256 research outputs found

    Predicate Abstraction with Indexed Predicates

    Full text link
    Predicate abstraction provides a powerful tool for verifying properties of infinite-state systems using a combination of a decision procedure for a subset of first-order logic and symbolic methods originally developed for finite-state model checking. We consider models containing first-order state variables, where the system state includes mutable functions and predicates. Such a model can describe systems containing arbitrarily large memories, buffers, and arrays of identical processes. We describe a form of predicate abstraction that constructs a formula over a set of universally quantified variables to describe invariant properties of the first-order state variables. We provide a formal justification of the soundness of our approach and describe how it has been used to verify several hardware and software designs, including a directory-based cache coherence protocol.Comment: 27 pages, 4 figures, 1 table, short version appeared in International Conference on Verification, Model Checking and Abstract Interpretation (VMCAI'04), LNCS 2937, pages = 267--28

    A Formal Approach to Verify Parameterized Protocols in Mobile Cyber-Physical Systems

    Get PDF

    Scalably Verifiable Cache Coherence

    Get PDF
    <p>The correctness of a cache coherence protocol is crucial to the system since a subtle bug in the protocol may lead to disastrous consequences. However, the verification of a cache coherence protocol is never an easy task due to the complexity of the protocol. Moreover, as more and more cores are compressed into a single chip, there is an urge for the cache coherence protocol to have higher performance, lower power consumption, and less storage overhead. People perform various optimizations to meet these goals, which unfortunately, further exacerbate the verification problem. The current situation is that there are no efficient and universal methods for verifying a realistic cache coherence protocol for a many-core system. </p><p>We, as architects, believe that we can alleviate the verification problem by changing the traditional design paradigm. We suggest taking verifiability as a first-class design constraint, just as we do with other traditional metrics, such as performance, power consumption, and area overhead. To do this, we need to incorporate verification effort in the early design stage of a cache coherence protocol and make wise design decisions regarding the verifiability. Such a protocol will be amenable to verification and easier to be verified in a later stage. Specifically, we propose two methods in this thesis for designing scalably verifiable cache coherence protocols. </p><p>The first method is Fractal Coherence, targeting verifiable hierarchical protocols. Fractal Coherence leverages the fractal idea to design a cache coherence protocol. The self-similarity of the fractal enables the inductive verification of the protocol. Such a verification process is independent of the number of nodes and thus is scalable. We also design example protocols to show that Fractal Coherence protocols can attain comparable performance compared to a traditional snooping or directory protocol. </p><p>As a system scales hierarchically, Fractal Coherence can perfectly solve the verification problem of the implemented cache coherence protocol. However, Fractal Coherence cannot help if the system scales horizontally. Therefore, we propose the second method, PVCoherence, targeting verifiable flat protocols. PVCoherence is based on parametric verification, a widely used method for verifying the coherence of a flat protocol with infinite number of nodes. PVCoherence captures the fundamental requirements and limitations of parametric verification and proposes a set of guidelines for designing cache coherence protocols that are compatible with parametric verification. As long as designers follow these guidelines, their protocols can be easily verified. </p><p>We further show that Fractal Coherence and PVCoherence can also facilitate the verification of memory consistency, another extremely challenging problem. One piece of previous work proves that the verification of memory consistency can be decomposed into three steps. The most complex and non-scalable step is the verification of the cache coherence protocol. If we design the protocol following the design methodology of Fractal Coherence or PVCoherence, we can easily verify the cache coherence protocol and overcome the biggest obstacle in the verification of memory consistency. </p><p>As system expands and cache coherence protocols get more complex, the verification problem of the protocol becomes more prominent. We believe it is time to reconsider the traditional design flow in which verification is totally separated from the design stage. We show that by incorporating the verifiability in the early design stage and designing protocols to be scalably verifiable in the first place, we can greatly reduce the burden of verification. Meanwhile, we perform various experiments and show that we do not lose benefits in performance as well as in other metrics when we obtain the correctness guarantee.</p>Dissertatio

    Abstraction-based verification of parameterized networks

    Get PDF
    The thesis presents a method to verify parameterized networks of finite state processes. The method is based on three main ideas. The first one consists in modeling an infinite family of networks by a single WS1S transition system, that is, a transition system whose variables are set (2nd-order) variables and whose transitions are described in WS1S. Then, we present methods that allow to abstract a WS1S system into a finite state system that can be model-checked. Finally, in order to verify liveness properties, we present an algorithm that allows to enrich the abstract system with strong fairness conditions while preserving safety of the abstraction. We prove applicability of the method by verifying several examples. Moreover, we present generalizations that allow to verify networks of processes with unbounded state space or networks with tree topologies

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Symmetry and induction in model checking

    Full text link

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book
    • …
    corecore