis, where DBM models have formed the basis for simulation model reduction, control system design, and forecastin

    A comparative overview of modal testing and system identification for control of structures

    Get PDF
    A comparative overview is presented of the disciplines of modal testing used in structural engineering and system identification used in control theory. A list of representative references from both areas is given, and the basic methods are described briefly. Recent progress on the interaction of modal testing and control disciplines is discussed. It is concluded that combined efforts of researchers in both disciplines are required for unification of modal testing and system identification methods for control of flexible structures

    Uncertainty propagation and speculation in projective forecasts of environmental change: a lake-eutrophication example

    Get PDF
    The issue of whether models developed for current conditions can yield correct predictions when used under changed control, as is often the case in environmental management, is discussed. Two models of different complexity are compared on the basis of performance criteria, but it appears that good performance at the calibration stage does not guarantee correctly predicted behavior. A requirement for the detection of such a failure of the model is that the prediction uncertainty range is known. Two techniques to calculate uncertainty propagation are presented and compared: a stochastic first-order error propagation based on the extended Kalman filter (EKF), and a newly developed and robust Monte Carlo set-membership procedure (MCSM). The procedures are applied to a case study of water quality, generating a projective forecast of the algal dynamics in a lake (Lake Veluwe) in response to management actions that force the system into a different mode of behavior. It is found that the forecast from the more complex model falls within the prediction uncertainty range, but its informative value is low due to large uncertainty bounds. As a substitute for time-consuming revisions of the model, educated speculation about parameter shifts is offered as an alternative approach to account for expected but unmodelled changes in the system

    Research on new techniques for the analysis of manual control systems Progress report, 16 Jun. - 15 Dec. 1968

    Get PDF
    Parameter estimation for continuous input-output systems with internal sampling in human controller model

    A Vector Matroid-Theoretic Approach in the Study of Structural Controllability Over F(z)

    Get PDF
    In this paper, the structural controllability of the systems over F(z) is studied using a new mathematical method-matroids. Firstly, a vector matroid is defined over F(z). Secondly, the full rank conditions of [sI-A|B] are derived in terms of the concept related to matroid theory, such as rank, base and union. Then the sufficient condition for the linear system and composite system over F(z) to be structurally controllable is obtained. Finally, this paper gives several examples to demonstrate that the married-theoretic approach is simpler than other existing approaches

    Approximation techniques for parameter estimation and feedback control for distributed models of large flexible structures

    Get PDF
    Approximation ideas are discussed that can be used in parameter estimation and feedback control for Euler-Bernoulli models of elastic systems. Focusing on parameter estimation problems, ways by which one can obtain convergence results for cubic spline based schemes for hybrid models involving an elastic cantilevered beam with tip mass and base acceleration are outlined. Sample numerical findings are also presented
    • 

    corecore