7,178 research outputs found

    Estimating ensemble flows on a hidden Markov chain

    Full text link
    We propose a new framework to estimate the evolution of an ensemble of indistinguishable agents on a hidden Markov chain using only aggregate output data. This work can be viewed as an extension of the recent developments in optimal mass transport and Schr\"odinger bridges to the finite state space hidden Markov chain setting. The flow of the ensemble is estimated by solving a maximum likelihood problem, which has a convex formulation at the infinite-particle limit, and we develop a fast numerical algorithm for it. We illustrate in two numerical examples how this framework can be used to track the flow of identical and indistinguishable dynamical systems.Comment: 8 pages, 4 figure

    The Ensemble Kalman Filter: A Signal Processing Perspective

    Full text link
    The ensemble Kalman filter (EnKF) is a Monte Carlo based implementation of the Kalman filter (KF) for extremely high-dimensional, possibly nonlinear and non-Gaussian state estimation problems. Its ability to handle state dimensions in the order of millions has made the EnKF a popular algorithm in different geoscientific disciplines. Despite a similarly vital need for scalable algorithms in signal processing, e.g., to make sense of the ever increasing amount of sensor data, the EnKF is hardly discussed in our field. This self-contained review paper is aimed at signal processing researchers and provides all the knowledge to get started with the EnKF. The algorithm is derived in a KF framework, without the often encountered geoscientific terminology. Algorithmic challenges and required extensions of the EnKF are provided, as well as relations to sigma-point KF and particle filters. The relevant EnKF literature is summarized in an extensive survey and unique simulation examples, including popular benchmark problems, complement the theory with practical insights. The signal processing perspective highlights new directions of research and facilitates the exchange of potentially beneficial ideas, both for the EnKF and high-dimensional nonlinear and non-Gaussian filtering in general

    Displacement Data Assimilation

    Full text link
    We show that modifying a Bayesian data assimilation scheme by incorporating kinematically-consistent displacement corrections produces a scheme that is demonstrably better at estimating partially observed state vectors in a setting where feature information important. While the displacement transformation is not tied to any particular assimilation scheme, here we implement it within an ensemble Kalman Filter and demonstrate its effectiveness in tracking stochastically perturbed vortices.Comment: 26 Pages, 9 figures, 5 table
    corecore