10 research outputs found

    State estimation for jumping recurrent neural networks with discrete and distributed delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2009 Elsevier LtdThis paper is concerned with the state estimation problem for a class of Markovian neural networks with discrete and distributed time-delays. The neural networks have a finite number of modes, and the modes may jump from one to another according to a Markov chain. The main purpose is to estimate the neuron states, through available output measurements, such that for all admissible time-delays, the dynamics of the estimation error is globally asymptotically stable in the mean square. An effective linear matrix inequality approach is developed to solve the neuron state estimation problem. Both the existence conditions and the explicit characterization of the desired estimator are derived. Furthermore, it is shown that the traditional stability analysis issue for delayed neural networks with Markovian jumping parameters can be included as a special case of our main results. Finally, numerical examples are given to illustrate the applicability of the proposed design method.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grants GR/S27658/01, an International Joint Project sponsored by the Royal Society of the UK, the National Natural Science Foundation of China under Grants 60774073 and 60804028, the Natural Science Foundation of Jiangsu Province of China under Grant BK2007075, and the Alexander von Humboldt Foundation of Germany

    Data Mining Using Surface and Deep Agents Based on Neural Networks

    Get PDF
    This paper presents an approach to data mining based on an architecture that uses two kinds of neural network-based agents: (i) an instantaneously-trained surface learning agent that quickly adapts to new modes of operation; and, (ii) a deep learning agent that is very accurate within a specific regime of operation. The two agents perform complementary functions that improve the overall performance. The performance of the hybrid architecture has been compared with that of a back propagation network for a variety of classification problems and found to be superior based on the RMS error criterion

    Monostability and multistability of genetic regulatory networks with different types of regulation functions

    Get PDF
    The official published version of the article can be found at the link below.Monostability and multistability are proven to be two important topics in synthesis biology and system biology. In this paper, both monostability and multistability are analyzed in a unified framework by applying control theory and mathematical tools. The genetic regulatory networks (GRNs) with multiple time-varying delays and different types of regulation functions are considered. By putting forward a general sector-like regulation function and utilizing up-to-date techniques, a novel Lyapunov–Krasovskii functional is introduced for achieving delay dependence to ensure less conservatism. A new condition is then proposed for the general stability of a GRN in the form of linear matrix inequalities (LMIs) that are dependent on the upper and lower bounds of the delays. Our general stability conditions are applicable to several frequently used regulation functions. It is shown that the existing results for monostability of GRNs are special cases of our main results. Five examples are employed to illustrate the applicability and usefulness of the developed theoretical results.This work was supported in part by the Biotechnology and Biological Sciences Research Council (BBSRC) of the U.K. under Grant BB/C506264/1, the Royal Society of the U.K., the National Natural Science Foundation of China under Grants 60504008 and 60804028, the Program for New Century Excellent Talents in Universities of China, and the Alexander von Humboldt Foundation of Germany

    Fault Detection for Wireless Network Control Systems with Stochastic Uncertainties and Time Delays

    Get PDF
    The fault detection problem is investigated for a class of wireless network control systems which has stochastic uncertainties in the state-space matrices, combined with time delays and nonlinear disturbance. First, the system error observer is proposed. Then, by constructing proper Lyapunov-Krasovskii functional, we acquire sufficient conditions to guarantee the stability of the fault detection observer for the discrete system, and observer gain is also derived by solving linear matrix inequalities. Finally, a simulation example shows that when a fault happens, the observer residual rises rapidly and fault can be quickly detected, which demonstrates the effectiveness of the proposed method

    State Estimation for Fractional-Order Complex Dynamical Networks with Linear Fractional Parametric Uncertainty

    Get PDF
    This paper deals with state estimation problem for a class of fractional-order complex dynamical networks with parametric uncertainty. The parametric uncertainty is assumed to be of linear fractional form. Firstly, based on the properties of Kronecker product and the stability of fractional-order system, a sufficient condition is derived for robust asymptotic stability of linear fractional-order augmented system. Secondly, state estimation problem is then studied for the same fractional-order complex networks, where the purpose is to design a state estimator to estimate the network state through available output measurement, the existence conditions of designing state estimator are derived using matrix's singular value decomposition and LMI techniques. These conditions are in the form of linear matrix inequalities which can be readily solved by applying the LMI toolbox. Finally, two numerical examples are provided to demonstrate the validity of our approach

    Event-Triggered State Estimation for a Class of Delayed Recurrent Neural Networks with Sampled-Data Information

    Get PDF
    The paper investigates the state estimation problem for a class of recurrent neural networks with sampled-data information and time-varying delays. The main purpose is to estimate the neuron states through output sampled measurement; a novel event-triggered scheme is proposed, which can lead to a significant reduction of the information communication burden in the network; the feature of this scheme is that whether or not the sampled data should be transmitted is determined by the current sampled data and the error between the current sampled data and the latest transmitted data. By using a delayed-input approach, the error dynamic system is equivalent to a dynamic system with two different time-varying delays. Based on the Lyapunov-krasovskii functional approach, a state estimator of the considered neural networks can be achieved by solving some linear matrix inequalities, which can be easily facilitated by using the standard numerical software. Finally, a numerical example is provided to show the effectiveness of the proposed event-triggered scheme

    State Estimation for Time-Delay Systems with Markov Jump Parameters and Missing Measurements

    Get PDF
    This paper is concerned with the state estimation problem for a class of time-delay systems with Markovian jump parameters and missing measurements, considering the fact that data missing may occur in the process of transmission and its failure rates are governed by random variables satisfying certain probabilistic distribution. By employing a new Lyapunov function and using the convexity property of the matrix inequality, a sufficient condition for the existence of the desired state estimator for Markovian jump systems with missing measurements can be achieved by solving some linear matrix inequalities, which can be easily facilitated by using the standard numerical software. Furthermore, the gain of state estimator can also be derived based on the known conditions. Finally, a numerical example is exploited to demonstrate the effectiveness of the proposed method

    Delay-Dependent State Estimation of Static Neural Networks with Time-Varying and Distributed Delays

    Get PDF
    This paper focuses on studying the state estimation problem of static neural networks with time-varying and distributed delays. By constructing a suitable Lyapunov functional and employing two integral inequalities, a sufficient condition is obtained under which the estimation error system is globally asymptotically stable. It can be seen that this condition is dependent on the two kinds of time delays. To reduce the conservatism of the derived result, Wirtinger inequality is employed to handle a cross term in the time-derivative of Lyapunov functional. It is further shown that the design of the gain matrix of state estimator is transformed to finding a feasible solution of a linear matrix inequality, which is efficiently facilitated by available algorithms. A numerical example is explored to demonstrate the effectiveness of the developed result

    State estimation for jumping recurrent neural networks with discrete and distributed delays

    No full text
    This paper is concerned with the state estimation problem for a class of Markovian neural networks with discrete and distributed time-delays. The neural networks have a finite number of modes, and the modes may jump from one to another according to a Markov chain. The main purpose is to estimate the neuron states, through available output measurements, such that for all admissible time-delays, the dynamics of the estimation error is globally asymptotically stable in the mean square. An effective linear matrix inequality approach is developed to solve the neuron state estimation problem. Both the existence conditions and the explicit characterization of the desired estimator are derived. Furthermore, it is shown that the traditional stability analysis issue for delayed neural networks with Markovian jumping parameters can be included as a special case of our main results. Finally, numerical examples are given to illustrate the applicability of the proposed design method

    State estimation for jumping recurrent neural networks with discrete and distributed delays

    No full text
    This paper is concerned with the state estimation problem for a class of Markovian neural networks with discrete and distributed time-delays. The neural networks have a finite number of modes, and the modes may jump from one to another according to a Markov chain. The main purpose is to estimate the neuron states, through available output measurements, such that for all admissible time-delays, the dynamics of the estimation error is globally asymptotically stable in the mean square. An effective linear matrix inequality approach is developed to solve the neuron state estimation problem. Both the existence conditions and the explicit characterization of the desired estimator are derived. Furthermore, it is shown that the traditional stability analysis issue for delayed neural networks with Markovian jumping parameters can be included as a special case of our main results. Finally, numerical examples are given to illustrate the applicability of the proposed design method
    corecore