
Research Article
A Formal Approach to Verify Parameterized Protocols in
Mobile Cyber-Physical Systems

Long Zhang,1 Wenyan Hu,2 Wanxia Qu,1 Yang Guo,1 and Sikun Li1

1College of Computer, National University of Defense Technology, Changsha, China
2Carnegie Mellon University, Pittsburgh, PA, USA

Correspondence should be addressed to Yang Guo; guoyang@nudt.edu.cn

Received 16 February 2017; Accepted 12 April 2017; Published 10 May 2017

Academic Editor: Jun Cheng

Copyright © 2017 Long Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Mobile cyber-physical systems (CPSs) are very hard to verify, because of asynchronous communication and the arbitrary number of
components. Verification viamodel checking typically becomes impracticable due to the state space explosion caused by the system
parameters and concurrency. In this paper, we propose a formal approach to verify the safety properties of parameterized protocols
in mobile CPS. By using counter abstraction, the protocol is modeled as a Petri net. Then, a novel algorithm, which uses IC3 (the
state-of-the-art model checking algorithm) as the back-end engine, is presented to verify the Petri net model. The experimental
results show that our new approach can greatly scale the verification capabilities compared favorably against several recently
published approaches. In addition to solving the instances fast, our method is significant for its lower memory consumption.

1. Introduction

A cyber-physical system (CPS) [1] is an integration of
computation and physical components. The improvement
of contemporary mobile devices, such as smartphones and
wearable electronics, enables the formation of mobile CPSs
[2, 3]. A mobile CPS could be considered as a subcategory of
CPSs with inherent mobile features [4, 5]. Different from tra-
ditional CPSs, mobile CPSs could be built on mobile devices
that travel with their owners. For example, mobile social net-
working [6, 7] helps people communicate with each other on
their daily commute to and from work, traveling along the
same rotes at about the same time. Due to distributed inter-
actions of cyber word, physical word, and human behaviors,
themobile CPS becomesmore complex. Asynchronous com-
munication and the arbitrary number of components make
themobile CPS appear similar to a parameterized system. It is
difficult to guarantee the parameterized system’s correctness
for any natural number [8, 9].

Due to the tight market windows and safety-critical
nature of their applications, it has become an urgent need to
design error-free mobile CPSs and thus a significant amount
of time is spent on ensuring the correctness of mobile CPS

designs. The verification of the CPS designs becomes an
important issue [10]. Formal methods, replacing the tradi-
tional testing methods for large mobile CPSs, have been suc-
cessfully used for verifying software, hardware, and physical
systems in the past decades [11]. Model checking [12, 13] is
an automatic formal approach to verify if the specification
satisfies the properties and has been used in finite and infinite
state system verification successfully.

Abstraction [14, 15] is a goodway to reduce the state space.
By abstraction, each agent of the mobile CPS can be modeled
as a finite state automaton in which local transitions model
one of the following: an internal action, a broadcast, or a
reception of a message. A mobile CPS is defined as the com-
position of a finite but arbitrary number of copies of the auto-
maton running in parallel. A mobile CPS which combined
with an arbitrary number of components is a parameterized
system, which is a wide class infinite system, including cache
coherence protocols and mutual exclusion protocols.

Parameterized systems arise naturally in the modeling of
mutual exclusion algorithms, distributed protocols, or cache
coherence protocols. Parameterized verification [8] is aimed
at verifying families of transition systems for all values of
the parameter. Counter abstraction [14] is natural to model

Hindawi
Mobile Information Systems
Volume 2017, Article ID 5731678, 10 pages
https://doi.org/10.1155/2017/5731678

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/206133062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1155/2017/5731678


2 Mobile Information Systems

parameterized systems into Petri nets and their extensions.
Petri net is a powerful mathematical tool and has been used
widely for modeling and verifying CPSs [10, 16, 17].

In this paper, we propose a formal approach to verify
the safety properties of parameterized protocols in mobile
CPSs. By using counter abstraction, the protocols of mobile
CPSs are described as Petri nets, and then the state-of-the-art
model checker is used to check the safety properties.

The significant contributions of this paper are as follows:

(i) We propose a new method based on the SAT-based
model checking algorithm to verify the parameterized
protocols of mobile CPSs. By using counter abstrac-
tion, we describe the parameterized protocol as a Petri
net and then translate it into a finite state machine
(FSM), so that IC3 [18, 19], the state-of-the-art finite
state model checking algorithm, can be used as the
back-end engine.

(ii) A smart encoding technique is introduced to make
the verification efficient. A bounded Petri net is
transformed into a FSM and described as a general
format for most model checkers.

(iii) To improve the scalability of parameterized protocols
verification, an incremental algorithm is proposed to
make IC3 perform more efficiently.

The rest of this paper is organized as follows. In Section 2,
we review the related work. Section 3 presents necessary
preliminaries used in this paper. In Section 4, we propose our
newmethod based on themodel checking algorithm and give
more details of the implementation and optimization. Sec-
tion 5 shows the experimental evaluation on parameterized
protocols. Section 6 concludes this paper and discusses future
works.

2. Related Works

As a successful application in traditional hardware and soft-
ware verification, model checking has been frequently used
in CPS verification, especially for safety-critical CPSs. Akella
andMcMillin [20] encoded the physical system into an event-
based discretized system and modeled the associated CPS by
Security Process Algebra.Themodel checker, CoPS, was used
to check the confidentiality properties. A statistical model
checker has been recently utilized to analyze some aspects
of CPSs [21]. However, this method also suffers from the
classical model checking problems, such as the state space
explosion and the lack of ability to reason aboutmathematical
relations. Bae et al. [22] combined model checking and Mul-
tirate PALS (physically asynchronous, logically synchronous)
methodology for the first time to verify an airplane turning
control system. More cases should be studied for the verifi-
cation of distributed cyber-physical systems using Multirate
PALS.

Petri nets are well-known tools formodeling and verifica-
tion of distributed systems and CPSs. Xu and Deng [16] pro-
posed a Petri nets-based method for architectural modeling
of mobile agent systems. Chen et al. [17] investigated the use
of Petri nets for modeling coordinated cyber-physical attacks

on the smart grid. A novel hierarchical method was proposed
to construct large Petri nets from a number of smaller
Petri nets that can be created separately by different domain
experts. Vita [23, 24], which is a novel mobile cyber-physical
system for crowdsensing applications, introduced Petri nets
to design a high level service state synchronization mecha-
nism to address the possible unavailable situations of mobile
devices inmobile CPSs. In order to define the functionality of
traveler information systems (TIS) and integrate new func-
tions and technologies based on cloud computing andmobile
communications, Nemtanu et al. [25] presented a Petri nets-
based model of this system. Zhang et al. [26] proposed a
mechanism to model fault tolerated mobile agents by using
colored Petri nets.

There is a large amount of related works on automating
the parameterized verification problem [27–29].The theorem
prover PVS, for example, has been successfully applied to
verify Small Aircraft Transportation System (SATS) [30]. By
using the Model Checker Modulo Theories, Johnson and
Mitra presented amodel checkingmethod for SATS [31]. Guo
et al. [32, 33] proposed a newmethod to reduce the state space
of parameterized systems by two-dimensional abstraction
(TDA). Asynchronous composition was the key part of TDA
but suffered from higher memory consumption.

3. Preliminaries

Petri nets have been popularmodels for various types of asyn-
chronous or concurrent processes. A Petri net is a directed
graph consisting of places (drawn as circles), transitions
(typically boxes), and directed arcs. Input places point to a
transition, and a transition points to output places. A number
of tokens move around the net from place to place, and the
distribution of tokens among the places (called the marking)
represents the dynamic state of the entire modeled system.
The formal definition of Petri nets is as follows.

Definition 1 (Petri net). A Petri net (PN) is a triple PN =
(𝑃, 𝑇, 𝐹), where 𝑃 is a finite set of places, 𝑇 is a finite set of
transitions disjoint from 𝑃, and 𝐹 : (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) → N is
flow relations for the set of arcs.

The configuration ofPN is𝑚𝑎𝑟𝑘𝑖𝑛𝑔𝑠, which can be seen
as the multisets of places. The semantics of PN is given by
𝑚𝑎𝑟𝑘𝑖𝑛𝑔𝑠. A marking is a function 𝑚 : 𝑃 → N, which
describes the number of tokens 𝑚(𝑝) in place 𝑝 ∈ 𝑃. In the
sequel, if places are ordered by 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛}, we often
identify 𝑚 and the vector ⟨𝑚(𝑝1), 𝑚(𝑝2), . . . , 𝑚(𝑝𝑛)⟩.

Example 2. As shown in Figure 1, a simple example contains
all components of a Petri net. There are two places and three
transitions. Arcs have capacity 1 by default; if other than 1, the
capacity is marked on the arc. Places have infinite capacity,
and transitions have no capacity and cannot store tokens
at all. The current marking is ⟨1, 0⟩. If 𝑡1 is fired, the next
marking will be ⟨2, 0⟩. If 𝑡2 is fired, the next marking will be
⟨0, 1⟩. The transition 𝑡3 cannot be fired now.

In particular, it has been shown that certain communi-
cation procedures, which are common when programming



Mobile Information Systems 3

t1

t2

t3

p1 p2

Figure 1: A Petri net with two places and three transitions.

distributed systems, can easily bemodeled by plain Petri nets,
but other communication procedures such as broadcast are
not easily captured by plain Petri nets. For that reason, we
address two extensions of the model in this paper, following
the definition in [34].

(i) Petri nets with transfer arcs, in which a transition can
also consume all tokens present in one place andmove
them to another

(ii) Petri nets with reset arcs, in which a transition can
delete all tokens present in one place

This significance of these extensions in terms ofmodeling
power has been demonstrated, for instance, in the modeling
and verification of parameterized protocols in [35].

A common way to model a parameterized system by a
Petri net is to apply the idea of the counter abstraction [8].
This principle consists of mapping each single process to a
token and representing each state of each type of process by
a place. In this case, the presence of a token in a given place
𝑝 ∈ 𝑃 indicates that, in the current global state of the system,
there is a process that corresponds to 𝑝 in its local states. The
transition of the Petri net then consumes and produces tokens
tomove the associated process from one state to another.This
formalization has the drawback of abstracting away the actual
identities of the processes. Still, some interesting properties,
for instance, safety properties, can be verified at this level of
abstraction.

In this paper, we focus on the safety property, which is
equal to the coverability of well-structured transition systems
(WSTSs) when expressing the safety property as the upward-
closed set. Petri nets are WSTSs (with respect to ≤) [36]. We
present the related notions of WSTSs and then define the PN
safety problem.

Definition 3 (well-quasi-ordering). A well-quasi-ordering
(wqo) is a reflexive and transitive binary relation ⪯ over set
𝑋, and for every infinite sequence 𝑥0, 𝑥1, 𝑥2, . . . of elements
from 𝑋, there exists 𝑖 < 𝑗 such that 𝑥𝑖 ⪯ 𝑥𝑗. For 𝑌 ⊆ 𝑋, the
upward-closure of 𝑌 is the set ↑ 𝑌 = {𝑥 | ∃𝑦 ∈ 𝑌, 𝑦 ⪯ 𝑥}. A
set𝑈 is said to be ⪯-upward-closed (or simply upward-closed
if ⪯ is clear from the context) if 𝑈 = ↑ 𝑈.

In Figure 1, the safety property is defined whether the
tokens number of place 𝑝2 is greater than or equal to 2; then
we can use the upward-closed set 𝑝2 ≥ 2 to express the
property.

Definition 4 (well-structured transition systems). A well-
structured transition system (WSTS) is a transition system
equippedwith awqo on its states that satisfies themonotonic-
ity property. A WSTS is a triple (𝑆,→, ⪯) such that

(1) 𝑆 is the (possibly infinite) state space,
(2) →⊆ 𝑆 × 𝑆 is transition relation,
(3) ⪯ is a wqo over 𝑆,
(4) for all 𝑥, 𝑥, 𝑦 ∈ 𝑆, if 𝑥 → 𝑥 and 𝑥 ⪯ 𝑦, there exists

𝑦 such that 𝑦 → 𝑦 and 𝑥 ⪯ 𝑦.

The covering relation ≤ between Petri net markings is a
wqo. A PN = (𝑃, 𝑇, 𝐹) and the initial marking 𝑚0 give rise
to a WSTS (𝑆, 𝐼,→, ≤), where 𝑆 is the set of markings and
𝐼 corresponding with 𝑚0 is the initial states. The transition
relation is defined as follows: there is an edge 𝑚 → 𝑚 if
and only if there is some transition 𝑡 ∈ 𝑇 such that when
transition 𝑡was fired, themarking𝑚 yields a newmarking𝑚.
The coverability problem for PN is defined as the coverability
problem on this WSTS.

Definition 5 (PN safety problem). Given a Petri net PN =
(𝑃, 𝑇, 𝐹) and the initial marking 𝑚0, we get a WSTS (𝑆, 𝐼,→
, ≤). Then given an ≤-upward-closed set 𝑈 ⊆ 𝑆, does there
exist a sequence 𝑥0 → 𝑥1 → ⋅ ⋅ ⋅ → 𝑥𝑙 such that 𝑥0 ∈ 𝐼 and
𝑥𝑙 ∈ 𝑈? We write safe(PN, 𝐼, 𝑈) if the answer is “no.”

Example 6. As shown in Figure 1, if the initial marking is
𝑚0 = ⟨1, 0⟩, and the safety property is described by the
upward-closed set 𝑝2 ≥ 2, there exists a sequence ⟨1, 0⟩ →
⟨2, 0⟩ → ⟨1, 1⟩ → ⟨0, 2⟩, which means the Petri net is not
safe.

4. Incremental Bounded Model
Checking Algorithm

This section describes how to bound a Petri net to an
equivalent FSM and then verifies the safety properties by
using SAT-based model checkers. An incremental method is
proposed, which benefits more from the modern SAT solver
by assumption.

4.1. Cut Off the Petri Net to FSM. In general, Petri nets are
infinite state systems, as the number of tokens can be assigned
with arbitrary 𝑛 ∈ N. In order to use the finite state model
checking algorithms, we cut off the Petri net to FSMby a given
boundary 𝐵 ∈ N. As the counter abstraction is used to model
the parameterized systems, the boundary 𝐵 can be defined as
the current process number.

Definition 7 (finite state machine). A finite state machine is a
quadruple M = ⟨𝑆, 𝑅, 𝑆0, In⟩, where 𝑆 is a finite set of states,
𝑅 ⊆ 𝑆× 𝑆 is the transition relations, 𝑆0 ⊆ 𝑆 is the initial states,
and In is a finite set of inputs.

To cut off the Petri net to FSM, we represent Petri nets
as follows. Let 𝑃 = (𝑝1, 𝑝2, . . . , 𝑝𝑛) be the set of places. A
marking 𝑚 is represented as the tuple of natural numbers



4 Mobile Information Systems

⟨𝑚(𝑝1), 𝑚(𝑝2), . . . , 𝑚(𝑝𝑛)⟩. A transition 𝑡 is represented as a
pair (g, e) ∈ N𝑛 × N𝑛, where g is the guards and e is the
effects. Formally, g = (𝐹(𝑝1, 𝑡), 𝐹(𝑝2, 𝑡), . . . , 𝐹(𝑝𝑛, 𝑡)), which
represents the enabling condition, and e = (𝐹(𝑡, 𝑝1), 𝐹(𝑡, 𝑝2),
. . . , 𝐹(𝑡, 𝑝𝑛)), which represents the yield marking 𝑚.

The Petri net is a concurrent model, in which just one
transition can be fired at one time. In the equivalent FSM, we
introduce extra inputs to simulate and select one transition to
be fired randomly.

Definition 8 (𝐵-boundedPetri net,𝐵-bounded upward-closed
set). Given a Petri netPN = (𝑃, 𝑇, 𝐹) and a boundary𝐵 ∈ N,
a 𝐵-bounded Petri net PN𝐵 is a FSM⟨𝑆, 𝑅, 𝑆0, In⟩, where 𝑆 is
the subset for all markings, so that, for a marking𝑚,𝑚(𝑝𝑖) ≤
𝐵 for all 1 ≤ 𝑖 ≤ 𝑛; 𝑅 is the subset of 𝑇, so that, for 𝑡 = (g, e) ∈
𝑇, the guard g can be fired under the boundary 𝐵; 𝑆0 is the
bounded initial marking 𝑚0; In is the set of extra inputs for
selecting which rule to be fired. Given an upward-closed set
𝑈,𝑈𝐵 is the 𝐵-bounded upward-closed set, which cuts off the
infinite 𝑈 to finite 𝑈𝐵 by the boundary 𝐵.

𝐵 is the total token’s boundary, so the summary of each
place’s token number should be less than or equal to 𝐵. Here
an adder is used to count the total tokens, which will be
discussed in Section 4.3.

The bad states are presented with an upward-closed set
𝑈 in Petri nets. We bound𝑈 with the boundary 𝐵, by cutting
off the upward-closed set with𝐵. For instance, for an upward-
closed set 𝑝2 ≥ 2, and the boundary 10, the bounded upward-
closed set is 2 ≤ 𝑝2 ≤ 10.

Here, we introduce a function 𝑐𝑢𝑡-𝑜𝑓𝑓(∗, 𝐵) to map the
Petri net PN or upward-closed set 𝑈 to 𝐵-bounded Petri net
or 𝐵-bounded upward-closed set. That is to say, PN𝐵 = cut-
off (PN, 𝐵), and 𝑈𝐵 = cut-off (𝑈, 𝐵).

4.2. SAT-BasedModel Checking Algorithms for Petri Nets. The
Boolean Satisfiability (SAT) problem is a well-known NP-
complete constraint satisfaction problem.With the introduc-
tion of bounded model checking (BMC) [37], it becomes
clear that SAT solvers can be used for model checking [12].
There has been significant progress on SAT-based model
checking techniques in the past two decades, including BMC,
interpolation [38], and IC3.

IC3, known also as property directed reachability (PDR),
is a recently proposed SAT-based model checking technique
for the analysis of sequential circuits. IC3 maintains a list of
trace: [𝑅0, 𝑅1, . . . , 𝑅𝑁]. The first element 𝑅0 is special; it is
simply identified with the initial states. For 𝑘 > 0, 𝑅𝑘 is a set
of clauses that represents an overapproximation of the states
reachable from the initial states in 𝑘 steps or less. Together
with the trace, the IC3 algorithm consists of a set of proof-
obligations, which consists of a frame number 𝑘 and a cube 𝑠.
By manipulating the trace and the set of proof-obligations,
IC3 gets new facts and adds them into the trace until it either
(1) produced an inductive invariant proving the property or
(2) added a proof-obligation at frame 0 with a cube that
intersects the initial states, which is a counterexample. With-
out unrolling the model, IC3 performs better than most

SAT-basedmodel checking algorithms, especially inmemory
consumption.

Given a Petri netmodel PN, the safety property𝑈, and the
boundary 𝐵 ∈ N,𝑈 is expressed as an upward-closed set, and
𝐵 is the current process number of the parameterized system
to be verified. By Definition 8, we create the bounded Petri
net model and bounded upward-closed set by the function
𝑐𝑢𝑡-𝑜𝑓𝑓(∗, 𝐵). PN𝐵 is a FSM and can be translated into
propositional logic directly.𝑈𝐵 represents the safety property
for PN𝐵. An SAT-based model checker is used to check the
property. There are multiple choices of model checkers. Here
the state-of-the-art model checker IC3 was used as the back-
end engine, because of its lower memory consumption. If
the model checker returns UNSAT, it means PN is safe for
the current boundary 𝐵; otherwise, a counterexample will be
found.

We note this method as 𝐵-bounded model checking
algorithm. Because of the use of finite state model checking
algorithms, the 𝐵-bounded model checking algorithm will
terminate when we find a counterexample or prove the safety.

For parameterized verification problem, wewant to verify
the system on an arbitrary parameter. If the maximum
process number is 𝑀, we need 𝑀 times single runs for 1 ≤
𝐵 ≤ 𝑀. For each single run, the FSM is encoded into a new
propositional formula to use an SAT solver, separately.

Fortunately, the modern SAT solver supports the incre-
mental mechanism, so that the new SAT problem can be
solved based on the previous solve result. The back-end SAT
engine used in this paper is minisat [39], which supports
the incremental mechanism by assumption. There is a vector
to store the assumption variables which will be assigned to
True. Hence, we introduce some extra variables, named active
literals, to control the boundary of the bounded Petri net
model.

Definition 9 (Inc-bounded Petri net, Inc-bounded upward–
closed set). Given a Petri net PN = (𝑃, 𝑇, 𝐹), a boundary
𝑛 ∈ N, and a maximum boundary 𝑚 ∈ N, an Inc-bounded
Petri net PN𝑛→𝑚 is a m-bounded Petri net PN𝑚 equipped
with the active literals vector k for controlling the boundary
incrementally. An Inc-bounded upward-closed set 𝑈𝑛→𝑚 is a
𝑚-bounded upward-closet set 𝑈𝑚 equipped with k.

If v = {𝑎𝑛+1, 𝑎𝑛+2, . . . , 𝑎𝑚}, the current boundary is 𝑛. If
𝑎𝑛+1 is popped out, the boundary increases to 𝑛 + 1. If v =
0, the boundary reaches the maximum boundary 𝑚. A new
function inc-cut-off(∗,n,m) is introduced tomap the Petri net
PN or upward-closed set 𝑈 to Inc-bounded Petri net or Inc-
bounded upward-closed set. We write that PN𝑛→𝑚 = inc-cut-
off (PN, 𝑛, 𝑚), and 𝑈𝑛→𝑚 = inc-cut-off (𝑈, 𝑛,𝑚).

Algorithm 1 shows our new algorithm to verify the
bounded Petri net from boundary 𝑛 to 𝑚 incrementally. The
inputs are a Petri net model PN, safety property 𝑈, a base
boundary 𝑛, and a maximum boundary 𝑚. 𝑈 is expressed as
an upward-closed set. The algorithm returns unsafe if it finds
a counterexample; otherwise, it returns safe and proves the
system is safe from parameters 𝑛 to 𝑚.

Lines 1–5. Generate the active literals and push them into the
assumption vector v. Then, set the current boundary as 𝑛.



Mobile Information Systems 5

Input:
PN: a Petri net model to describe the parameterized protocol
𝑈: an upward-closed set to describe the safety property
𝑛: base boundary
𝑚: maximum boundary

Output:
safe or unsafe

(1) initial assumption vector v fl ⌀ // push all active literals into assumption vector
(2) for 𝑖 fl 𝑚; 𝑖 > 𝑛; 𝑖 fl 𝑖 − 1 do
(3) v.push(𝑎𝑖)
(4) end for
(5) 𝑖 fl 𝑛 // the initial boundary is 𝑛
(6) PN𝑛→𝑚 fl inc-cut-off (PN, 𝑛, 𝑚) // create the incremental bounded Petri net
(7) 𝑈𝑛→𝑚 fl inc-cut-off (𝑈, 𝑛,𝑚)
(8) while v ̸= ⌀ do
(9) // use an SAT-based model checker to verify the property at the boundary 𝑖
(10) if PN𝑛→𝑚 |= 𝑈𝑛→𝑚 then
(11) print CEX
(12) RETURN 𝑢𝑛𝑠𝑎𝑓𝑒
(13) else
(14) print “PN is safe for current boundary 𝑖”
(15) v.pop() // the boundary is increased by 1
(16) 𝑖 fl 𝑖 + 1
(17) end if
(18) end while
(19) RETURN 𝑠𝑎𝑓𝑒

Algorithm 1: Incremental bounded model checking algorithm.

Lines 6-7. Create the incremental bounded Petri net model by
using the assumption vector v.

Lines 8–19. The while-loop is the main routine to verify the
model incrementally. If the condition is satisfied at line 10, the
model checker finds a counterexample and returns unsafe. If
the model bounded by 𝑖 is safe, then the algorithm increases
the boundary at lines 15 and 16 and calls the SAT-basedmodel
checker again to solve the new model with higher boundary.
When vector v is empty, the algorithm proves that the input
PN is safe from boundaries 𝑛 to 𝑚.

Algorithm 1 reuses the context from the previous solving
results. The main routine in Algorithm 1 is based on an SAT-
based model checker. Hence, the algorithm terminates when
it finds a counterexample at line 12 or proves safety at line 19.

4.3. Implementation and Optimization. In this section, we
introduce key points which make a great contribution in
improving the performance.

The Petri Net Format. The input Petri net is encoded in the
MIST format (https://github.com/pierreganty/mist/). Each

place ismapped to a variable, and each transition corresponds
to a rule. For each rule, there are guards and effects, as
described in Definition 8. The guards are the conditions
under which this rule can be fired, and the effects describe
how tokens transfer from places. The target is the safety
property to be verified, which is expressed as an upward-
closed set.

The FSM Format. AIGER (http://fmv.jku.at/aiger/) is a for-
mat, library, and set of utilities for And-Inverter Graphs
(AIGs). The hardwaremodel checking competition (HWMCC)
uses AIGER as input format, andmost modernmodel check-
ers support AIGER as the input model. AIGER is a good way
to describe FSM and can be translated into a propositional
logic for an SAT solver. The bounded Petri net is encoded
as an AIGER model, where each place corresponds to state
variables in Boolean value. Extra input variables are intro-
duced to select which rule to be fired and then update the
state variables to set up the transition relations equally.

Encoding: Binary versus Unary. Encoding is important for
SAT solvers. In this paper, both binary and unary encodings

https://github.com/pierreganty/mist/
http://fmv.jku.at/aiger/


6 Mobile Information Systems

Table 1: Encoding: binary versus unary.

𝑛 Binary One-hot
0 000 00000001
1 001 00000010
2 010 00000100
3 011 00001000
4 100 00010000
5 101 00100000
6 110 01000000
7 111 10000000

were used to encode the places in the Petri net model. As
shown in Table 1, binary and unary encodings are used to
encode the natural numbers. One-hot encoding is one pos-
sible unary encoding, where just one bit is “1” and the others
are all “0.”The binary encoding needs ⌈log2[𝑁]⌉ bits, and the
unary encoding needs 𝑁 bits to encode the natural number
0∼N.

Full Adder. A full adder is designed to count the total token
numbers to bound the Petri net. As binary and unary encod-
ings are used to represent the token numbers for each place,
we present how to design an 𝑛-bit binary and unary full adder,
respectively.

A 𝑛-bit binary full adder is just combing 𝑛 single 1-
bit binary adders together. The 1-bit binary adder can be
described using the following logics. The logics AND, OR,
and XOR are represented as ∧, ∨, and ⊕, respectively.

𝑆 = 𝐴 ⊕ 𝐵 ⊕ 𝐶in

𝐶out = (𝐴 ∧ 𝐵) ∨ (𝐶in ∧ (𝐴 ⊕ 𝐵))
(1)

There are many different ways to design unary adder, but
a simple 𝑛-bit unary adder is presented as follow:

𝑆𝑖 =
𝑖

⋀
𝑗=0

(𝐴 [𝑗] ∧ 𝐵 [𝑖 − 𝑗]) , 0 ≤ 𝑖 < 𝑛. (2)

Structural Information.When using unary encoding to repre-
sent the token’s number of places, it is important to give this
structural information to the SAT solver. Hence, we add some
extra logics as a constraint to the AIGER circuits. Figure 2
shows the logics to check if the 𝑛-bit vector x is encoded in
one-hot. The total number of gates is 3 ∗ 𝑛 + 2.

5. Experimental Evaluation

We have implemented the incremental bounded model
checking algorithm in a tool named PNPV. PNPV is imple-
mented with C++ and uses minisat as the back-end SAT
solver. All input instances are encoded in the MIST format.

To measure PNPV’s performance, we compare with TDA
[32], whichwas used to verify parameterized cache coherence

x0 x1 xn−1· · ·

· · ·

· · ·0

0

isonehot

Figure 2: One-hot encoding checking logics.

protocols. We also compare with the MIST toolkit (https://
github.com/pierreganty/mist) with the classical backward
[40] and EEC [41] algorithm for WSTS coverability on Petri
nets instances.

All experiments are performed on a machine, with Intel
2.60GHz CPU and 16GB main memory, running CentOS
6.5 in 64-bit. The running time is limited to 600 seconds and
memory to 2GB.

5.1. Benchmarks. Memory coherence is very important for
both the multicore processors and mobile CPSs. We verify
several classical parameterized cache coherence protocols as
described in [35]. We collected 12 Petri nets from the MIST
repository, where six bounded Petri nets are all safe and
six plain Petri nets are all unsafe. Some of those Petri nets
are used to model the communication protocols in mobile
CPSs.

5.2. Evaluation. As shown in Table 2, the unary encoding
performs about 4∼19 times better than binary. By using unary
encoding, we can solve 160 processes for Illinois and Firefly
protocols, but just 22 and 18 when using binary. For Berkeley,
PNPV solves 146 and 18 processes by unary and binary,
respectively. German protocol is an industry-like cache
coherence protocol, for which 97 and 5 processes are solved
by using unary and binary encoding, respectively. The CSM-
broad and Dragon protocols both have about 90 processes
solved by using the unary encoding but just 9 and 24 pro-
cesses by using the binary encoding, respectively. The unary
encoding is more competitive than binary on all protocols.
We identify two reasons for unary’s better performance.

The first reason is the difference in expressing the tran-
sition in FSM. Though there are more variables used to
encode the places, the transition relations can be generated
by shifting the variables.The logics for transitions are simpler
than binary, and the SAT problem is easy to solve.

The second reason is the use of the IC3 algorithm. IC3
is an incremental inductive algorithm, which builds the
overapproximation from the last SAT results incrementally.
The unary encoding is more efficient for learning clauses.

Figure 3 shows a comparison of the 𝐵-bounded model
checking algorithm with the incremental bounded model
checking algorithm on five parameterized protocols. The
incremental bounded model checking algorithm is competi-
tive on all instances, especially for Firefly, Illinois, and Berke-
ley. The main reason is that the B-bounded algorithm cannot

https://github.com/pierreganty/mist
https://github.com/pierreganty/mist


Mobile Information Systems 7

Table 2: The maximum process number solved by different encodings. As presented in Section 4.3, one-hot encoding is used for unary.
Six parameterized protocols are used to test the performance, and the maximum process number is represented in the table. All results are
collected by running Algorithm 1.

Protocols Unary Binary
Illinois 160 22
Firefly 160 18
Berkeley 146 18
German 97 5
CSMbroad 93 9
Dragon 90 24

Number of processes 
16014012010080604020

Berkeleyb Berkeleyinc

Dragonb Dragoninc

Fireflyb Fireflyinc

Illinoisb Illinoisinc

MOESIb MOESIinc

0

100

200

300

400

500

600

Ti
m

e (
s)

Figure 3: The performance comparison of 𝐵-bounded with incre-
mental bounded model checking algorithm. The superscripts 𝑏 and
inc represent 𝐵-bounded model checking algorithm and incremen-
tal bounded model checking algorithm, respectively.

reuse the previous result to prove the current verification
problem. Algorithm 1 gives us a good solution with little
expenses when adding active literals for the generated FSM.

TDA [32, 33] uses 𝑋-abstract and 𝑌-abstract to reduce
the state space of parameterized systems and speed up the
verification performance. Asynchronous composition is the
key part of TDA, but it suffers fromhighermemory consump-
tion. As shown in Table 3, PNPV performs better than TDA
on all parameterized protocols. For Berkeley and Dragon
protocols, TDA solves 14 processes, but PNPV solves 146 and
90 processes, respectively. PNPV handles 160 processes for
Firefly and Illinois, but just 22 processes are solved by TDA.
Table 3 shows that TDA suffers from highmemory consump-
tion, asmost instances hit thememory limit before hitting the
time limit. PNPV is also competitive with respect to speed

when comparing with TDA, especially for large process
numbers. As the results are all zero when the process number
𝑛 < 10, we present the data from 𝑛 = 10.

MIST is a tool to check safety properties against Petri net-
like models. To compare with PNPV, we select the classical
backward and EEC algorithms to run 12 Petri net bench-
marks. Six out of 12 instances are boundedPetri nets.The total
token numbers of the bounded Petri nets are limited. All of
the six bounded Petri nets are safe. To test PNPV’s ability
of bug finding, six unsafe instances were collected from the
MIST toolkit to evaluate the performance.

As shown in Table 4, PNPV performs better than both
backward and EEC algorithms for all unsafe instances. Both
in time and memory usage, PNPV is competitive. For six
bounded Petri nets, PNPV wins on four out of six instances.

6. Conclusion and Future Works

We introduced an incremental bounded model checking
algorithm to verify the safety properties of parameterized
protocols in mobile CPS. By using counter abstraction, the
protocol is modeled as a Petri net. Then the state-of-the-art
SAT-based model checking algorithm is used to verify the
safety properties.The algorithmcan be used to verify parame-
terized systems, including cache coherence protocols, mutual
exclusion communication protocols, and common concur-
rency primitives in mobile CPSs. The results show that our
new approach can greatly scale the verification capabili-
ties compared favorably against several recently published
approaches.Due to using IC3 as the back-endmodel checking
algorithm, our method is significant for its lower memory
consumption.

There are two directions to extend the current work in the
future. The first one is to study the property to be verified.
Liveness would be an interesting direction, as the liveness
property can be converted into safety. Security problems and
run time verification would also be a good direction in the
future. The second one is to model more complex systems.
The ideas we have presented are naturally applicable to other
concurrency systems modeled by Petri net or its extension. It
is natural to shift SAT solver to SMT solver, and it would be a
good way to improve the scalability.



8 Mobile Information Systems

Ta
bl

e
3:

C
om

pa
ris

on
of

ru
nn

in
gt

im
ea

nd
m

em
or

yc
on

su
m

pt
io
n
be

tw
ee

n
PN

PV
an

d
TD

A
.𝑛

is
th

en
um

be
ro

fp
ro

ce
ss
es
,w

hi
ch

is
th

ep
ar
am

et
er

of
th

ep
ar
am

et
er

iz
ed

pr
ot

oc
ol
s.
M
ax

sta
nd

s
fo
rt

he
m

ax
im

um
nu

m
be

ro
fs

ol
ve

d
pr

oc
es
se
s.

M
em

or
y
co

ns
um

pt
io
n
is

in
M

B
an

d
ru

nn
in

g
tim

ei
n
se
co

nd
s.

𝑛
Be

rk
el
ey

D
ra

go
n

Fi
re
fly

Ill
in

oi
s

TD
A

PN
PV

TD
A

PN
PV

TD
A

PN
PV

TD
A

PN
PV

Ti
m

e
M

em
.

Ti
m

e
M

em
.

Ti
m

e
M

em
.

Ti
m

e
M

em
.

Ti
m

e
M

em
.

Ti
m

e
M

em
.

Ti
m

e
M

em
.

Ti
m

e
M

em
.

10
0.
97

16
.0
0

0.
62

0.
00

1.0
3

15
.5
0

0.
60

0.
00

0.
59

0.
00

0.
37

0.
00

0.
04

0.
00

0.
49

0.
00

11
1.6

9
46

.2
0

0.
66

0.
00

0.
75

46
.2
0

0.
72

0.
00

0.
61

0.
00

0.
41

0.
00

0.
06

0.
00

0.
54

0.
00

12
3.
03

13
0.
8

0.
71

0.
00

3.
11

13
5.
1

0.
90

6.
10

0.
64

0.
00

0.
47

0.
00

0.
09

0.
00

0.
60

0.
00

13
6.
03

41
6.
0

0.
78

0.
00

8.
07

43
1.4

1.0
8

6.
80

0.
69

0.
00

0.
52

0.
00

0.
14

0.
00

0.
67

0.
00

14
19
.5
5

11
68

0.
85

0.
00

24
.4
7

12
10

0.
37

7.1
0

0.
77

0.
00

0.
60

0.
00

0.
22

0.
00

0.
75

0.
00

15
M

em
ou

t
0.
94

0.
00

M
em

ou
t

0.
64

7.6
0

0.
95

7.9
0

0.
67

0.
00

0.
42

7.4
0

0.
84

0.
00

16
M

em
ou

t
1.0

6
0.
00

M
em

ou
t

1.0
7

8.
10

1.2
4

19
.10

0.
79

0.
00

0.
74

18
.6

0.
96

0.
00

17
M

em
ou

t
0.
20

5.
00

M
em

ou
t

0.
48

8.
70

1.1
4

40
.6
0

0.
89

0.
00

1.5
9

40
.6
0

1.1
0

5.
20

18
M

em
ou

t
0.
37

5.
30

M
em

ou
t

1.1
3

9.8
0

1.5
6

76
.2
0

1.0
4

5.
20

2.
25

78
.2
0

0.
25

5.
20

19
M

em
ou

t
0.
56

5.
60

M
em

ou
t

0.
72

10
.2
0

3.
68

16
1.1

0.
18

5.
40

3.
38

16
1.0

0.
42

5.
40

20
M

em
ou

t
0.
79

5.
90

M
em

ou
t

1.6
7

10
.9
0

6.
77

31
1.8

0.
39

5.
80

6.
81

31
5.
4

0.
64

5.
80

21
M

em
ou

t
1.0

4
6.
10

M
em

ou
t

1.5
2

11
.5
0

13
.7
5

63
8.
2

0.
57

5.
90

14
.33

64
4.
9

0.
89

6.
00

22
M

em
ou

t
0.
35

6.
50

M
em

ou
t

1.4
9

12
.6
0

29
.6
1

12
49

0.
84

6.
20

27
.2
8

12
24

1.1
7

6.
20

23
M

em
ou

t
0.
70

6.
80

M
em

ou
t

1.9
8

13
.2
0

M
em

ou
t

1.0
9

6.
60

M
em

ou
t

0.
49

6.
80

M
ax

14
14

6
14

90
22

16
0

22
16

0



Mobile Information Systems 9

Table 4: Comparison of running time and memory consumption for different algorithms on Petri net benchmarks. Memory consumption
is in MB, and running time is in seconds.

Problem PNPV Backward EEC
Instance Time Mem. Time Mem. Time Mem.

Safe instances
kanban 7.39 6.60 427.62 54.90 0.83 0.00
lamport 0.42 0.00 0.63 0.00 0.84 0.00
newdekker 0.55 3.30 0.71 0.00 0.85 0.00
newrtp 0.58 0.00 0.72 0.00 0.86 0.00
peterson 0.68 0.00 0.75 0.00 0.86 0.00
read-write 2.31 4.50 0.81 0.00 0.91 0.00

Unsafe instances
kanban 1.05 5.20 459.92 54.90 Timeout
leabasicapproach 0.08 0.00 0.93 0.00 0.08 0.00
pingpong 2 0.10 0.00 0.93 0.00 0.13 0.00
pingpong_wrong 0.13 0.00 0.94 0.00 0.20 0.00
pncsacover 6.22 4.90 Timeout 23.89 8.70
pncsasemiliv 1.06 4.40 1.40 6.00 23.42 8.70

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors would like to acknowledge that this work was
supported by the National Natural Science Foundation of
China (Grant no. 61133007).The authors thank Carl Kwan for
helpful and detailed comments and suggestions.

References

[1] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical
systems: the next computing revolution,” in Proceedings of the
47thDesignAutomationConference (DAC ’10), pp. 731–736,New
York, NY, USA, June 2010.

[2] M. Conti, S. K. Das, C. Bisdikian et al., “Looking ahead in per-
vasive computing: challenges and opportunities in the era of
cyberphysical convergence,” Pervasive and Mobile Computing,
vol. 8, no. 1, pp. 2–21, 2012.

[3] X. Hu, K. Bai, J. Cheng et al., “MeDJ: multidimensional emo-
tion-aware music delivery for adolescent,” in Proceedings of the
World Wide Web, pp. 793–794, Proceedings of the World Wide
Web, 2017.

[4] J. White, S. Clarke, C. Groba, B. Dougherty, C. Thompson, and
D.C. Schmidt, “R&Dchallenges and solutions formobile cyber-
physical applications and supporting internet services,” Journal
of Internet Services andApplications, vol. 1, no. 1, pp. 45–56, 2010.

[5] L. Zhou, X. Hu, E. C.-H. Ngai et al., “A dynamic graph-based
scheduling and interference coordination approach in hetero-
geneous cellular networks,” IEEE Transactions on Vehicular
Technology, vol. 65, no. 5, pp. 3735–3748, 2016.

[6] X. Hu, T. H. S. Chu, V. C. M. Leung, E. C.-H. Ngai, P. Kruchten,
and H. C. B. Chan, “A Survey on mobile social networks: appli-
cations, platforms, system architectures, and future research
directions,” IEEE Communications Surveys and Tutorials, vol. 17,
no. 3, pp. 1557–1581, 2015.

[7] X. Hu, J. Zhao, B.-C. Seet, V. C. M. Leung, T. H. S. Chu, and H.
Chan, “S-aframe: agent-based multilayer framework with con-
text-aware semantic service for vehicular social networks,” IEEE
Transactions on Emerging Topics in Computing, vol. 3, no. 1, pp.
44–63, 2015.

[8] S. M. German and A. P. Sistla, “Reasoning about systems with
many processes,” Journal of the Association for Computing
Machinery, vol. 39, no. 3, pp. 675–735, 1992.

[9] R. Bloem, S. Jacobs, A. Khalimov et al., “Decidability in param-
eterized verification,” Synthesis Lectures on Distributed Comput-
ing Theory, vol. 6, no. 1, pp. 1–170, 2015.

[10] W.Hunt, “Modeling and verification of cyber-physical systems,”
in Proceedings of the National Workshop on High-Confidence
Automotive Cyber-Physical Systems, 2008.

[11] M. U. Sanwal andO. Hasan, “Formal verification of cyber-phys-
ical systems: coping with continuous elements,” in Proceedings
of the International Conference on Computational Science and Its
Applications, pp. 358–371, Springer, 2013.

[12] E. M. Clarke, O. Grumberg, and D. Peled,Model Checking, MIT
Press, 1999.

[13] K. L. McMillan, “Symbolic model checking,” in Symbolic Model
Checking, pp. 25–60, Springer, 1993.

[14] A. Pnueli, J. Xu, and L. Zuck, “Liveness with (0, 1, ∞)-counter
abstraction,” in Proceedings of the International Conference on
Computer Aided Verification, pp. 107–122, Springer, Berlin,
Germany, 2002.

[15] E. Clarke, M. Talupur, and H. Veith, “Environment abstraction
for parameterized verification,” in Proceedings of the Interna-
tional Workshop on Verification, Model Checking, and Abstract
Interpretation, pp. 126–141, Springer, 2006.

[16] D. Xu and Y. Deng, “Modeling mobile agent systems with high
level Petri nets,” in Proceedings of the 2000 IEEE International
Conference on Systems, Man and Cybernetics, vol. 5, pp. 3177–
3182, October 2000.

[17] T. M. Chen, J. C. Sanchez-Aarnoutse, and J. Buford, “Petri net
modeling of cyber-physical attacks on smart grid,” IEEE Trans-
actions on Smart Grid, vol. 2, no. 4, pp. 741–749, 2011.



10 Mobile Information Systems

[18] A. R. Bradley, “SAT-based model checking without unroll-
ing,” in Proceedings of the International Workshop on Verifica-
tion, Model Checking, and Abstract Interpretation, pp. 70–87,
Springer.

[19] N. Een, A. Mishchenko, and R. Brayton, “Efficient implemen-
tation of property directed reachability,” in Proceedings of the
FormalMethods in Computer-AidedDesign FMCAD ’11, pp. 125–
134, November 2011.

[20] R. Akella and B. M. McMillin, “Model-checking BNDC prop-
erties in Cyber-physical systems,” in Proceedings of the 33rd
Annual IEEE International Computer Software and Applications
Conference COMPSAC ’09, pp. 660–663, July 2009.

[21] L. Bu, Q. Wang, X. Chen et al., “Toward online hybrid sys-
tems model checking of cyber-physical systems’ time-bounded
short-run behavior,” ACM SIGBED Review, vol. 8, no. 2, pp. 7–
10, 2011.

[22] K. Bae, J. Krisiloff, J. Meseguer, and P. C. Ölveczky, “Designing
and verifying distributed cyber-physical systems using Mul-
tirate PALS: an airplane turning control system case study,”
Science of Computer Programming, vol. 103, pp. 13–50, 2015.

[23] X. Hu, T. H. S. Chu, H. C. B. Chan, and V. C. M. Leung, “Vita:
a crowdsensing-oriented mobile cyber-physical system,” IEEE
Transactions on Emerging Topics in Computing, vol. 1, no. 1, pp.
148–165, 2013.

[24] X. Hu, X. Li, E. C.-H. Ngai, V. C. M. Leung, and P. Kruchten,
“Multidimensional context-aware social network architecture
for mobile crowdsensing,” IEEE Communications Magazine,
vol. 52, no. 6, pp. 78–87, 2014.

[25] F. C. Nemtanu, I. M. Moise, M. G. Beldescu, and V. Iordache,
“Model of cloudified traveller information system based on
petri nets,” in Proceedings of the 36th International Spring Semi-
nar on Electronics Technology Automotive Electronics, 2013.

[26] S.-Z. Zhang, Z.-H. Ding, and J.-L. Hu, “Modeling fault tolerated
mobile agents by colored petri nets,” in International Conference
on Intelligent Computing, pp. 607–617, Springer, 2015.

[27] M. C. Browne, E. M. Clarke, and O. Grumberg, “Reasoning
about networks with many identical finite state processes,”
Information and Computation, vol. 81, no. 1, pp. 13–31, 1989.

[28] K. L. McMillan, “Parameterized verification of the flash cache
coherence protocol by compositional model checking,” in Pro-
ceedings of the Advanced Research Working Conference on Cor-
rect Hardware Design and Verification Methods, pp. 179–195,
Springer, Berlin Heidelberg, Germany.

[29] J. Esparza, P. Ganty, and R. Majumdar, “Parameterized verifica-
tion of asynchronous shared-memory systems,” Journal of the
ACM, vol. 63, no. 1, article 10, 2016.

[30] C. Munoz, V. Carreño, and G. Dowek, “Formal analysis of the
operational concept for the small aircraft transportation sys-
tem,” in Rigorous Development of Complex Fault-Tolerant Sys-
tems, pp. 306–325, Springer Berlin Heidelberg, 2006.

[31] T. T. Johnson and S.Mitra, “Parametrized verification of distrib-
uted cyber-physical systems: an aircraft landing protocol case
study,” in Proceedings of the IEEE/ACM 3rd International Con-
ference on Cyber-Physical Systems ICCPS ’12, pp. 161–170, April
2012.

[32] Y. Guo, W. Qu, L. Zhang, and W. Xu, “State space reduction in
modeling checking parameterized cache coherence protocol by
two-dimensional abstraction,” Journal of Supercomputing, vol.
62, no. 2, pp. 828–854, 2012.

[33] L. Zhang, W. Qu, Y. Guo, and S. Li, “Automatic abstraction
for verification of parameterized systems,” Journal of Computer-
AidedDesign andComputer Graphics, vol. 26, no. 6, pp. 991–998,
2014.

[34] G. Geeraerts, “On the expressive power of petri nets with trans-
fer arcs vs. petri nets with reset arcs,” Tech. Rep. 572, Université
Libre de Bruxelles, 2007.

[35] G. Delzanno, “Automatic verification of parameterized cache
coherence protocols,” in Proceedings of the International Con-
ference on Computer Aided Verification, pp. 53–68, 2000.

[36] A. Finkel and P. Schnoebelen, “Well-structured transition sys-
tems everywhere!,” Theoretical Computer Science, vol. 256, no.
1-2, pp. 63–92, 2001.

[37] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic Model
Checking without BDDs,” in Proceedings of the International
conference on tools and algorithms for the construction and
analysis of systems, vol. 1579, pp. 193–207, Springer.

[38] K. L.McMillan, “Interpolation and SAT-basedmodel checking,”
in Proceedings of the International Conference on Computer
Aided Verification, vol. 2725, pp. 1–13, Springer.

[39] N. Sorensson and N. Een, “Minisat v1.13-a sat solver with con-
flict-clause minimization,” SAT, vol. 2005, no. 53, 2005.

[40] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay, “General
decidability theorems for infinite-state systems,” in Proceedings
of the 11thAnnual IEEE SymposiumonLogic inComputer Science
LICS’96, pp. 313–321, 1996.

[41] G. Geeraerts, J.-F. Raskin, and L. Van Begin, “Expand, enlarge
and check: new algorithms for the coverability problem of
WSTS,” Journal of Computer and System Sciences, vol. 72, no.
1, pp. 180–203, 2006.



Submit your manuscripts at
https://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


