146 research outputs found

    Resilient Design for Process and Runtime Variations

    Get PDF
    The main objective of this thesis is to tackle the impact of parameter variations in order to improve the chip performance and extend its lifetime

    Technological solutions and laser processes for the development of superconductor-based applications.

    Get PDF
    El trabajo realizado en esta tesis doctoral aborda diferentes retos asociados con la implantación de tecnología superconductora en diversas aplicaciones. En la primera parte, se analiza la estabilidad térmica de cables y bobinas superconductoras. En particular, se ha estudiado la generación y propagación de quench en cables de diboruro de magnesio (MgB2) con geometría Rutherford. Se han empleado dos configuraciones para estudiar la dinámica de quench en estos conductores: la generación de calor localizada, simulando un punto caliente gracias a un calentador externo; y la aplicación de sobrecorrientes (corrientes por encima de la corriente crítica del cable). Además, se ha analizado la estabilidad térmica de una bobina tipo doble pancake fabricada con cinta de material superconductor de alta temperatura de segunda generación (2G-HTS), la cual se bobinó de forma continua y sin aislamiento entre espiras. La bobina se ancló térmicamente al dedo frío de un crio-generador para ser enfriada por conducción. Se ha analizado el comportamiento térmico y electromagnético de esta bobina incluyendo los procesos de carga y de descarga, la medida de la corriente crítica de la bobina, las pérdidas generadas, y sus diferentes contribuciones, durante las rampas de carga y descarga, así como la conductancia térmica que se establece en las diferentes uniones térmicas que se han utilizado para refrigerar la bobina.Para poder realizar estos estudios fue necesario inyectar de forma estable corrientes por encima de los 400 A. Esto supuso un reto por el calor generado en el equipo y en las barras de corriente, con un extremo a temperatura ambiente y otro a temperaturas criogénicas, por lo que son necesarios disipadores térmicos, que deben tener buena conductancia térmica y aislamiento eléctrico. En esta tesis se ha propuesto para esta aplicación emplear piezas de cobre recubiertas por una capa de alúmina proyectada por plasma, que es posteriormente densificada y re-fundida mediante el procesado láser de superficies, consiguiendo así una mejora notable de su conductividad térmica.Otro de los objetivos que se han abordado en este trabajo fue estudiar si las propiedades superconductoras pueden verse modificadas por la interacción con radiación láser. La versatilidad de las tecnologías láser permite facilitar la formación de nanoestructuras en la superficie del material con una disposición casi periódica, lo que abre un nuevo camino a la ingeniería de superficies. En esta tesis se ha estudiado como los tratamientos láser pueden modificar las propiedades superconductoras del material. Para estos estudios se han utilizado muestras de niobio por ser el elemento puro superconductor con una temperatura crítica y campos magnéticos críticos más altos. Dichas estructuras han sido generadas con distintos láseres: un láser ultravioleta con pulsos en el rango de cientos de picosegundos, y dos láseres que emiten pulsos en el infrarrojo cercano en el rango de los femtosegundos. Además, se han estudiado tratamientos en diferentes atmósferas. Esta modificación superficial es de gran interés para una aplicación directa del material, como es la construcción de cavidades resonantes de radio frecuencia.<br /

    Runtime Monitoring for Dependable Hardware Design

    Get PDF
    Mit dem Voranschreiten der Technologieskalierung und der Globalisierung der Produktion von integrierten Schaltkreisen eröffnen sich eine Fülle von Schwachstellen bezüglich der Verlässlichkeit von Computerhardware. Jeder Mikrochip wird aufgrund von Produktionsschwankungen mit einem einzigartigen Charakter geboren, welcher sich durch seine Arbeitsbedingungen, Belastung und Umgebung in individueller Weise entwickelt. Daher sind deterministische Modelle, welche zur Entwurfszeit die Verlässlichkeit prognostizieren, nicht mehr ausreichend um Integrierte Schaltkreise mit Nanometertechnologie sinnvoll abbilden zu können. Der Bedarf einer Laufzeitanalyse des Zustandes steigt und mit ihm die notwendigen Maßnahmen zum Erhalt der Zuverlässigkeit. Transistoren sind anfällig für auslastungsbedingte Alterung, die die Laufzeit der Schaltung erhöht und mit ihr die Möglichkeit einer Fehlberechnung. Hinzu kommen spezielle Abläufe die das schnelle Altern des Chips befördern und somit seine zuverlässige Lebenszeit reduzieren. Zusätzlich können strahlungsbedingte Laufzeitfehler (Soft-Errors) des Chips abnormales Verhalten kritischer Systeme verursachen. Sowohl das Ausbreiten als auch das Maskieren dieser Fehler wiederum sind abhängig von der Arbeitslast des Systems. Fabrizierten Chips können ebenfalls vorsätzlich während der Produktion boshafte Schaltungen, sogenannte Hardwaretrojaner, hinzugefügt werden. Dies kompromittiert die Sicherheit des Chips. Da diese Art der Manipulation vor ihrer Aktivierung kaum zu erfassen ist, ist der Nachweis von Trojanern auf einem Chip direkt nach der Produktion extrem schwierig. Die Komplexität dieser Verlässlichkeitsprobleme machen ein einfaches Modellieren der Zuverlässigkeit und Gegenmaßnahmen ineffizient. Sie entsteht aufgrund verschiedener Quellen, eingeschlossen der Entwicklungsparameter (Technologie, Gerät, Schaltung und Architektur), der Herstellungsparameter, der Laufzeitauslastung und der Arbeitsumgebung. Dies motiviert das Erforschen von maschinellem Lernen und Laufzeitmethoden, welche potentiell mit dieser Komplexität arbeiten können. In dieser Arbeit stellen wir Lösungen vor, die in der Lage sind, eine verlässliche Ausführung von Computerhardware mit unterschiedlichem Laufzeitverhalten und Arbeitsbedingungen zu gewährleisten. Wir entwickelten Techniken des maschinellen Lernens um verschiedene Zuverlässigkeitseffekte zu modellieren, zu überwachen und auszugleichen. Verschiedene Lernmethoden werden genutzt, um günstige Überwachungspunkte zur Kontrolle der Arbeitsbelastung zu finden. Diese werden zusammen mit Zuverlässigkeitsmetriken, aufbauend auf Ausfallsicherheit und generellen Sicherheitsattributen, zum Erstellen von Vorhersagemodellen genutzt. Des Weiteren präsentieren wir eine kosten-optimierte Hardwaremonitorschaltung, welche die Überwachungspunkte zur Laufzeit auswertet. Im Gegensatz zum aktuellen Stand der Technik, welcher mikroarchitektonische Überwachungspunkte ausnutzt, evaluieren wir das Potential von Arbeitsbelastungscharakteristiken auf der Logikebene der zugrundeliegenden Hardware. Wir identifizieren verbesserte Features auf Logikebene um feingranulare Laufzeitüberwachung zu ermöglichen. Diese Logikanalyse wiederum hat verschiedene Stellschrauben um auf höhere Genauigkeit und niedrigeren Overhead zu optimieren. Wir untersuchten die Philosophie, Überwachungspunkte auf Logikebene mit Hilfe von Lernmethoden zu identifizieren und günstigen Monitore zu implementieren um eine adaptive Vorbeugung gegen statisches Altern, dynamisches Altern und strahlungsinduzierte Soft-Errors zu schaffen und zusätzlich die Aktivierung von Hardwaretrojanern zu erkennen. Diesbezüglich haben wir ein Vorhersagemodell entworfen, welches den Arbeitslasteinfluss auf alterungsbedingte Verschlechterungen des Chips mitverfolgt und dazu genutzt werden kann, dynamisch zur Laufzeit vorbeugende Techniken, wie Task-Mitigation, Spannungs- und Frequenzskalierung zu benutzen. Dieses Vorhersagemodell wurde in Software implementiert, welche verschiedene Arbeitslasten aufgrund ihrer Alterungswirkung einordnet. Um die Widerstandsfähigkeit gegenüber beschleunigter Alterung sicherzustellen, stellen wir eine Überwachungshardware vor, welche einen Teil der kritischen Flip-Flops beaufsichtigt, nach beschleunigter Alterung Ausschau hält und davor warnt, wenn ein zeitkritischer Pfad unter starker Alterungsbelastung steht. Wir geben die Implementierung einer Technik zum Reduzieren der durch das Ausführen spezifischer Subroutinen auftretenden Belastung von zeitkritischen Pfaden. Zusätzlich schlagen wir eine Technik zur Abschätzung von online Soft-Error-Schwachstellen von Speicherarrays und Logikkernen vor, welche auf der Überwachung einer kleinen Gruppe Flip-Flops des Entwurfs basiert. Des Weiteren haben wir eine Methode basierend auf Anomalieerkennung entwickelt, um Arbeitslastsignaturen von Hardwaretrojanern während deren Aktivierung zur Laufzeit zu erkennen und somit eine letzte Verteidigungslinie zu bilden. Basierend auf diesen Experimenten demonstriert diese Arbeit das Potential von fortgeschrittener Feature-Extraktion auf Logikebene und lernbasierter Vorhersage basierend auf Laufzeitdaten zur Verbesserung der Zuverlässigkeit von Harwareentwürfen

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Techniques for Improving Security and Trustworthiness of Integrated Circuits

    Get PDF
    The integrated circuit (IC) development process is becoming increasingly vulnerable to malicious activities because untrusted parties could be involved in this IC development flow. There are four typical problems that impact the security and trustworthiness of ICs used in military, financial, transportation, or other critical systems: (i) Malicious inclusions and alterations, known as hardware Trojans, can be inserted into a design by modifying the design during GDSII development and fabrication. Hardware Trojans in ICs may cause malfunctions, lower the reliability of ICs, leak confidential information to adversaries or even destroy the system under specifically designed conditions. (ii) The number of circuit-related counterfeiting incidents reported by component manufacturers has increased significantly over the past few years with recycled ICs contributing the largest percentage of the total reported counterfeiting incidents. Since these recycled ICs have been used in the field before, the performance and reliability of such ICs has been degraded by aging effects and harsh recycling process. (iii) Reverse engineering (RE) is process of extracting a circuit’s gate-level netlist, and/or inferring its functionality. The RE causes threats to the design because attackers can steal and pirate a design (IP piracy), identify the device technology, or facilitate other hardware attacks. (iv) Traditional tools for uniquely identifying devices are vulnerable to non-invasive or invasive physical attacks. Securing the ID/key is of utmost importance since leakage of even a single device ID/key could be exploited by an adversary to hack other devices or produce pirated devices. In this work, we have developed a series of design and test methodologies to deal with these four challenging issues and thus enhance the security, trustworthiness and reliability of ICs. The techniques proposed in this thesis include: a path delay fingerprinting technique for detection of hardware Trojans, recycled ICs, and other types counterfeit ICs including remarked, overproduced, and cloned ICs with their unique identifiers; a Built-In Self-Authentication (BISA) technique to prevent hardware Trojan insertions by untrusted fabrication facilities; an efficient and secure split manufacturing via Obfuscated Built-In Self-Authentication (OBISA) technique to prevent reverse engineering by untrusted fabrication facilities; and a novel bit selection approach for obtaining the most reliable bits for SRAM-based physical unclonable function (PUF) across environmental conditions and silicon aging effects

    Towards Computational Efficiency of Next Generation Multimedia Systems

    Get PDF
    To address throughput demands of complex applications (like Multimedia), a next-generation system designer needs to co-design and co-optimize the hardware and software layers. Hardware/software knobs must be tuned in synergy to increase the throughput efficiency. This thesis provides such algorithmic and architectural solutions, while considering the new technology challenges (power-cap and memory aging). The goal is to maximize the throughput efficiency, under timing- and hardware-constraints

    Design for prognostics and security in field programmable gate arrays (FPGAs).

    Get PDF
    There is an evolutionary progression of Field Programmable Gate Arrays (FPGAs) toward more complex and high power density architectures such as Systems-on- Chip (SoC) and Adaptive Compute Acceleration Platforms (ACAP). Primarily, this is attributable to the continual transistor miniaturisation and more innovative and efficient IC manufacturing processes. Concurrently, degradation mechanism of Bias Temperature Instability (BTI) has become more pronounced with respect to its ageing impact. It could weaken the reliability of VLSI devices, FPGAs in particular due to their run-time reconfigurability. At the same time, vulnerability of FPGAs to device-level attacks in the increasing cyber and hardware threat environment is also quadrupling as the susceptible reliability realm opens door for the rogue elements to intervene. Insertion of highly stealthy and malicious circuitry, called hardware Trojans, in FPGAs is one of such malicious interventions. On the one hand where such attacks/interventions adversely affect the security ambit of these devices, they also undermine their reliability substantially. Hitherto, the security and reliability are treated as two separate entities impacting the FPGA health. This has resulted in fragmented solutions that do not reflect the true state of the FPGA operational and functional readiness, thereby making them even more prone to hardware attacks. The recent episodes of Spectre and Meltdown vulnerabilities are some of the key examples. This research addresses these concerns by adopting an integrated approach and investigating the FPGA security and reliability as two inter-dependent entities with an additional dimension of health estimation/ prognostics. The design and implementation of a small footprint frequency and threshold voltage-shift detection sensor, a novel hardware Trojan, and an online transistor dynamic scaling circuitry present a viable FPGA security scheme that helps build a strong microarchitectural level defence against unscrupulous hardware attacks. Augmented with an efficient Kernel-based learning technique for FPGA health estimation/prognostics, the optimal integrated solution proves to be more dependable and trustworthy than the prevalent disjointed approach.Samie, Mohammad (Associate)PhD in Transport System

    Enhancing Power Efficient Design Techniques in Deep Submicron Era

    Get PDF
    Excessive power dissipation has been one of the major bottlenecks for design and manufacture in the past couple of decades. Power efficient design has become more and more challenging when technology scales down to the deep submicron era that features the dominance of leakage, the manufacture variation, the on-chip temperature variation and higher reliability requirements, among others. Most of the computer aided design (CAD) tools and algorithms currently used in industry were developed in the pre deep submicron era and did not consider the new features explicitly and adequately. Recent research advances in deep submicron design, such as the mechanisms of leakage, the source and characterization of manufacture variation, the cause and models of on-chip temperature variation, provide us the opportunity to incorporate these important issues in power efficient design. We explore this opportunity in this dissertation by demonstrating that significant power reduction can be achieved with only minor modification to the existing CAD tools and algorithms. First, we consider peak current, which has become critical for circuit's reliability in deep submicron design. Traditional low power design techniques focus on the reduction of average power. We propose to reduce peak current while keeping the overhead on average power as small as possible. Second, dual Vt technique and gate sizing have been used simultaneously for leakage savings. However, this approach becomes less effective in deep submicron design. We propose to use the newly developed process-induced mechanical stress to enhance its performance. Finally, in deep submicron design, the impact of on-chip temperature variation on leakage and performance becomes more and more significant. We propose a temperature-aware dual Vt approach to alleviate hot spots and achieve further leakage reduction. We also consider this leakage-temperature dependency in the dynamic voltage scaling approach and discover that a commonly accepted result is incorrect for the current technology. We conduct extensive experiments with popular design benchmarks, using the latest industry CAD tools and design libraries. The results show that our proposed enhancements are promising in power saving and are practical to solve the low power design challenges in deep submicron era
    corecore