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ABSTRACT

Computing systems, ranging from high performance computers such as servers

to embedded systems such as smart phones and handheld medical devices,

have been working their way into many aspects of daily life. As a result,

semiconductor industry has encountered persistent pressure to improve chip

performance and functionality while decreasing cost and time to market.

Down-scaling of the transistor feature size, increasing operating frequencies,

and increasing transistor count per chip are the most important drivers to

allow for high performance. However, these drivers also pose a major chal-

lenge due to parameter variations at manufacturing and runtime, induced by

imperfections in the manufacturing process and variations in workloads and

environment. Parameter variations are considered as the dominant source of

lifetime and performance limiters of circuits, increasing the chip failure rate.

Nevertheless, the circuits have to be designed to maintain a specific level of

performance and power consumption over a specified lifetime in the presence

of parameter variations.

The main objective of this thesis is to tackle the impact of parameter vari-

ations in order to improve the chip performance and extend its lifetime. To

achieve this goal, it is required to: 1) understand and analyze parameter vari-

ations and consider their interdependency, 2) develop fast and accurate reli-

ability evaluation platforms to incorporate the combined effects of variations

and transistor aging into Very Large Scale Integration (VLSI) design process,

3) develop techniques to track and monitor lifetime-delay-power changes of

the chip during in-field operation, and 4) develop design-time and runtime

adaptive techniques for alleviating the effects of variations to guarantee the

resilience of the chip throughout its lifetime

This thesis presents a set of unified analysis and design techniques for re-

silient systems in the presence of combined effects of parameter variations.

First, a holistic aging- and variation-aware timing analysis framework is de-

xvii



veloped and integrated into commercial Electronic Design Automation (EDA)

tools to evaluate the impacts of aging, voltage, temperature, and process vari-

ations on circuit performance-power-lifetime. Using this framework, a novel

delay monitoring technique is proposed which enables us to dynamically track

the delay and the lifetime of the circuit in-field under the influence of parame-

ter variations. Finally, based on the proposed timing analysis framework, and

chip monitoring system, a set of static and adaptive mitigation techniques

are designed to tackle the detrimental impacts of parameter variations on

performance, power, and lifetime of the circuit.
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ZUSAMMENFASSUNG

Computersysteme haben Einzug in viele Bereiche unseres täglichen Lebens

gehalten. Diese Systeme reichen von leistungsfähigen Computern, wie Servern,

bis hin zu eingebetteten Systemen, wie Smartphones und portablen mediz-

intechnischen Geräten. Als Folge ist die Halbleiterindustrie einem stetigen

Druck ausgesetzt, um die Chipleistung und Funktionalität zu verbessern und

gleichzeitig die Kosten und die Entwicklungszeit zu senken. Um hochperfor-

mante Systeme weiter zu entwickeln, bedient man sich verschiedener Mech-

anismen. Dazu zählt die Verkleinerung der Transistorgröße, die Steigerung

der Frequenz und eine Erhöhung der Anzahl an Transistoren auf einem Chip.

Diese Einflussfaktoren stellen allerdings eine große Herausforderung im Bezug

auf Prozessvariation bei der Herstellung und im Betrieb dar. Diese entste-

hen durch Schwankungen im Fertigungsprozess und durch unterschiedliche

Arbeitslast und Umgebungen. Die Parametervariationen erhöhen die Chip

Ausfallrate und werden als Hauptursache für die Lebenszeit- und Perfor-

manceeinschränkungen gesehen. Dennoch müssen die Schaltkreise dafür ent-

worfen sein, ein gewisses Maß an Performance und Leistungs-stabilität über

eine definierte Laufzeit in Anwesenheit von Parametervariationen gewährleis-

ten zu können.

Das Hauptziel dieser Arbeit ist es den Einfluss der Parametervariationen

zu bewältigen, um die Performance und Lebenszeit von Chips zu verlängern.

Dazu müssen folgende Punkte erfüllt sein: 1) die Parametervariationen und

deren gegenseitige Abhängigkeit müssen verstanden und analysiert werden,

2) schnelle und genaue Verlässlichkeitsevaluierungsplattformen zu entwicke-

len, um die Effekte der Variation und des Transistor Alterungeffektes mit dem

Very Large Scale Integration (VLSI) Design Prozess verbinden zu können, 3)

Techniken müssen entwickelt werden, um die Lifetime-Delay-Power-Veränder-

ungen des Chips während des Betriebs zu messen und zu analysieren, und

4) adaptive Entwurfszeit- und Laufzeittechniken müssen entwickelt werden,

xix



um Effekte von Variationen zu lindern, damit die Widerstandsfähigkeit eines

Chips über seine Lebenszeit garantiert werden kann.

Diese Arbeit stellt eine vereinheitlichete Menge von Analysen und Entwurf-

stechniken für widerstandsfähige Systeme vor. Zuerst wird ein ganzheitliches

Alterungs und variationsgewahres Zeitanalyseframework entworfen und in

ein kommerzielles Electronic Design Automation (EDA) Werkzeug integri-

ert. Damit ist es möglich die Einflüsse von Alterung, Spannung, Temperatur

und Prozessvariationen auf die Performance/Leistungs-verbrauch/Lebenszeit

zu evaluieren. Mit diesem Framework wird eine neuartige Delay-Monitor-

Technik präsentiert, die es ermöglicht, die Verzögerung und die Lebenszeit

der Schaltkreise im Betrieb unter dem Einfluss von Prozessvariationen, zu

beobachten. Zuletzt werden mit Hilfe des beschriebenen Frameworks und

des Delay-Monitor-Systemes eine Reihe von statischen und adaptiven Mi-

grationstechniken entworfen, um die schädlichen Einflüsse der Parameter-

variation auf Performance, Energie und die Lebenszeit des Schaltkreises zu

beheben.
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INTRODUCTION
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Integrated Circuits (ICs) have become the principal elements of many as-

pects of our lives. They strongly impact the way we communicate, work,

study, travel, sport, etc. [8, 9]. Over the years, in response to economics

and market demands, the scaling of transistor feature size to atomic range

has enabled the performance, and density of ICs to dramatically increase.

In fact, semiconductor industry has successfully followed the Moors law [10].

According to this law, observed by Intel co-founder Gordon Moore in 1965,

transistor count per chip is doubling every 15-18 months [11] (See Fig. 1.1).

This trend allows us to implement more functionality per chip at a reduced

device cost. Despite this promising degree of integration, technology scaling

also poses many reliability issues. Reliability is defined as the ability of a dig-

ital chip to be operational with a given specifications for a specified period

of time in the presence of stated conditions. Failing to effectively address

this emerging criterion in critical applications such as medicine, automotive,

space applications, etc can lead to unintended catastrophes. Unreliability

can also cause other severe consequences such as product delays, and yield

loss that ultimately lead to decrease in revenues and profits [12].

Figure 1.1: Original sketch of Moor’s law. Decades later it remains true.

Reliability issues arise from different sources, however, parameter variation

is recognized today as the major undesirable consequence of technology scal-

ing and the dominant source of lifetime and frequency limiters [2, 13, 14, 15].

Due to parameter variations, physical and electrical characteristics of a fabri-

cated chip vary from the design specifications over time. Parameter variation

is an expensive issue, since even a small degree of parameter variations may
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tions may translated to significant deviation in circuit frequency and lifetime.

Parameter variations can be classified into two categories:

1. Static variations are mainly due to process variations caused by inac-

curacy in the chip manufacturing process. These variations are fixed

and do not change over chip lifetime.

2. Runtime variations denote the uncertainties in operating and environ-

mental conditions (e.g., voltage and temperature fluctuations as well

as transistor aging) over time when the circuit is operating in-field.

Due to increased level of imperfections in manufacturing process of ICs,

process parameters of fabricated chips such as gate length and threshold

voltage usually vary from the expected design value resulting in considerable

timing mismatch between design time and runtime [16, 17, 18, 13, 19, 20, 21,

22].

In biology, aging is defined as ”the collection of changes that render human

beings progressively more likely to die” [23]. The same phenomenon happens

for ICs. The main source of transistor aging is threshold voltage increase

of transistors over time [2]. Consequently, the circuit delay is gradually

degraded, and eventually, the circuit may exhibit timing violations if the

delay in the critical paths exceeds the timing constraints for which it was

designed [24, 25, 26, 27]. Ultimately the circuit fails (dies) due to timing

violations.

In the presence of voltage variations, the actual supply voltage level seen

by individual devices decreases [28]. Voltage variations are caused by the in-

stantaneous switching current drawn from the power delivery network, and

fluctuations in chip activity. This phenomenon causes the gate delay to in-

crease and eventually reduces the system performance. In addition, voltage

variations can also lead to intermittent logic and timing failures. Although

technology scaling decrease the power dissipation of transistors, due to place-

ment of more devices in a single chip the overall power consumption and

power density is dramatically increased [2, 29]. The increase in power con-

sumption and power density result in temperature variations. Temperature

variation has detrimental side-effects on both performance and reliability of

the chip [30, 31]. In addition, resistance of the power delivery network is

impacted by temperature resulting in larger voltage variations.
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Fig. 1.2 shows the failure rate of an IC over time in the presence of

parameter variations. This curve, a.k.a. bathtub curve, consists of three

parts [12, 15]:

1. Infant mortality: Due to manufacturing defects, the failure rate of this

part is very high. However, the failure rate rapidly decreases as the

faulty ICs are identified and discarded using burn-in process.

2. Mid-life: The next part represents the useful lifetime of the IC. During

this part, the chip is susceptible to soft errors as well as timing viola-

tions imposed by runtime variations. The failure rate of this part is a

function of operating and environmental conditions.

3. Late life: In the late life of the chip, again the chip experiences increas-

ing failure rate due to aging-induced failures.

Fa
ilu

re
 ra

te

Time

Infant mortality Mid-life Late life

Future Semiconductor
Current Semiconductor

Figure 1.2: Failure rate of a chip over time [12, 15].

In Fig. 1.2, the dashed line demonstrates the impact of technology scaling

on the failure rate. This figure shows that variations become more severe

for future technology, since scaling leads to 1) higher degree of inaccuracy

in chip fabrication process [3], 2) higher electrical field [2], and 3) higher

power density [3]. Since transistor feature size is scaled more aggressively

than operating voltage, as shown in Fig. 1.3, the electric field across the gate

oxide is increased. As a result of the elevated temperature and/or higher

electric field, the aging is expected to happen earlier and hence, lifetime is

decreased.

Runtime temperature variation is expected to increase because of higher

power consumption in smaller technology nodes (See Fig. 1.4). Higher clock

frequencies and escalating transistor densities cause more devices to switch
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Figure 1.3: Electric field across gate oxide for different technologies [1].

simultaneously in atomic dimensions. This leads to elevated level and change

rate of instantaneous current change and as a result the undesirable voltage

variation is exacerbated.

Figure 1.4: Power consumption trend [2].

1.1 Research Contributions

To enable semiconductor industry to continue to scale down the device dimen-

sions, it is important to prevent the emerging problems of parameter varia-

tions by incorporating them into digital design methodologies and Computer-

Aided Design (CAD) tools. To achieve this goal, we need to: 1) accurately

model the combined effects of parameter variations and their detrimental

effects on delay and lifetime, 2) precisely track the variations-induced de-

lay increase of chips in-field, and 3) add appropriate countermeasures to the

chip in order to compensate, and tackle the parameter variations in order to

meet the specified design specifications. This thesis presents various novel
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techniques to improve and extend the state-of-the-art methods in the way

described below:

1.1.1 Modeling

Parameter variations are interdependent, although occurring at different time

scale, which makes their timing impacts extremely complex to analyze. Fig-

ure 1.5 shows the interdependence of parameter variations. These strong

correlations and the increasing sensitivities of nano-scaled transistors to vari-

ations make the state-of-the-art methodologies of analyzing the circuit delay

to be significantly inefficient. To avoid under-design and/or over-deign of dig-

ital chips, an accurate variations-aware timing analysis technique is highly

required. Facing this emerging problem motivated us to focus on addressing

the challenging task of variations-aware timing analysis.

This thesis proposes a holistic and an accurate timing analysis framework

which significantly improves the limitations of state-of-the-art methodologies

by incorporating the combined effects of workload-dependent aging, process,

and runtime variations, occurring at different time scales, into timing analysis

flow. We discovered that neglecting the interaction among parameter vari-

ations in existing techniques results in considerable error in design margin

and performance loss. The proposed framework is built on top of commercial

Electronic Design Automation (EDA) tool chains and therefore it scales very

well. Thanks to our novel approach, not only the pessimistic timing margin

of circuits can be significantly reduced, but also other parts of digital design

flow such as design-time and runtime mitigation techniques derive benefit

from this technique.

1.1.2 Monitoring

The common practice to tackle the adverse impact of parameter variation on

circuit delay is utilizing a safety timing margin , a.k.a. guardbands. Run-

time variations tend to vary from workload to another, and between different

time intervals during the execution. Since it is almost infeasible to accurately

predict the operating conditions, this design-time approach may impose con-

siderable performance loss. For example, as highlighted by IBM, a 20%
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Figure 1.5: Interdependence of different sources of variation and their
impact on circuit delay and lifetime.

timing margin is considered for voltage variations in POWER7 processors

[32]. This loss tends to increase with technology scaling, causing an even

larger performance gap between the nominal and the worst-case condition

[14]. Runtime mitigation have been advocated as a promising alternatives

that enables the dynamic adjustment of reliability knobs based on the ac-

tual variations seen during runtime. Evolving runtime techniques demands

effective, accurate in-field variations-aware delay monitoring systems.

The focus of the most state-of-the-art techniques for delay/age monitoring

is on sensor design. However, to apply these sensors, we need to tolerate a

significant overhead unless sensors are carefully placed for very selective loca-

tions. Another challenge is to infer the information regarding the delay/age of

every critical paths of the chip with limited information obtained by the mon-

itoring sensors. In this thesis, we propose a new aging- and variations-aware

methodology that utilizes different machine-learning techniques to monitor

the delay of a small set of critical paths by leveraging already available sensors

and dynamically assess the impact of variations for every reliability-critical

path of the chip. In particular, this contribution provides answers to the

questions: 1) how to identify the most-relevant silicon data and chip fea-

tures, 2) how to select the most-appropriate machine-learning strategies for

delay monitoring, and 3) how to realize the delay/age monitoring systems.
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1.1.3 Mitigation

In general, to tackle parameter variations, two different categories of mit-

igation techniques, namely design-time solutions and runtime solutions are

developed. Design-time techniques are based on aggregation of the strategies

of model, predict, and margin, while run-time solutions are based on sense

and adapt methodology. Note that these two categories can be regarded as

being complementary to each other to tighten the overheads. This thesis

presents how the significant overheads of exiting design-time guard-banding

(i.e., adding timing margin) can be reduced with the help of the proposed

variations-aware timing analysis flow. In addition, with the help of proposed

delay/age monitoring system, a novel fine-grained reconfigurable active heal-

ing technique based on Input Vector Control (IVC) is presented to co-optimize

lifetime and power consumption during inactive period considering the op-

erating conditions of the circuit. Finally, a new Dynamic Frequency Scaling

(DVF) that enables the dynamic adjustment of clock frequency based on the

actual variations seen during runtime is proposed in order to significantly

increase the system performance.

1.2 Organization of the Dissertation

The rest of this dissertation is organized as follows.

Chapter 2 discusses the physical mechanisms of parameter variations, mod-

eling techniques, as well as the impact of parameter variations on reliability

of the digital circuits. This chapter provides the fundamental background

which is important for understanding the next chapters of this dissertation.

In Chapter 3, state-of-the-art timing analysis techniques are presented,

advantage and disadvantage of each of them are discussed. This is followed

by explaining the details our proposed variation-aware timing analysis. It also

highlights the importance of considering the combined impacts of parameter

variations during timing analysis.

Chapter 4 lists current status of the existing monitoring systems for track-

ing the status of circuits in-field. It then discusses the major limitations of

state-of-the-art techniques and how they can be improved by our novel tech-

niques. Our proposed variation-aware monitoring approach is presented in

details and its accuracy is compared against previous work.
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Chapter 5. describes design-time and runtime techniques previously pro-

posed to tackle the adverse impacts of parameter variations. It also demon-

strates how the proposed variations-aware timing analysis flow and the pro-

posed monitoring system can be used to improve existing mitigation tech-

niques to further increase frequency and extend the lifetime of the chip con-

sidering the power limit.

Finally, the thesis is concluded in Chapter 6 and points out the possible

extension of this work as well as the applications of proposed techniques.
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CHAPTER 2

BACKGROUND AND MODELING
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Very-large-scale integration (VLSI) chips manufactured at nano-scale tech-

nology nodes face various reliability challenges [33, 14, 2]. Process varia-

tions as well as runtime variation including transistor aging together with

workload-dependent voltage and temperature variations are considered as

the major sources of unpredictability in VLSI designs. Process variations

result in considerable timing mismatch between design specifications and the

specifications of the manufactured (post-silicon) chips. In addition, timing

specifications of the manufactured chip may also vary over the time due to

workload-dependent runtime variations [34, 35]. This chapter introduces the

physical mechanisms of these undesirable parameter variations, as well as

their impacts on circuit frequency, power, and lifetime. This is followed by

presenting methodologies and frameworks to model parameter variations.

2.1 Process Variations

Due to imprecision in the fabrication process, when a chip is fabricated, the

obtained value of numerous chip parameters such as oxide thickness, gate

length, and impurity density from are deviated from the intended design

specifications. The uncertainties in physical parameters in turn lead to vari-

ations in electrical characteristics of transistors and interconnects, ultimately

resulting in circuit delay variations and timing failures. Among different

physical parameters, effective gate length and threshold voltage are mostly

suffer from process variations [12, 36]. The main reason of deviations in gate

length is that optical lithography cannot be scaled with the same pace of

transistor scaling, and hence the feature size of transistors are far smaller

than the available wavelength of lithography. The main source of thresh-

old voltage variations lies in Random Dopant Fluctuation (RDF) due to the

random nature of ion implantation. Since in the smaller technology nodes

the total number of dopants is very few, RDF tends to significantly alter the

threshold voltage. As shown in Fig. 2.1, variations in physical parameters

can be categorized as follow [3]:

• Systematic variations: these deterministic variations are geometry-

dependent or layout-dependent and can be modeled by practical equa-

tions or look-up tables.
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• Non-systematic or random variations: as the name suggests, these vari-

ations are really uncertain and independent of design implementation.

Therefore, only statistical random variables can be used for modeling

of these parameters. Random variations themselves either can be fur-

ther categories to die-to-die or within-die variations. Due to die-to-die

variations, all the transistors placed on the same die are impacted in

the same way. On the other hand, due to within-die variations, each

transistors in the same die varies in a different way. Finally, within-die

variations can either be totally independent or be spatially correlated.

Lithographic-based variations such as gate length mostly show strong

spatial correlations, on the other hand, non-lithographic variations such

as RDF are almost random with negligible spatial correlation.

Process variations

Systematic Non-systematic

Within-die

Spatially correlated Independent

Die-to-die

Figure 2.1: Categories of process variations [3].

According to [37], the variation of Physical Parameters (e.g. effective gate

length: ∆L) can be represented by the following equation:

∆PPtotal = ∆PPd2d + ∆PPwd,cor + ∆PPwd,rand, (2.1)

where ∆PPd2d represents die-to-die variation. ∆PPwd,cor represents the spa-

tially correlated variation and ∆PPwd,rand denotes the within-die independent

random variation. In general, gates located in close proximity may exhibit

similar parameter variations. The most common approach to exactly model

the spatial correlation of within-die process variation, is based on a technique

presented in [38]. As shown in Fig. 2.2, in this method, the die area is di-

vided into several square tiles and correlation between two tiles is modeled
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by a diminishing function of exp(−α ·d), where d is the distance of these two

tiles and α is the diminishing factor.

Figure 2.2: Spatial correlation modeling approach.

To keep track of the correlations among variations, Principal Component

Analysis (PCA) can be used to map the correlated variables (e.g. ∆L) to

a new set of parameters whose elements are mutually independent (orthog-

onal). As an example Equation 2.2 shows how ∆Li can be represented by

Principal Components (PC). Note, PCs have standard normal distribution

and are same for all correlated variables:

∆Li =
n∑
i

ai · PC∆L,i + µi, (2.2)

where ai is a coefficient which depends on the covariance matrix of the original

correlated set of ∆Li and µi is the mean value of ∆Li.

2.2 Transistor Aging

There are different mechanisms such as Bias Temperature Instability (BTI),

Time-dependent Dielectric Breakdown (TDDB), and Hot Carrier Injection

(HCI) that cause transistor delay degrades over time resulting in timing

violations and failure. Due to higher operating temperature and higher elec-

tric field in atomic-scaled semiconductor technology, the impacts of aging

phenomena are escalated which leads to shorter circuit lifetime and higher

timing failures. Therefore it is highly required to understand, model, track,

and mitigate transistor aging to guarantee the specified reliability of the chip.
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2.2.1 BTI

Negative BTI- (NBTI-) induced threshold voltage increase has grown in im-

portance as technology scales down and among different aging mechanisms,

it is considered as the dominant degradation phenomenon which should be

appropriately addressed in nano-scaled technology [2]. The NBTI effect

causes |Vth| of PMOS transistor to increase. In general, physical mecha-

nisms of NBTI are primarily associated with reaction-diffusion and trapping-

detrapping phenomena.

According to reaction-diffusion (See Fig. 2.3), at the Si − SiO2 interface

of PMOS transistors, most of the Si atoms are connected to O atoms, while

the rest of them are bonded to H atoms. Therefore, under high electric field

(V gs = −V dd), some of the SiH bonds of PMOS transistor may be broken.

The generated H and H2 can diffuse towards the gate and the remaining

dangling bonds (i.e., traps) increase the threshold voltage of the transistor.

On the other hand, when stress is removed (V gs = 0), the migrated H atoms

return to the interface and compensate donging bonds resulting in threshold

voltage decrease [24, 25, 39, 40, 33].

Gate

Source Drain

Si o

Si

Si

Si

Si

o
o

o

H

H H,H2
Stress

H,H2
Recovery

N-well

PolyGate OxideSilicon

Figure 2.3: Reaction-diffusion BTI model.

In trapping-detrapping model (See Fig. 2.4), it is believed that some pre-

existing traps are located in the dielectric of the PMOS transistors. Due

to electric field, these traps can be filled with the holes migrating from the

channel area contributing to threshold voltage increase. When electric field

is removed, some of the filled traps are emptied and hence, threshold voltage

decreases [41, 42, 43].

In both reaction-diffusion model and trapping-detrapping model, the first

phase is refereed as stress phase, and the second phase is refereed as recovery

phase. As shown in Fig. 2.5, in the stress phase, the threshold voltage of
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Figure 2.4: Trapping-detrapping BTI model.

PMOS transistor increases over the time, whereas in the recovery phase the

threshold voltage decreases towards its initial value. It should be noted that

the recovery phase cannot completely alleviate the effect of the stress and

hence, the overall effect of NBTI is a positive shift in the threshold voltage

of the PMOS transistors.

Stress Recovery

Time

V
th

Stress Recovery

Overall NBTI

Figure 2.5: Stress and recovery mode.

As a result of NBTI, the rise time of a CMOS logic gate increases. Fig-

ure 2.6(a) shows the rise-time delay of a simple inverter versus |∆Vth| of its

PMOS transistor for 16 nm to 45 nm PTM technologies. As shown in this

figure the rise-time delay sensitivity to |∆Vth| of the PMOS transistor in-

creases with technology scaling. However, the NBTI-induced |∆Vth| of the

PMOS transistor, leads to a decrease in fall-time delay of the CMOS logic

gate as well. This is due to the fact that NBTI makes the PMOS transistor,

in the pull-up network, weaker and as a result during the output fall time, the
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PMOS transistor switches faster which eventually results in a lower fall-time

delay. This effect is depicted in Figure 2.6(b).
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Figure 2.6: NBTI-induced delay degradation of a simple inverter for
different |∆Vth| of its PMOS transistor.

In the previous technology nodes, the Positive BTI (PBTI) effect on NMOS

transistors was negligible in comparison to the effect of NBTI on PMOS tran-

sistors. However, by introduction of high-κ metal-gate technologies, PBTI

has emerged as a major reliability concern for NMOS in and the effect be-

comes more significant with technology and voltage scaling [4, 44, 45] (see

Fig. 2.7).
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Figure 2.7: Vth shift induced by NBTI and PBTI [4].

BTI-induced timing degradation strongly depends on operating context pa-

rameters including supply voltage, temperature, and input patterns [46, 33]

which are non-uniform and significantly vary from gate to gate and time to
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time [40]. The overall BTI effect can be modeled by the following equa-

tion [39, 46]:

∆V thNBTI(t) =

(√
Kv

2αTclk

1− β(t)1/2n

)2n

, (2.3)

where α is the duty cycle (i.e., the ratio between stress time to the total

time), Tclk is the clock cycle. n is a fabrication process constant (n = 1/4 for

hydrogen atoms and n = 1/6 for hydrogen molecules). The other parameters

are described in [33].

BTI is impacted by an intrinsic variation factor [47, 48]. This fluctuation

is rooted in intrinsic charge fluctuation of generated BTI-induced interface

traps, similar to random dopant fluctuation. The effect of the intrinsic fluc-

tuation on BTI-induced Vth shift can be modeled by [49]:

σ(∆Vth−BTI(t)) =

√
K

L.W
µ(∆Vth−BTI(t)). (2.4)

2.2.2 HCI

HCI affects mainly NMOS transistors when the gate of NMOS is making a

transition. Carriers in the channel are subjected to different electric fields

when traveling between the source to the drain. If these hot carriers collide

with the gate oxide interface, some electron-hole pairs are generated. Some of

these generated electrons are energetic enough to accelerate and get trapped

in the gate oxide. These interface traps are generated at the Si−SiO2 inter-

face near the drain causing the threshold voltage to increase [50] (Fig. 2.8).

Since hot electrons are generated when the gate of the NMOS switches, the

threshold voltage change due to HCI has a direct dependency with the oper-

ational frequency. The threshold voltage change can be estimated by Equa-

tion (2.6) [51].

∆Vth = AHCI × α× f × e
VDD−Vth

toxE1 × t0.5, (2.5)

where AHCI is a technology dependent constant, α is the activity factor, and

f is the clock frequency. Vth and VDD are the threshold voltage and supply

voltage, respectively. tox is the oxide thickness, E1 is a constant equal to

0.8V/nm [52] and t is the total time [53, 54].
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2.2.3 TDDB

TDDB is an aging mechanism which is the result of formation of a con-

ducting path between gate and substrate due to electric field (See Fig. 2.9).

TDDB leads to an increasing leakage current and in turn resulting in reduced

switching frequency and failure. The increase in gate oxide current can be

expressed by the following equation:

∆Igate = K(Vgd)
pet/β, (2.6)

where k, p, β are technology dependent fitting parameters. Vgd is the voltage

between gate and drain and t is time.

Gate

Source Drain

Figure 2.9: Physical mechanism of TDDB.

2.3 Power Model

Although with technology scaling the power consumption of each transistor is

reduced, due to incredibly higher transistor count per area, the overall power

density and as a result temperature and voltage variations are dramatically

increased [2]. Therefore, chip designers should carefully address this emerging

issue to avoid the ultimate undesirable consequences. Power dissipation in

CMOS circuits is composed of two main components: dynamic and leakage

power dissipation. Dynamic power occurs during switching of logics and
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mainly is due to switching power and short circuit power. Switching power is

the power required to charge/discharge the load capacitance. This power can

be reduced by reducing the operating voltage, frequency, switching activity,

and load capacitance. Short circuit power is due to direct current between

supply rails (i.e., VDD and GND) while PMOS and NMOS are both ON at

the same time for a short period of time during switching because of finite rise

and fall times. Static power is the power dissipated due to leakage currents

drawn continuously from the power supply.

In general, the total power is estimated based on the workload-dependent

operating conditions of the chip as follow:

• Powered off (Power Gating): The total power is zero.

• Powered on, clocks off (Clock Gating): The dynamic power is equal to

zero and therefore the total power is equal to the leakage power.

• Powered on, clocks on, no input change: The chip has only dynamic

power in the clock network and the total power is equal to the sum of

the leakage power and the dynamic power of the clock network.

• Powered on, clocks on, with input change: The total power is the sum

of the dynamic and the leakage powers.

2.3.1 Dynamic Power

Here, we explain the model for dynamic power of a gate with a simple buffer

gate shown in Fig. 2.10. For simplicity only the capacitance between gate

and source is depicted in this figure.

If the input of the first inverter goes from low to high, there is a fall

transition in node B and a rise transition in the output of the second inverter

(node C). When the voltage of node A increases, we have the following effects:

1) discharge of the capacitors Cgs11 and Cgs22 2) charge of the capacitors

Cgs12, Cgs21, and CL 3) activation of a temporary path between supply and

ground. The total current drawn from the supply voltage node contains three

different components [55]:

• A gate capacitor differential current Id, which charges the gate capaci-

tor. The maximum peak value of this current coincide with the input

transitions(I11 and I21).
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Figure 2.10: A two stage CMOS circuit with two inverter gates.

• A short circuit current Is which occurs only when the output makes a

transition (here I12 and I22). This current is due to the fact that while

the gate switches between ON and OFF states, for a short time period

both pull-up and pull-down networks are ON. This current strongly

depends on the slew rate (defined as the rate of change of voltage per

time unit) of the input signal and increases with rise and fall time, since

for a longer period of time there is a path directly from Vdd to ground.

• A charging current Ic, that increases the charge of the internal and load

capacitors and only exists when the output goes from low to high (I23).

In the above example, the total current drawn from supply is I1 and I2(see

Fig. 2.10). The current I1 shown in Fig. 2.11 consists of two components: 1)

I11 is the gate capacitor differential current which is negative and occurs when

node A makes a rising transition, 2) I12 is the short circuit current which is

positive. Current I2 illustrated in Fig. 2.12 consists of three components: 1)

I21 is the gate capacitor differential current which is positive, 2) I22 is the

positive short circuit current, and 3) the load charging current I23.

2.3.2 Static Power

As shown in Fig. 2.13, different components contribute to static power [56]:

• ISUB: sub-threshold leakage is due to the current between source and

drain of a OFF transistors. This component of static power exponen-
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Figure 2.11: Switching current of an inverter during output fall time.
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Figure 2.12: Switching current of an inverter during output rise time.

tially depends on temperature and actual power supply voltage. More-

over, the sub-threshold leakage current increases exponentially with the

threshold voltage which varies over the time due to BTI effect. The

following equation summarizes the dependence of the leakage power to

temperature (T ), supply voltage (V cell
dd ), and threshold voltage shift due

to BTI (V th) [57]:

Pleakage ∝ exp(α·T+β·V cell
dd +γ·V th(T,V cell

dd )). (2.7)

• IBTBT : leakage through P-N junction between drain (source) and body.

• IGIDL: gate-induced barrier lowering current through drain-body that

depends on gate voltage.

• IGATE: current that leaks via thin oxide layer between gate and body.

• IDG: drain to gate oxide tunneling current.
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Figure 2.13: Leakage current components.

2.4 Voltage-droop

Voltage-droop is emerging as a challenging issue in nanometer digital de-

signs. Voltage droop consists of two components: IR − drop and inductive

∆I noise [58]. IR-drop is rooted in instantaneous current through the resis-

tance of the power mesh network, power pads, and device package. Inductive

∆I noise is induced by rapid current change drawn from the inductance of

the power mesh network, power pads, and device package which is propor-

tional to Ldi/dt. Excessive voltage variations in the Power Delivery Network

(PDN) decreases the switching speeds of transistors which may lead to tim-

ing failures. With technology scaling, due to higher power consumption of

the chip, this phenomenon is even getting worse which highlights the im-

portance of finding efficient modeling techniques as well as counter-measures

to appropriately combat the detrimental impacts of voltage-droop on circuit

reliability.

Fig. 2.14 illustrates schematic of a PDN [59]. According to this figure,

total die area of a chip is categorized into two groups: core area and pad-

frame. In the core area, the logic of the chip is placed, while the pad-frame is

dedicated to all pads including I/O, and power pads. The current of power

pads is supplied by package either using Controlled Collapse Chip Connection

(C4) pads or using wire-bond pads. Two rings surround the core area. One of

these rings delivers Vdd and the other one is connected to ground. Moreover,

several horizontal and vertical power stripes create sort of a mesh network

to evenly deliver the power from surrounding rings to the standard cells that
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are placed in the core area.

Core

Standard 
Cells

Pads

Vdd
GND

Figure 2.14: Equivalent circuit model of a power grid.

To compute Ldi/dt, the PDN can be modeled by a RLC mesh network as

shown in Fig. 2.15. To find the voltage of each grid the following equation

should be solved:

GV + CV ′ = u(t), (2.8)

where V is a voltage vector, G is the conductance matrix, C includes the

capacitance and inductance terms, and u(t) is current [60].

In steady state power delivery analysis to calculate IR-drop, as shown

in Fig. 2.16, PDN can be modeled by a resistance mesh network which is

distributed over the core area [61]. Therefore, the voltage droop as a function

of drawn current is written as follows [62]:

V = G−1I, (2.9)

where V is the vector of supply voltages of the grids. I is the vector of current

drawn off the power grids and G is the conductance matrix. The current

drawn from each grid can be calculated by adding the dynamic and leakage

current of all the gates inside the grid. Resistance (R) of the power network

is a function of the operating temperature (T ) and it can be expressed by:

R = r0(1 + cT ), (2.10)
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I load

Figure 2.15: Equivalent RLC model of a power grid.

where r0 is the resistivity at the nominal temperature and c is the tempera-

ture coefficient of metal used in the power grid [62].

Vdd 

Figure 2.16: Equivalent circuit model of a power grid.

2.5 Temperature Model

Temperature variations is another major source of parameter variations that

can result in dramatic fluctuations in circuit delay during runtime [5, 34, 63].

It also strongly escalates aging mechanisms and increases voltage-droop.

Since in nano-scaled era power consumption and power density are increased,
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variations in temperature get larger, resulting in more timing failures. There-

fore, temperature modeling approaches and mitigation techniques should be

evolved with the same pace in order to achieve a reliable design. In general,

heat generation is a function of workload-dependent chip activity and leakage

power. On the other hand, heat dissipation is related to the chip floorplan,

thermal conductance of the chip, and the cooling system [5]. Fig. 2.17 shows

a modern Ceramic Ball Grid Array (CBGA) package [64]. In general, there

are two heat flow paths in the package. The first one starts from silicon bulk

through the thermal interface material, heat spreader and heat sink, to the

ambient air [5]. The second one, starts from silicon bulk through the inter-

connect layer, C4 pads, ceramic substrate, CBGA join to the printed circuit

board.

Heat sink

Heat spreader

Thermal interface material

Silicon bulk
Interconnect layer 

C4 pads
Ceramic substrate

CBGA join

Die

Figure 2.17: Stacked layers in a typical ceramic ball grid array (CBGA)
package [5].

The typical scheme for extracting the thermal profile is by partitioning the

chips into several cubes (i.e. vertically discretizing the chip into several layers

and each layer is then laterally divided into rectangular grids). Therefore,

each grid has one vertical thermal resistance to its neighbor located in the

next layer and also has several lateral resistances to its neighbors in the

same layer. The on-chip steady state temperature profile is governed by the

following heat conduction equation subject to proper boundary conditions

[65]:

∇.(k(
→
r )∇T (

→
r ) + P (

→
r )) = 0, (2.11)
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where
→
r represents the location in the 3D space, k is the thermal conductivity

of the material, T is the temperature, and P denotes the power density of the

heat source. The most common approach to solve the above equation is to

make an analogy between thermal and electrical model. Table 2.1 shows the

equivalent electrical parameters of thermal parameters. Finally, Kirchhoffs

current-law is exploited to analyze the equivalent electrical model and the

corresponding linear system of equations [66].

Table 2.1: Duality between thermal and electrical models [5].

Thermal quantity Unit Electrical quantity Unit
Q, Heat transfer rate, power W K I , Current A
T , Temperature difference K/W V , Voltage difference R V
Rth , Thermal resistance J/K Electrical resistance C , Ω
Cth, Thermal capacitance Electrical capacitance F

2.6 Summary and Conclusions

As semiconductor technology scales to the deep nanoscale regime, parameter

variations are posing a major challenge for integrated circuits. Variations are

considered to be a dominant source of lifetime and frequency limiters and

they have a significant impact on power consumption. Parameter variations

are induced by process variations, as well as workload-dependent runtime

variations such as voltage and temperature fluctuations and transistor aging.

Process variations arise from imperfections in the manufacturing process.

Voltage variations are caused by the instantaneous switching current drawn

from the power-grid network. Temperature variations can be attributed to

fluctuations in leakage/dynamice power across the chip. Finally, transistor

aging, mostly due to BTI, is caused in large part by pre-existing traps in

SiO2 and trap generation at the interface of Si/SiO2, resulting in a gradual

increase in Vth and hence circuit delay over time. In this chapter, the physical

mechanisms and the corresponding adverse impacts of parameter variations

were discussed. In addition, it was shown that how each source of parameter

variations can be modeled.
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CHAPTER 3

AGING- AND VARIATIONS-AWARE
TIMING ANALYSIS TECHNIQUES
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This chapter overviews the state-of-the-art timing analysis techniques and

their pros and cons. It is followed by explanation of the proposed variations-

aware timing analysis technique. Finally, the accuracy of the proposed

variations-aware timing analysis technique is compared against previous tech-

niques. As will be discussed in the next chapters, the proposed timing anal-

ysis framework allows to perform circuit monitoring and different mitigation

techniques to cope with reliability challenges.

3.1 State-of-the-arts

State-of-the-art aging-aware timing analysis tools can be classified into two

main categories: transistor-level simulation and gate-level simulation. In the

transistor-level method, first, the fresh circuit is simulated in order to deter-

mine the operating statistics of each transistor. Next, based on the collected

workload information, the aging-induced threshold voltage shift is calculated

for each transistor. Finally, the obtained aging-induced ∆Vth is applied to

each transistor and the aged circuit delay is calculated [67]. Although the

transistor-level method provides an accurate aging-aware timing information,

it suffers from high simulation runtime which makes it infeasible for large cir-

cuits. Gate-level techniques either can be based on equations or based on

Look-up Table (LUT). In the first approach, aged delay is estimated accord-

ing to the ∆Vth using alpha-power-law model [68, 69, 70]. The shortcoming

of the equation-based model is that it cannot capture the gate delay relation

to runtime variation effects and the effect of the input slope. Moreover, the

aged gate delay is obtained based on one equivalent ∆Vth for each gate. How-

ever, considering one equivalent ∆Vth instead of using different ∆Vth for all

transistors inside the gates with multiple inputs, can result in a considerable

inaccuracy. LUT-based gate delay model is adapted to take aging effects

into account [71, 68]. This approach improves the accuracy in comparison

with equation-based methods while it is compatible with commercial timing

analysis.

Recently, a few studies tried to analyze the combined effect of process

variations and NBTI in timing analysis. In [72], a new Vth model is proposed

to capture the variation of the BTI effect considering process variations.

[73] proposes a comprehensive reliability framework considering both process
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variation and BTI. In [48], the effect of BTI and process variation is modeled

under input pattern variation for a register file and a Kogge-Stone adder.

In [49], the authors analyzed the effect of process variation on transistor

aging using a Monte-Carlo based transistor-level simulation. While all the

aforementioned techniques study the combined effect of NBTI and process

variation, none of them considers temperature and voltage droop. There are a

few techniques that consider temperature and voltage profiling during timing

analysis [74, 35, 75]. In [35], temperature profile is extracted by considering

the deterministic power sources which is later used for adjusting the gate

delay. In [74], the profiling is improved by considering the dependence of

the leakage power on temperature. However, the BTI effect and the effect

of the voltage droop on leakage-dynamic power are not considered in prior

techniques that results in significant timing error.

3.2 Variations-aware Timing Analysis

In this section, we present our proposed LUT-based technique for calculating

the gate and ultimately circuit delay in the presence of aging. The overall

flow of this method is depicted in Figure 3.1. According to this figure, in the

first step, which has to be performed only once, either SPICE simulations

or automatic library characterizer EDA tools such as Cadence Encounter

Library Characterizer [59] are used to characterize each cell in the technology

library in n+4 corners. The first n corners are dedicated to capture the effects

of Vth shifts n transistors (n transistors inside the cell. The other four corners

capture input slew, output load, temperature, and voltage of the cell. An

important issue during LUT generation is accuracy, i.e. sampling frequency

(table index) of each dimension. We observed that 10 ◦C, 0.05v, 0.02v as

the sampling intervals are reasonable choices for temperature, voltage, and

threshold voltage, respectively, for a good trade-off between runtime and

accuracy. For the other dimensions (i.e. input slope and output load) we use

the default sampling rate as defined in the original technology library file.

In the next phase of our proposed flow, the circuit is synthesized and

mapped to the characterized standard cell library. Then, workload and the

extracted gate level netlist is fed to a fast logic simulator to extract the

workload-dependent usage (logic level usage) details and signal probability
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Figure 3.1: Overall flow of the proposed runtime variations aware static
timing analysis.

and activity factor of each transistor inside the netlist. The effective duty

cycle of each transistor in every gate is calculated by considering the stack-

ing effect using the extracted signal probabilities. The extracted workload-

dependent usage and duty cycle of each device is then translated to voltage,

temperature and BTI-induced threshold voltage change. Considering the cor-

relation and interdependence among different sources of runtime variations

while accounting their different time scales is a major challenge. Voltage

droop has a short term variation (ns) which is a result of different input vec-

tors which are applied to the circuit. Temperature varies at higher time scale

(ms) and as a result for thermal profiling, only considering the DC-behavior

of the voltage droop would be sufficient [62]. On the other hand, BTI is a

phenomenon which increases the circuit delay gradually (several weeks and

months). Therefore, to estimate the BTI-induced delay degradation over

time, it is sufficient to use average value of the temperature and the supply

voltage at the time scale which BTI is considered.

The overall algorithm for obtaining the power, voltage droop, and temper-
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ature profiles as well as BTI is depicted in Figure 3.2. In this flow, two loops

are used to accurately model the interdependence among the voltage droop,

temperature, and BTI. In the inner loop which is based on [34, 62, 75] power,

temperature and voltage droop are obtained. First, power consumption of

each grid is calculated by adding up the power consumption of each cells

located inside the given grid. Once the power profile is obtained, it is con-

verted into the temperature profile. Temperature profile can be extracted by

the flow described in previous section or by using a sign-off thermal-profiling

tool (e.g. HotSpot). Afterward, the resistance of the power mesh network

is updated based on the temperature profile. Power mesh network informa-

tion together with power profile and temperature profile are used to extract

the voltage droop of each grid. Since, power consumption depends on tem-

perature and voltage, the obtained temperature and voltage droop profiles

are used to update the gate power and in turn power profile. This loop

is iterated until convergence is reached. In the second loop, BTI-induced

threshold-voltage change is estimated. The new threshold voltage is then

used to update the power, temperature, and voltage profiles. In other words,

the inner loop and BTI-estimation are parts of the outer loop. These two

loops are iteratively executed until all the profiles reach a convergence. Ac-

cording to our observations, each loop, at worst case, only needs 10 iterations

to converge.

Power ProfileCalculate Tile Temperature

Calculate Tile Voltage droop

Calculate BTI

Update Gate Power

Converged?

Profiles (end)

Yes

N
o

Converged?

No

Yes

Inner Loop
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Layout Information, 
Switching Activity, Duty Cycle

Figure 3.2: Overall flow of the proposed Power-Temperature-Voltage
profiling and BTI estimation method.

In conventional static timing analysis tools (e.g. Synopsys PrimeTime),

gate delay and gate output transition time are modeled as a function of only

input transition time and output load capacitance (2-dimensional LUTs).

Therefore, we need to reduce the dimensions of the n + 4-dimensional stan-
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dard cell library. For this purpose, we use interpolation. Interpolation is a

technique to construct a new data point within the range of an already known

data points. After analyzing the netlist and dimension reduction, each gate

in the netlist will be mapped to a newly generated library element which

captures the post aging delay of that gate, based on the Vth characteriza-

tion of the original library cells and netlist simulations for activity analysis

(See Fig. 3.3). Such dimension reduction and representation of post-aging

delay in library cell format make this flow compatible with standard timing

analysis flow.

NAND2 

NAND2 U2

NAND2 U3

NAND2 U1

NAND2_V2 U2

NAND2_V3 U3

NAND2_V1 U1 NAND2_V1
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Fresh Netlist Fresh Library Aged Netlist Aged Library 

NAND2_V1

Figure 3.3: Frech STA versus aged STA.

Finally, the modified gate-level netlist and the generated runtime variations-

aware technology library (one element per each cell in the netlist) are given

to a static timing analysis tool to determine the circuit delay. Since n + 4-

dimensional standard cell libraries are able to capture the effect of different

parameters (such as temperature, voltage information and ∆Vth of different

transistors within a cell) on gate delay, the estimated gate delay by this

approach is very close to transistor level SPICE information. Another ad-

vantage of our method is that, it can be extended to handle other aspects

of gate delay by augmentation of LUTs with other parameters such as pro-

cess variation. Moreover, our LUT-based approach has the capability of a

space/accuracy trade off and can be calibrated with post-silicon data as well.

3.3 Incorporating the Impact of Process Variations

In this section, we explain how our proposed methodology can be extended

to consider the impact of process variations as well. This section is mainly

based on [34, 62, 75]. In the presence of process variations, extracting the

temperature, voltage droop and BTI becomes a statistical problem. Our

proposed statistical flow for calculating thermal-voltage profile and BTI is
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depicted in Figure 3.4. First, the die area is partitioned into virtual rectan-

gular grids. Considering the spatial correlation among transistors on a die,

process variation of each transistor is modeled by a normal distribution and

represented by Equation (2.1). Next, PCA is performed to express the pro-

cess variations in a canonical form as shown in Equation (2.2). The rest of the

process is divided into three different steps: 1) Statistical Thermal Profile,

2) Statistical Voltage Droop Profile, and 3) Statistical BTI Analysis. In each

of these steps, the first two moments (mean and sigma) of variable distribu-

tions are calculated. Here, based on prior studies [34, 62, 75], leakage and

temperature are modeled with lognormal distributions. Since voltage and

BTI are related to temperature and leakage by a set of Sum and Multiply

operations, we model these variables (voltage and BTI) by lognormal distri-

butions as well. These three steps are performed iteratively until sigma and

mean value of distributions are converged (See Figure 3.4). Please note that

during these steps based on [75], all of the equations and analysis are per-

formed on a set of independent Principal Components (PC) derived during

the PCA step. This enables us to fast and accurately capture the dependence

among PVT and BTI. To the best of our knowledge, this is the first work

that considers/models the combined effect of BTI and process variation in

thermal-voltage profiling. Moreover, our proposed BTI analysis technique

accurately captures the effect of process-induced voltage variations which is

neglected in prior methods.

The leakage power of a gate depends on temperature and supply voltage

with a quadratic function [76]. Moreover, the subthreshold leakage current

increases exponentially with the threshold voltage. Since the threshold volt-

age is a function of the gate length, the leakage power is modeled as an

exponential function of gate length [29]. Due to BTI effect, the threshold

voltage of the gate increases over the time and hence exponentially affects

the leakage power. However to be able to keep all of variables in normal

and lognormal distribution, we model the dependency of the leakage to BTI-

induced threshold voltage shift by a quadratic polynomial function. All of

the aforementioned models are verified by accurate HSPICE simulation of

a 7-stage ring oscillator in 45-nm technology. According to our results, the

models match simulation data with R2(R-squared) > 0.996. The following

equation summarize the leakage power model as a function of temperature

(T ), supply voltage (V ), threshold voltage shift due to BTI (Vth−BTI), and
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Figure 3.4: Flow of the proposed statistical leakage, temperature, voltage
droop, and BTI profile analyzer.

gate length (∆L):

Pleakage =P nominal
leakage · (1 + a1 · T + a2 · T 2).(1 + a3 · V + a4 · V 2).

(1 + a5 · V thBTI + a6 · V th2
BTI) · exp(b ·∆L), (3.1)

where Pleakage stands for leakage power considering process variation. P nominal
leakage

corresponds to the leakage power without any process variation at T = 0◦C

and ai , b are coefficients.

For computing the temperature profile from the power profile, initially

a die is partitioned into n equal grids. The temperature of a grid Ti can

be expressed based on the power-consumption of the grids in the die by a

weighted sum [34] :

Ti =
n∑
j=1

aij · Pj + aim · Pm, (3.2)

where Pj represents the power of the grid j and aij is a coefficient reflects

the sensitivity of a grid’s temperature to the power change of the other grids

on a die . Pm represents the chip to the ambient removing power and aim

captures the heat resistance from the heat sink to the air.

There is a positive feedback between leakage power and temperature of a

chip. Moreover, process variation affects leakage power (by changing thresh-

old voltage and effective gate length), which in turn results in a temperature

variation [34]. The idea which is based on [34, 62, 75] is to update distribu-
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tions of the temperature and power in an iterative way to reach a convergence

in mean and sigma. Note that compared to [34, 62, 75], we only added the im-

pact of BTI to analysis. Algorithm 1 which is adjusted from [34, 62, 75] shows

the detail of the proposed statistical thermal profile analyzer. The proposed

flow consists of two different phases: 1) Deterministic Leakage-Temperature

Calculation 2) Statistical Leakage-Temperature Calculation [34, 62, 75]. In

the first phase, nominal power of each grid is calculated by adding up the

power of the gates located in the grid (without considering the effect of pro-

cess variations). Next, a deterministic (nominal) thermal-leakage profile is

obtained by considering the leakage-thermal loop effect (Performing Line 5-6

in the Algorithm iteratively). In the second phase of the algorithm, process

variation is added to the leakage-temperature models. According to Equa-

tion (3.1), leakage power is exponentially related to process variation (e.g.

gate length). Since process variation is represented in canonical form, leakage

power is expressed by a lognormal canonical form as Equation (3.3) [34, 62,

75]:

LA = exp(A), A = µA +
n∑
i

ai ·Xi, (3.3)

where A is a normal distribution (in the exponent of LA), and Xi’s are princi-

pal components. Moreover, temperature is a linear function of leakage power

(see Equation (3.2)). Therefore, temperature can also be expressed by a log-

normal canonical form. After generating the thermal-leakage distributions,

Equations (3.1) and (3.2), by considering the leakage-thermal distributions,

should be iteratively updated until a convergence (sigma and mean value of

lognormal distribution) is reached. For this purpose, we need to be able to

calculate lognomral sum and lognomral multiply operations. Suppose, LA

and LB are two lognormal distributed variables expressed by Equation (3.3).

Multiplication of two lognormal variables which are expressed by principal

components is similar to the multiplication of two powers of the same base.

Therefore, the lognormal-multiply is calculated by just adding the exponents

(A and B). For estimating of lognormal sum (LC = LA + LB), Wilkinson’s

method [77] is used. In this approach, mean and standard deviation of LC
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are calculated as following [75]:

µ(LC) = µ(LA) + µ(LB),

σ2(LC) = σ2(LA) + σ2(LA) + 2 · cov(LA, LB), (3.4)

Then by matching the first two moments, the parameters (mean(C), σ(C))

of the lognormal random variable (LC) are extracted by [75]:

µC = log(µ2(LC)/
√
σ2(LC) + µ2(LC)),

σC =

√
log(

σ2(LC)

µ2(LC)
+ 1), (3.5)

where C refers to the normal variable that is in the exponent of LC . Finally

we need to represent C in canonical form (C ′). For this purpose we exploit

a method that is proposed in [75]. Using this approach, c′i is calculated by

[75]:

c′i = log(
µA · exp(ai) + µB · exp(bi)

µA + µB
). (3.6)

Since all Xi (principal components) are independent, the variance of C ′

can be computed as:
∑n

i (c′i)
2. Obviously there is a difference between σC

and the standard deviation of estimated canonical form (σC′) [75]. In order

to diminish this error, the value of c′i are normalized by σC∑n
i (c′i)

2 [38]. In

addition, µ′C is set to µC .

To assess the voltage droop, we augment the leakage-thermal profile an-

alyzer [34, 75] with considering the voltage effect during analysis [62]. The

new flow consists of two nested loops [62]: the inner loop belongs to the

temperature-leakage loop; and the outer loop is used to statistically find the

lognormal distribution of the voltage droop [62]. This process is iteratively

performed until the mean and sigma value of the lognormal distributions

(representing thermal, leakage, and voltage droop) converge (See Figure 3.4).

There is a feedback (loop) between BTI and thermal-voltage profiles. To

assess the BTI and adjust the thermal-voltage profiles based on the BTI-

induced Vth shift (which is our difference compared to [34, 62, 75]), we need

to accurately consider this feedback. For this purpose, we model the BTI as

a lognormal distribution. Next, Statistical Voltage Droop Profile (presented
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Algorithm 1 Leakage-Thermal profile analyzer using PCA (based on [34,
62, 75]).

1: divide the die into n grids
2: Pi : Power of each grid i
3: //Deterministic Temp and Leakage Calculation
4: while Temp and Leakage not converged do
5: T = Ti ←

∑n
j=1 aij · Pj + aim · Pm

6: Pleakage ← P nominal
leakage · (1 + a1 · T + a2 · T 2)

7: end while
8: //Statistical Temp and Leakage Calculation
9: Generate lognormal distributions of Temp and Leakage

10: while Moments(µ, σ) of Leakage and T not converged do
11: Update µLeakage, σleakage :

Equation(3.1) with nominal V oltagedroop and BTI(Vth)
12: Update µT , σT : Ti ←

∑n
j=1 aij · Pj + aim · Pm

13: end while

in previous steps) is augmented by adding another loop for inserting the BTI

effect to the analysis. Therefore, BTI profiling algorithm consists of three

nested loops: Two inner nested loops for extracting leakage, thermal, and

voltage droop profiles; The outer loop for obtaining the BTI profile. We

iteratively execute these three statistical nested loops until mean and sigma

of lognormal distributions of all profiles (leakage, thermal, voltage droop,

BTI) converge (see Figure 3.4). Please note that all of the variables are

expressed with a set of independent PCs, therefore the dependence among

PVT and BTI is accurately considered.

3.4 Experimental Results

Several IWLS and ISPD benchmark circuits [78] are used to evaluate the ef-

ficiency and accuracy of the proposed methodology. Circuits are synthesized

by Synopsys Design Compiler [79] using Nangate 45 nm library [80] and then

the gate-level netlists are placed using Cadence SOC Encounter. Besides,

each cell in the library is characterized by accurate HSPICE simulations.

HotSpot [1] is used to obtain the thermal profile of the circuit. BTI-induced

threshold voltage change is estimated by assuming a delay degradation of

10% in 5 years. To show how BTI, Voltage droop, and temperature affect

the circuit delay, we consider six different scenarios listed in Table 3.1.
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Table 3.1: Different scenarios to show the effects of runtime-variations on
delay.

1 -V-T-BTI No run-time variations
2 +V-T-BTI Only voltage droop
3 -V+T-BTI Only Temperature
4 +V-T+BTI Only BTI

5
Additive margin Independent summation of different margins

from Scenarios 2,3,4

6
+V+T+BTI Combined effect of all sources of
(Proposed) runtime variation (V, T, BTI)

State-of-the-art statistical thermal profiling methods do not consider the

aging and voltage droop effects on temperature. To show how these factors

affect the accuracy of thermal profiling, we perform an experiment for a 7-

stage inverter chain in 45 nm technology node with four different scenarios.

According to the Table 3.2, neglecting the effects of aging and voltage droop

results in up to 2.38% and 67% error in the estimation of the mean and

standard deviation of the estimated temperature of the chip, respectively.

Hence, this overestimation of the temperature profile leads to considerable

error (8.54% in mean and 14.45% in standard deviation) in BTI wearout

estimation.

Table 3.2: Error of incomplete consideration of the interdependence among
PVT and BTI in Temperature and BTI (∆V th) estimation compared to
our proposed technique (+V+T+BTI)

maxTemp µTemp σTemp µ∆V th σ∆V th

-V+T-BTI 89.23% 2.38% 67.00% 8.54% 14.45%

+V+T-BTI 14.09% 0.50% 13.60% 0.00% 1.03%

-V+T+BTI 38.07% 1.61% 38.40% 8.54% 12.14%

Table 3.3 shows the circuit relative delay increase (w.r.t. -V-T-BTI) due to

runtime variations with different schemes. Comparing the seventh (proposed

method) and sixth (simple additive margin) columns of the table reveals

that independent analysis of temperature, voltage, and BTI leads to 17%

inaccuracy in circuit delay estimation in average. To verify the scalability

of our method the runtime is calculated when all of the simulations are

performed on a workstation with Intel Xeon E5540 2.53GHz (2 quad-core
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processors), 16GB RAM. As shown in Table 3.3, even for very large circuits

such as leon3mp processor, the runtime of our proposed method is less than

an hour.

Table 3.3: Relative circuit delay increase (w.r.t. -V-T-BTI) due to
runtime variations (Error = (Proposed− additive margin)/Proposed).

Circuit # of cells +V-T-BTI -V+T-BTI -V-T+BTI additive margin Proposed Error Time (s)

b17 27k 6% 6% 6% 17% 22% 25% 654

b18 88k 9% 6% 6% 21% 25% 16% 978

b19 165k 8% 7% 8% 22% 32% 29% 1071

b22 40k 9% 7% 6% 17% 23% 24% 658

dsp 42k 2% 6% 17% 25% 28% 13% 444

leon2 995k 3% 9% 11% 23% 29% 20% 3245

leon3mp 721k 3% 7% 15% 25% 30% 18% 2458

vga lcd 114k 5% 16% 21% 41% 48% 14% 1059

risc 61k 10% 10% 13% 33% 39% 16% 754

des perf 84k 2% 19% 19% 40% 44% 10% 1060

average 17%

Next, we investigate the impact of temperature and voltage on BTI. In

[40] the effect of temperature (and partially voltage variations) on BTI anal-

ysis is well studied. Unfortunately, their proposed timing analysis flow only

considers some corner cases. According to Table 3.4, assuming a constant

temperature (Tnom = 25◦C) leads to 10% error in the estimated BTI-induced

delay degradation (compared to +V+T). Considering a constant power sup-

ply voltage (V DDnom = 1V ) results in 12.8% inaccuracy in estimated BTI-

induced delay increase.

Table 3.4: The effect of neglecting voltage and temperature variations on
BTI-induced delay degradation (error are calculated w.r.t Scheme: +V+T).

Circuit -V-T +V-T -V+T

b17 -5.0% -10.0% 30.0%

b18 -15.1% -15.9% 1.59%

b19 -11.9% -13.9% 4.3%

b22 -2.0% -4.0% 5.0%

dsp -19.2% -21.9% 20.6%

leon2 -12.4% -14.7% 9.5%

leon3mp -14.0% -16.7% 16.2%

vga lcd -21.4% -23.8% 9.5%

risc -1.2% -6.7% 3.4%

average -10.2% -12.8% 10.0%
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The effect of the BTI on voltage and temperature profiles are investigated

and shown in Figure 3.5. Neglecting the effect of BTI (which changes the

power density and in turns voltage-temperature profiles) leads to 4.8% and

8.8% error in estimated temperature and voltage droop, respectively.
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Figure 3.5: The error caused by neglecting BTI on the voltage and the
temperature.

Input activity due to workload variation influences the voltage and tem-

perature profiles and in turns affects the BTI. Figure 3.6 shows the circuit

delays at different primary input activity factors (0.2,0.5,0.8). Higher inputs

activity factors leads to larger circuit delay.
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Figure 3.6: The effect of activity factor on the circuit delay.

3.5 Conclusions

In nano-scale regime, process variations as well runtime variations due to

voltage, temperature, and transistor aging introduce remarkable uncertainty
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and unpredictability to circuit delay and its lifetime. Consideration of short-

term and long-term workload-dependent runtime variations at design time

and the interdependence of various parameters are major challenges of tim-

ing analysis. However, a novel approach to tackle all these issues and their

interdependence was missing. In this chapter, we presented a novel tim-

ing analysis framework to accurately capture the combined effects of various

workload-dependent runtime variations happening at different time scales, by

making the link between system-level runtime effects and circuit-level design.

The proposed frameworks can be fully integrated with existing commercial

EDA toolset, making it scalable for very large designs. Using the proposed

timing analysis technique, we observed that treating each aspect indepen-

dently and ignoring their intrinsic interactions can lead to inaccurate results.

The proposed timing analysis technique can be used to accurately identify

the timing margin in order to prevent over/under design.
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CHAPTER 4

CHIP DELAY/AGE MONITORING USING
MACHINE-LEARNING
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Parameter variations degrade path delay over time and may eventually

induce circuit failure due to timing variations. Therefore, in-field tracking of

path delays and prediction of operational frequency and lifetime of chips are

essential to realize runtime adaptive mitigation techniques in order to cope

with the detrimental effects of variations. Several delay sensor designs have

been proposed in the literature. However, due to the significant overhead

of these sensors and the large number of critical paths in today’s IC, it is

infeasible to monitor the delay of every critical path in silicon. This chapter

overviews state-of-the-art monitoring systems and then presents our novel

aging- and variations-aware representative path-selection technique based on

machine learning that allows us to measure the delay of a small set of paths

and infer the delay of a larger pool of paths that are likely to fail due to delay

variations.

4.1 State-of-the-arts

Variation-aware delay/age monitoring can be implemented in four different

ways [81]:

• On-line self-test: this method is based on periodical delay-test using

pre-stored test-patterns [82]. However, the normal operation of the

circuit might be interrupted to be able to apply test-patterns [83].

• Replica circuit: in this technique a stand-alone (i.e., replica) circuit

such as a set of ring-oscillators is inserted in various places in the cir-

cuit to mimic the delay degradation of the original circuit [84, 85].

However, replica-circuits might fail to entirely capture the effects of

running workload and variations on the original circuit [81].

• In-situ delay sensor: in this case, dedicated sensors are inserted next

to the flip-flops of functional critical paths to directly measure the

corresponding delay during field-operation [86, 87]. However, since the

number of critical paths can grow exponentially to the number of gates,

it is infeasible to monitor each and every critical path [81].

• Representative path monitoring: in this technique, the delay of a small

set of paths are monitored and based on that the delay of other critical
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paths are inferred [88]. However, existing techniques only consider the

effects of process variations, while the impacts of runtime variations

including transistor aging are ignored.

4.2 Problem Statement and Overview of Proposed

Method

In adaptive mitigation techniques, the circuit behavior is monitored at run-

time, and a suitable knob is tuned based on the feedback. Such runtime

adaptation schemes rely on a in-field chip delay/age monitoring infrastruc-

ture. One approach to monitor circuit delay in the presence of parameter

variations is to target a large pool of target (long) paths that are more likely

to have timing failures; such paths are referred to as Critical Paths (CPs).

However, monitoring such a large number of CPs is not feasible due to the

cost associated with the placement of too many sensors. A solution to this

problem lies in the selection of only a small set of Representative Critical

Paths (RCPs) from the large pool of target paths. The delays of the RCPs

are accurately measured either by on-chip sensors or via delay testing, and

the measured values are mapped to the delays of the other critical paths by

exploiting the similarities in timing characteristics between CPs and RCPs.

In other words, our objective is to select an optimal number of paths as RCPs

to predict delays of a large pool of CPs while ensuring that the prediction

error is minimized by accurately taking the effects of variations and transis-

tor aging into account. The proposed flow consists of two different phases:

1) feature extraction, and 2) identifications of RCPs.

We utilize our proposed variations-aware timing analysis framework, pre-

sented in Chapter 3, to obtain the critical paths of the circuit. Next, all

possible CPs within the circuit are enumerated and then are encoded into

a vector. Afterwards, we use different learning-machine techniques to select

the RCPs. Finally, to verify the accuracy and efficiency of the proposed

RCP selection method, we compare the actual measured path delays (under

different aging and variations) with the predicted delay values.
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4.3 Feature Extraction

In general, there are a variety of topological and electrical similarities among

CPs. For example, CPs that are in proximity in the layout of the chip tend

to have a similar voltage droop and temperature. Moreover, CPs might have

a large number of gates in common. We propose to use a machine-learning

approach to capture the correlations among CPs, based on which we can

select a small set of RCPs. Suppose each CP pi can be encoded by a vector

pi = [xi1, xi2, . . . , xiM ] with M chip features. Each of these features captures

the sensitivity of the path delay to one source of uncertainty (e.g., process

variation, voltage, temperature, aging, etc.). The delay of path pi, dpi , can

be calculated by the following equation:

dpi = piF,

F = [Fi1, Fi2, . . . , FiM ], (4.1)

where F is a vector that captures the value of features. We use a hypothetic

circuit, shown in Fig. 4.1, as an example to illustrate the proposed path-

encoding approach. This circuit consists of a CP, namely PCP , which is

located in three different grids of power delivery network, namely V1, V2, and

V3, respectively. PCP can be described as follows:

PCP = [x1, x2, x3],

dPCP
= PCPF,

F = [V1, V2, V3], (4.2)

where x1, x2, x3 are the sensitivities of the dPCP
to V1, V2, and V3, respectively.

V1, V2, and V3 represent the actual values of voltage features.

Critical Path (PCP)

V1 V2
V3

G1 G2 G3
G4

G5

Figure 4.1: A hypothetic circuit for illustrating path-encoding algorithm.
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Fig. 4.2 shows the overall flow of the proposed path-encoding approach,

which can effectively explore the uncertainty space of variations. The path

encoding features include topological feature, process-variation feature, BTI

feature, temperature feature, and voltage feature, respectively, discussed be-

low.

Models for 
Process variations

Voltage droop
Temperature

BTI

Netlist & 
layout

Representative 
Workload

critical paths

Topological: gate types, gate number, primary inputs, statistics of gates/
inputs considering workload
Layout: gate location
Process variations: Path located in which process grids (Sensitivity-based)
Voltage droop: Path located in which voltage grids (Sensitivity-based)
Temperature: Path located in which temperature grids (Sensitivity-based)
BTI: gates, process variations, voltage droop, temperature

Topological
feature

BTI
feature

Process 
variation
feature

Voltage 
droop

feature

Temperature
feature

Encoded Path:
Path 
delay

Figure 4.2: Path encoding flow.

1. Topological features: this feature models: (i) which gates are located in

each CP; (ii) the gate types; (iii) location of the gates in the floorplan.

2. Process-variation features: this feature models the process variation

of the circuit. In this work, without loss of generality, the total pro-

cess variation is modeled by the summation of die-to-die, within-die

partially-correlated, and independent random variations. To accurately

capture the within-die spatial correlation, the chip layout is first divided

into rectangular grids. Finally, a CP is encoded in a way that the cor-

responding vector reflects the grids to which the path is sensitive.

3. : Temperature feature: one of the major sources of runtime variations,

which strongly influences circuit delay, is temperature. In order to

encode a path with respect to temperature, the chip area is divided

into several grids. The representative temperature feature of the path

reflects the grids in which the path passes through.
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4. Voltage-droop feature: voltage droop, which has been shown to vary

significantly over time and from-gate-to-gate, significantly affects cir-

cuit delay. Since power delivery network can be modeled as a resistive

network distributed over the die, a CP is encoded in such a way that the

corresponding vector reflects the grids to which the path is sensitive.

4.4 Identification of RCPs

Recall that our goal is to select RCPs for monitoring in order to estimate

the chip performance. Based on the measured delays in RCPs, we could

accurately estimate the delay of other CPs. Given N CPs, we use an M ×N
matrix P = [p1, p2, . . . , pN ]T to denote these paths. Note that each path pi is

encoded with M features as described in Section 4.3. The delay of N paths

can be expressed as a vector D = [d1, d2, . . . , dN ]T . The selected RCPs can

be represented as an M × R matrix PR = [p′1, p
′
2, . . . , p

′
r]
T , where R << N .

Similarly, the delay measurements of the RCPs are of the form of a vector

DR = [d′1, d
′
2, . . . , d

′
R]T .

In order to identify the RCP set, we rely on unsupervised machine-learning

techniques, such as the SVD-QRcp method and clustering, which are dis-

cussed below. The choice of unsupervised learning is motivated by the fact

that we have no data available on the behavior of the chip for supervised

learning. In this work, we propose to use an adaptive method in Section

4.4.3, which uses both SVD-QRcp method and C-means method. We will

first introduce SVD-QRcp method and C-means clustering method in Section

4.4.1 and Section 4.4.2, respectively.

4.4.1 SVD-QRcp Method

Singular-value decomposition and QR decomposition with column pivoting

(SVD-QRcp) is an orthogonal transformation technique that has been widely

used for feature selection in many areas, such as signal processing, control

theory, and network optimization [89, 90]. Using the SVD-QRcp method,

an RCP set PR can be selected from the complete CP set P . The delay for

each CP can be estimated using a linear combination of measured delays in
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RCPs. The estimated delay D can be expressed as follow:

D = PP T
R (PRP

T
R )−1DR, (4.3)

where ()−1 denotes the inverse matrix. The corresponding estimation error

can be measured using relative root mean-squared error (rRMSE), defined

as:

rRMSE =

√∑
(D −D))2

N · range(D)
× 100%, (4.4)

where range(D) is the range of D = max(D)−min(D). To accurately pre-

dict delays in critical paths using delays in representative paths, the selection

of representative paths represents a tradeoff between number of RCP R and

prediction error Err. To select RCPs, we rely on SVD factorization, which

transforms the matrix P into a product of three matrices. The decomposition

can be written as:

P = UΣV T , (4.5)

where matrix U ∈ RN×N and V ∈ RM×M are orthogonal matrices, and Σ =

diag(σ1 ≥ σ2 ≥ . . . ≥ σM ≥ 0). The diagonal elements of Σ are called the

singular values of P . An important property of SVD is that it reveals the

rank of P . In Equation (4.5), rank(P ) = rank(Σ). Consequently, the number

of non-zero singular values indicates the rank of the matrix P . However in

our application, we can get an even smaller number R < rank(Σ), since the

existence of smaller singular values σi implies the presence of redundancy or

less important rules among the rules that forms the complete set [91].

In order to determine appropriate R, we adopt the criterion pex, i.e., the

percentage of “energy” explained by singular values [92]. It is defined as:

pex =

∑R
i=1 σ

2
i∑N

i=1 σ
2
i

× 100, (4.6)

where R is the number of RCPs for which the energy explained by the corre-

sponding R number of singular values is pex percentage of the total energy. In

this work, we determine a minimum of R RCPs to meet Pex > Pex−th = 99%,

whereby these R RCPs can represent nearly the entire set of CPs.

Once we determine the optimum number of critical paths R, we then select

the positions of these RCPs based on QR decomposition and column pivoting
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Algorithm 1: SVD-QRcp method

Require: P, pex−th
Ensure: PR, R

1: N ← number of critical paths in P
2: Singular-value decomposition: [U,Σ, V ] = SVD(P );
3: R← 0, pex ← 0, array S ← diag (Σ);
4: while pex < pex−th do
5: R← R + 1;

6: pex =
ΣR

1 si
ΣN

1 si
, ∀si ∈ S;

7: end while
8: Select first R columns in U , UR = U(:, 1 : R);
9: QR-decomposition with column pivoting:

[Q,R,Π] = QR (UT
R );

10: Pn = ΠTP ;
11: PR = Pn(:, 1 : R);
12: return PR and R

Figure 4.3: Procedure for the SVD-QRcp method.

(QRcp), using the following equation:

UT
R = QRΠT , (4.7)

where the input to this procedure is UR, a sub-matrix formed by the first R

columns of U [88, 83]. Note that Q is a unitary matrix and R is an upper

triangular matrix. The permutation matrix Π can transform P , reflected in

UT
R , so that the critical paths in Pn = ΠTP appear in a decreasing order of

corresponding importance. Then we take the sub-matrix PR formed by the

first R rows of Pn to be the RCP set. The complete algorithm is presented in

Fig. 4.3. The computational complexity of SVD-QRcp method depends on

the SVD algorithm, which has the computational complexity of O(min{M2N,

MN2}), where min{∗} is the operation of obtaining the smaller value, and M

and N are the row length and column length, respectively, for matrix P .

Next, we present a small example to illustrate the selection of RCPs based

on SVD-QRcp. Suppose we have a CP set P0 and delay contribution vector
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T0 as follow:

P0 =



1 0 1 0 1 0 1 0 1

1 1 1 0 0 0 0 1 1

0 1 1 1 1 1 0 0 0

1 1 0 0 0 0 0 1 0

0 0 0 1 0 1 1 1 1

1 0 0 0 1 1 0 1 1

0 1 0 0 0 1 0 1 1

1 0 1 1 1 0 1 0 1


,

T0 =



2

1

2

2

3

1

2

1

2


,

(4.8)

where P0 consists of 8 CPs as row vectors, each of which has 9 features.

An entry of 1 indicates that the CP corresponding to that row exhibits the

feature for that column. Delay of CP set is D = P0 · T0 = {d1 = 11, d2 =

8, d3 = 9, d4 = 4, d5 = 8, d6 = 9, d7 = 5, d8 = 13}. According to the SVD-

QRcp algorithm shown in Fig. 4.3, if we set number of RCPs R to be 5,

the selected RCP set is PR = {p2, p3, p5, p6, p8}, and Pex = 0.95 according to

Equation (4.6). By measuring the delay of RCPs in PR and using Equation

(4.3), we can predict the delay of remaining CPs d′1 = 10.8, d′4 = 3.6, and

d′7 = 4.9. The rRMSE is calculated to be 1.2%. If we consider fewer RCPs,

e.g. R = 3, the selected PR = {p2, p5, p8}. Then the predicted delay of the

remaining CPs are d′1 = 10.9, d′3 = 7.2, d′4 = 3.2, d′6 = 7.6, and d′7 = 4.3, and

rRMSE is 7.2%, which is still quite low.

4.4.2 C-means Clustering Method

C-means clustering incorporates fuzzy logic, whereby each critical path has

a probability of belonging to each cluster [93], thus each critical path can

probabilistically belong to two or more clusters rather than only one cluster.

This fuzzy set membership can be interpreted as that any two paths may

share partial features, thus any path is a combination of multiple features

that can be regarded as clusters. The objective of C-means clustering is to

maximize the inter-cluster variance and minimize the intra-cluster variance.

The training of C-means clustering is based on minimization of the objective
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function Jm as shown below:

Jm =
N∑
i

C∑
j

umij ||pi − cj||, (4.9)

where m ≥ 1 is a weighting factor, and || ∗ || is the Euclidean norm. The

parameter N is the number of CPs. Set C consists of k clusters, in which

cj is the centroid of each cluster, and uij is the probability that a path pi

belongs to cj. The optimization approach follows two iterative steps involving

centroid cj and probability uij, such that:

cj =
ΣN
i u

m
ij · pi

ΣN
i u

m
ij

∀j ∈ C, (4.10)

uij = (
C∑
k

(
||pi − cj||
||pi − ck||

))−1 ∀i ∈ N, j ∈ C. (4.11)

Note that computation of the updated probability uij is necessary for the

minimization of the objective function Jm [Bezdek 2984]. The complete al-

gorithm is shown in Fig. 4.4. The algorithm will eventually converge to a

minimum objective function, under the condition that the change in Jm is be-

low some threshold ξ. The computational complexity of C-means clustering

algorithm is O(ndc2i), where n is the number of data point, d is the number

of features, c is the number of clusters, and i is the number of calculation

iterations [Cai 2007].

The effectiveness of the clustering method depends on the choice of the

number of clusters. If we select too few clusters, we may not cover all the

segments in the design. If we select too many clusters, we may exceed the

upper limit on the number of CP monitors. We determine the number of

clusters by the monitoring resources, e.g. number of sensors.

To illustrate the C-means clustering method, we again use the CP set

P0. If we use 5 clusters, reflected as 5 selected representative paths, the

membership Matrix U as obtained using the algorithm of Fig. 4.4 is shown
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Algorithm 2: C-means clustering method

Require: P,N, k, ξ
Ensure: U,C

1: Initialize U = {uij} matrix;
2: Initialize Jm ← very large value;
3: repeat
4: Jold ← Jm;
5: for each 1 < j < k do

6: update C = {cj|cj =
∑N

i umij ·pi∑N
i umij

};

7: update U = {uij|uij = (
∑

k(
||pi−cj ||
||pi−ck||

))−1};
8: end for
9: Jm =

∑N
i

∑C
j u

m
ij ||pi − cj||;

10: until ||Jm − Jold|| < ξ
11: return U and C

Figure 4.4: Procedure for the C-means clustering method.

below:

U =


0.32 0.11 0.00 0.00 0.98 0.20 0.01 0.05

0.03 0.40 0.00 0.98 0.01 0.20 0.01 0.04

0.03 0.14 1.00 0.00 0.00 0.20 0.00 0.05

0.02 0.18 0.00 0.00 0.01 0.30 0.97 0.03

0.87 0.21 0.00 0.00 0.00 0.10 0.01 0.82


,

where each column corresponds to the membership of a CP to each cluster.

Here, RCP set PR = {p1, p3, p4, p5, p7} is selected, as these paths have the

highest scores in each cluster. The delays of the remaining CPs are calculated

using Equation (4.3) as d2 = 6.9, d6 = 7.8, and d8 = 11.8. Thus the rRMSE

is 5%, which is low, but comparatively higher than the rRMSE obtained

using SVD-QRcp with the same number of RCPs.

4.4.3 Adaptive Method

Aging effects lead to increased delay on functional paths. However, the delay

increase in one path differs from another path due to potentially different

stress on each segment in these paths. To account for path-delay change

over time, we propose an update mechanism to reduce the mismatch in
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aging-induced delay. At design time, we leverage the SVD-QRcp method

(Algorithm 4.3) to generate a base representative path set PR. We place de-

lay sensors on all paths in PR. At run-time, in addition to PR, we dynamically

monitor a set of additional paths PA using path delay testing. The selection

of PA depends on the resource budget available for monitoring, which also

determines the number of clusters that can be utilized. The set PA is deter-

mined using the C-means clustering algorithm, as shown in Fig. 4.4. The

complete set of monitoring paths P ′ = PR ∪ PA can thus be generated, as

shown in Fig. 4.5,

Determined at each 
measurement interval

Pre‐determined at 
design time

The complete set P
of CPs

SVD-QRcp method

The representative 
set PR of RCPs

Predicted delay info
D of CPs using RCPs

C-means clustering

An extra set PA of 
monitored paths

A new set of 
monitored paths

P’ = PR U PA

Figure 4.5: Algorithm for selecting RCPs using a combination of
SVD-QRcp and C-means clustering for runtime monitoring.

When we determine the RCP set for monitoring chip performance, we use

the delay prediction mechanism shown in Fig. 4.6. First, we measure the

delays DR in the RCP set PR to get the base predicted delay set D. Based

on the predicted delay set D and chip topological features, we cluster P in

order to select the extra path set PA. The measured delays in the extra paths

DA are then compared to the predicted delay DA. We can thus obtain the

offset ∆(DA) = DA −DA to estimate ∆(D) for all CPs in P . The eventual

prediction model in each interval can thus be updated to account for the

prediction errors.

To illustrate the effectiveness of the adaptive method, we revisit our pre-

vious example. Assume that T0 is the delay contribution vector at t = 0. If

we consider aging, the delay contribution vector changes at t > 0. Assume

that T1 is the delay contribution vector at some point t = ti during system
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Measured delays DR
in RCP set PR

Predicted delays DA
in monitored set PA

Measured delays DA
in monitored set PA

Prediction error 
Δ(DA) = DA - DA

SVD-QRcp based 
prediction model

Predicted delay info D
of CP set P using PR

Updated prediction 
model

Adjusted delay prediction 
D’ of CP set P using 

P’=PR U PA

Figure 4.6: Adaptive delay prediction mechanism.

runtime, as shown below:

T1 =
[

4 6 7 5 7 4 9 5 6
]T
.

(4.12)

When we use a set of 5 RCPs out of 8 CPs and the algorithm SVD-QRcp

method alone, the rRMSE is 1.2% at t = 0. When t = ti, the delay set D1 =

P0 · T1 is {d1 = 33, d2 = 28, d3 = 29, d4 = 15, d5 = 29, d6 = 26, d7 = 21, and

d8 = 38}. Based on the measured delays of RCP set PR = {p2, p3, p5, p6, p8},
the predicted delays of the remaining 3 CPs are d′1 = 29.1, d′4 = 12.9, and

d′7 = 19.2. Therefore, the rRMSE increases to 5.8%, which is much larger

than the prediction accuracy obtained at t = 0.

The prediction errors can be mitigated using the adaptive method proposed

in Fig. 4.6. We form a set of 5 RCPs, which consists of 3 fixed RCPs

(using SVD-QRcp method) and 2 dynamic RCPs (using C-means clustering

method). The RCP set PR selected by SVD-QRcp is PR = {p2, p5, p8}. At

t = 0, the other 2 dynamic RCPs are selected based on C-means method

using a matrix P ′0, as follow:

P ′0 = [P0|D] =



1 0 1 0 1 0 1 0 1 10.9
1 1 1 0 0 0 0 1 1 8
0 1 1 1 1 1 0 0 0 7.2
1 1 0 0 0 0 0 1 0 3.2
0 0 0 1 0 1 1 1 1 8
1 0 0 0 1 1 0 1 1 7.6
0 1 0 0 0 1 0 1 1 4.3
1 0 1 1 1 0 1 0 1 13


,

(4.13)

where D0 consists of the measured and the SVD-QRcp-based predicted de-

lays. The additional RCP set PA is selected to be {p1, p6} and the entire
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RCP set is P ′ = PR ∪ PA = {p1, p2, p5, p6, p8} for t = 0. Comparing the

measured delays of PA and corresponding predicted delays obtained above,

we can obtain the prediction errors ∆d′1 = −0.1 and ∆d′6 = −1.4. The delay

compensation can thus be calculated for the remaining 3 CPs using Equation

(4.3), such that ∆d3 = −1.3,∆d4 = −0.9, and ∆′d7 = −0.5. Therefore the

complete prediction delay set D0 = {d′′1 = 11, d′′2 = 8, d′′3 = 8.5, d′′4 = 4.1, d′′5 =

8, d′′6 = 9, d′′7 = 4.8, d′′8 = 13}, and rRMSE is compensated to be 0.9%, which

is less than using either SVD-QRcp or C-means clustering alone.

At t = ti, similar compensation also applies to the delay prediction. We

select the RCP set to be P ′ = {p2, p5, p8} ∪ {U6, U7}. Note that we select

a different PA because the predicted delay using SVD-QRcp is different at

t = ti. The predicted delays based on the adaptive method is then D1 =

{d′′1 = 30.1, d′′2 = 28, d′′3 = 30.4, d′′4 = 13.9, d′′5 = 29, d′′6 = 26, d′′7 = 21, and

d′′8 = 38}. The rRMSE is 4.9%, which is better than the SVD-QRcp method

only.

4.5 Experimental Results

4.5.1 Experimental Setup

Experiments are performed on several IWLS’05 and ITC’99 benchmark cir-

cuits [78, 94] to evaluate the efficiency and accuracy of the proposed method-

ology. Circuits are synthesized using Synopsys Design Compiler and mapped

to the Nangate 45 nm library [80]. The extracted netlists are placed and

routed using Cadence SOC Encounter. Learning algorithms are implemented

using the Matlab 2011b statistics toolbox. Experiments are run on a 64 bit

Linux systems with 12 GB of RAM and quad-core Intel i7 processors running

at 2.67 GHz.

4.5.2 Effectiveness of RCPs

We first evaluate the effectiveness of delay prediction when aging-aware fea-

tures are considered. For a system with a large number of paths (millions

or more), we select only the top 5% of critical paths to form a targeted CP

set based on corresponding timing slacks. We use the SVD-QRcp method
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Table 4.1: Information about ITC’99 and IWLS’05 benchmark designs.

b17 b18 b19 b22 RISC

# of gates 27k 88k 185k 40k 61k

# of gate-type features 54 54 54 54 54

# of temperature features 100 100 100 100 100

# of voltage features 400 400 400 400 400

# of process 400 400 400 400 400

-variation features

# of critical paths 1021 604 524 722 1562

# of RCPs1 33 18 19 18 38

1The number of RCPs obtained when required timing accuracy is set to
higher than 97%.

(Fig. 4.3) to select the RCP set from the entire CP set. Prediction accuracy

is evaluated based on rRMSE the metric, defined in Equation (4.4). Table

4.1 lists the total number of CPs, the optimal number of RCPs for different

benchmark circuits when the required timing accuracy is set to be higher

than 95%. Note that for different circuits, the numbers of selected RCPs

are different based on the calculation of Pex and the total number of CPs.

According to this table, we observe that the number of RCPs is significanlty

smaller than number of CPs. For example, we select 35 RCPs out of a total

of 3021 CPs for b17, and 46 RCPs out of a total of 3662 CPs for RISC pro-

cessor. These results show that with only a small number of RCPs, we can

predict the delays of a large set of CPs with high accuracy.

The prediction accuracy for six benchmarks at measurement point t3y (the

third year in system runtime) is plotted in Fig. 4.7. First, we observe that

rRMSE drops fast when the number of RCP increases. For example in

b22, if we take all features into account for delay prediction, the rRMSE

obtained by using only 5 RCPs is 10.2%, while the rRMSE obtained for 18

RCPs is only 1.3%. Second, the rRMSE is found to remain constant when

the number of RCPs is larger than 25 for b22. The results show that there is

a clear knee in the graphs for all circuits, which indicates that increasing the

number of RCPs beyond a certain point does not have a significant impact

on accuracy. Therefore, we are able to achieve high prediction accuracy for a

large pool of target CP set by monitoring only a few paths and using Equation
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(4.3). Note that we can exploit Pex using Equation (4.6) to determine the

knee point effectively. Third, we observe that rRMSE drops faster when we

use a more detailed model that considers all features than when we use a

simple model that includes only topological features. These results highlight

the effectiveness of the use of aging- and variation-aware features for delay

prediction, as described in Section 4.3.

Note that our method is of more general use than [83], whereby we can

predict delay of every critical path in the circuit, in contrast to the overall

delay of the entire circuit. Moreover, we consider more complete features

such as process variations, voltage droop, and temperature to achieve more

accurate results. As depicted in Fig. 4.7, by considering all the features,

the accuracy is improved by 17.6% on average if we use the same number of

RCPs.
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Figure 4.7: Prediction accuracy obtained 1) using all features and 2) using
only topological feature at t3y for ITC’99 and ISWL’05 benchmark circuits.

Next, we illustrate the effectiveness of using adaptive prediction method

(i.e., SVD-QRcp with Cmeans) for six benchmark circuits under different

degree of variations. For this purpose we consider two scenarios: 1) RCPs

are extracted based on only topological feature, 2) RCPs are extracted by

considering both topological feature and additional variation features. The

average prediction accuracies of first and second scenarios are shown in Fig.
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4.8 and Fig. 4.9, respectively. The adaptive prediction method (i.e., SVD-

QRcp with C-means) is a combination of SVD-QRcp and C-means clustering,

as described in Fig. 4.5 and Fig. 4.6, respectively. We compare the predic-

tion accuracy obtained using same number of RCPs selected by the adaptive

method to two static path-selection methods, namely SVD-QRcp (Fig. 4.3)

and C-means clustering (Fig. 4.4). The number of RCPs selected by the C-

means clustering method equals the number of clusters. In addition, we have

implemented an iterative clustering method based on [95], thereby selecting

the clustering setting with high prediction accuracy. The prediction accuracy

is the average of multiple measurement points during the time. In addition,

for both scenarios, we run Monte-Carlo simulation and in each iteration,

physical characteristics, voltage, and temperature of each gate are updated

according to the corresponding variation model. Comparison of Fig. 4.8 and

Fig. 4.9 indicates that when RCPs are extracted by considering all features,

prediction error is significantly reduced under variations. Moreover, we ob-

serve higher prediction accuracy when we use adaptive prediction method,

compared to the other two static methods. For example in b17 as shown in

Fig. 4.9, rRMSE is 1% if we use the adaptive prediction, while rRMSE is

1.8% if we use SVD-QRcp and 1.6% if we use C-means clustering.

Finally, in Fig. 4.10, we present the prediction accuracy trends during run-

time to analyze the effectiveness of RCPs under aging effects. In almost all

cases, where each case corresponds to a circuit and a prediction point, the dy-

namic method (SVD-QRcp+C-means) offers higher accuracy in comparison

to the two static methods.
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Figure 4.8: Comparison of average prediction accuracy between different
RCP selection methods (using only topological features) for ITC’99 and
IWLS’05 benchmark circuits.
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Figure 4.9: Comparison of average prediction accuracy between different
RCP selection methods (using all features) for ITC’99 and IWLS’05
benchmark circuits.
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Figure 4.10: Comparison of runtime prediction accuracy between different
RCP selection methods for ITC’99 and IWLS’05 benchmark circuits.

4.5.3 Monitoring Sensors

For runtime adaptation, either delay testing or sensors must be implemented

to collect data on delay changes due to parameter variations of the CPs.

Various in-situ delay sensors have been proposed in the literature [[96, 6];

in this work, we use a sensor similar to the one presented in [6]. As shown

in Fig. 4.11, this sensor consists of a latch, two inverters, and three NAND

gates that are inserted at the end point of each CP. As discussed in [6],

the area overhead of this sensor is only 22 transistors. This sensor detects

late transitions on functional CPs and generates pulses. The widths of these

pulses represent the timing margins of the CPs. Next, the measured timing

margin is converted to a digital value using a measurement unit that consists
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of two multiplexers, a NAND gate, a ring oscillator, an N-bit counter, and

a LUT. The details of the sensor design are discussed in [6]. Note that only

one measurement unit is used for all sensors. Table 4.2 shows the area and

power overheads of the monitoring sensors for RCP monitoring. Note that

we use the same number of RCPs in SVD-QRcp with Cmeans method, SVD-

QRcp method, and the C-means clustering method, thereby the overheads of

all these three methods are same. Results obtained using Synopsys Design

Compiler shows that the overhead decrease when we increase the size of the

circuit.

Table 4.2: Overhead due to the monitoring sensors.

Benchmark No.of gates
Sensor Overhead
Area Power

b17 27K 2% 0.9%
b18 88K 1.1% 0.3%
b19 185K 0.5% 0.1%
b22 40K 1.4% 0.6%

RISC 61K 1.0% 0.4%

4.5.4 Error in Delay Sensors

Next, we evaluate the robustness of the proposed adaptive method with the

presence of inaccurate data provided by the delay sensors. We use Gaussian

distribution to inject errors in the readouts from the delay sensors. For exam-

ple, 1% error means that delay value read from the sensor has a mean value

of the actual delay and a deviation of 1%. In Fig. 4.12, the readout errors

are 0%, 3%, 6% and 10%; these values are delibrately set to be larger than

what has typically been reported in the literature [6]. Mento Carlo (MC)

simulation is used for evaluation. We use 40 trials in the MC method, since

the delay-prediction error does not change much as we increase the number

of trials beyond 40. We observe that the delay-prediction error increases

gradually as the reading error increases in the sensor. The delay-prediction

accuracy depends on the sensor reading accuracy. Nevertheless, the predic-

tion error remains insignificant in most cases. There are also several existing

calibration techniques to tackle the detrimental effects of variations on delay

sensors [6], however this is out of the scope of this thesis. Moreover, delay

testing can also be combined by in-situ based RCP monitoring to improve

the accuracy.
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Figure 4.11: A design of one in-field variation-aware delay sensor. Adopted
from [6].
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Figure 4.12: Effects of inaccuracies in delay-sensor readouts on the
accuracy of delay prediction.
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4.6 Conclusions

The complexity associated with advanced technology nodes requires the mon-

itoring of a large pool of critical paths to ensure desired performance of a

chip over its lifetime. A small set of representative critical paths are usually

adopted as a surrogate to estimate delays for the complete set of critical

paths. However, uncertainties introduced by process and runtime variations

and aging reduce prediction accuracy when a small of representative critical

paths is used. As a result, system adaptation effectiveness and resilience are

adversely affected. In this chapter, we have shown how reasoning methods

based on machine-learning can be used to account for uncertainties in chip

parameters. Simulation results for a range of benchmark circuits highlight

the efficiency of the proposed techniques for predicting critical path delays

in the presence of parameter variations.
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CHAPTER 5

MITIGATION TECHNIQUES
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In previous chapters, modeling of parameter variations as well as in-field

delay/age monitoring systems are addressed. This chapter presents different

but yet complementary static and adaptive techniques to mitigate the detri-

mental impact of parameter variations. These techniques that are developed

on top of our proposed timing analysis framework and monitoring systems

can significantly improve the state-of-the-art techniques by extending the

lifetime of the chips and by increasing the circuit frequency while satisfying

the power constraints. Our static methods such as guard-banding are based

on model, predict, and margin. On the other hand, adaptive methods can

consider workload-dependent time-varying characteristics of the circuit based

on a sense and adapt strategy.

5.1 State-of-the-arts

There has been considerable research work for alleviating the variations effect

on digital chips at different design levels [97]. The common approach to

combat parameter variations is adding timing margin during design time.

Although the complexity of this method is very low, it significantly suffers

from performance loss. Various gate and transistor sizing are proposed in

literature to compensate the impact of variations [98, 99, 100]. The overhead

of these design-time techniques are medium, but their efficiency can be very

low depending on the working conditions. Recently, high level synthesis

techniques are also adjusted to consider parameter variations [101]. Input

vector control and internal node control are another design-time approaches

to tackle transistor aging. The basic idea is to apply a specific input vector

during idle-time in order to maximize recovery time of most critical gates

[102, 7, 103, 104, 105, 106]. Adaptive voltage and threshold voltage scaling

can be used during runtime to compensate variations [107, 108, 109, 110,

111, 112]. Power gating of circuits during their idle-time is an efficient way to

reduce transistor aging and leakage power [113, 114, 115, 116]. Degradation

rate balancing try to balance the workload and idle time over all logic blocks

(e.g., ALU) in a system. Adaptive re-indexing of cache modules, instruction

scheduling, and task scheduling fall into this category [117, 118, 119].
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5.2 Static Input Vector Control (Static-IVC)

Input vector affects both NBTI and leakage power, but not in the same

direction [120]. In other words, the best input vector resulting in minimum

aging might not lead to minimum leakage power. It implies that, a set of

Pareto points has to be extracted and afterwards during the standby mode at

runtime, based on the system conditions and requirements, a suitable input

vector can be selected and applied to the circuit. In this section we describe

our proposed Linear Programming (LP) based method for co-optimization of

NBTI and leakage power by obtaining an optimal input vector to apply to

the combinational circuit during the standby mode.

5.2.1 NBTI Minimization

Here we explain the logic network and also the NBTI-induced gate delay

increase relations by LP constraints. Linear programming is an efficient

mathematical optimization approach consisting of an objective which needs

to be optimized, and a set of linear constraints in a specific format as follows:

Minimize CTx, subject to Ax ≤ b, (5.1)

where x represents a vector of optimization (controlling) variables, C and b

are vectors of coefficients, and A is a matrix of coefficients. In this work,

our objective is to minimize the overall circuit delay increase due to NBTI

by considering (i.e. taking a maximum over) post-aging delay in all critical

and near-critical paths. For each path, the path delay increase is the sum

of gate delay increase for all the gates along that path. The result of this

LP minimization gives us the minimal post-aging circuit delay as well as the

input vector corresponding to the minimal circuit delay increase. This input

vector can be used during standby mode.

In fact, each input combination for a given gate in the library leads to a

different NBTI-induced delay increase in the standby mode. We exploit a

pseudo-Boolean function to formulate such NBTI effect for different gates in

the LP compatible format. For instance, considering a NAND gate, we can
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write the function corresponding to NBTI-induced delay increase as:

object function = ∆delay

= D00āb̄+D01āb+D10ab̄+D11ab

= D00(1− a)(1− b) +D01(1− a)b

+ D10a(1− b) +D11ab, (5.2)

where a and b are the inputs of the gate, a, b ∈ 0, 1, and Dab indicates delay

change due to the NBTI effect corresponding to gate inputs ab. Dab can be

extracted from NBTI model using precise HSPICE simulations. By applying

the Boole-Shannon expansion we reach:

∆delay = (D00 −D01 −D10 +D11)ab

+ (D10 −D00)a+ (D01 −D00)b+D00. (5.3)

In order to express the object function in LP format, it has to be linearized.

Since in a NAND gate, output(c)= 1 − (ab), the above equation can be

rewritten as

∆delay = (D00 −D01 −D10 +D11)(1− c)

+ (D10 −D00)a+ (D01 −D00)b+D00. (5.4)

With the same approach the object function of the NOR and NOT gates

can be extracted, as shown in Table5.1.

Table 5.1: LP object functions for gate ∆delays.

Function Logic operation Object function

INV b = NOT (a) D0b+D1a

(D10 −D00)a +
NAND c = NAND(a, b) (D01 −D00)b +

(D10 +D01 −D00 −D11)c
+(2D00 +D11 −D01 −D10)

(D11 −D01)a +
NOR c = NOR(a, b) (D11 −D10)b +

(D11 +D00 −D10 −D01)c
+(D10 +D01 −D11)

Next, a set of linear constraints are required to represent the functionality
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of the logic gates. This would be the LP representation of the logic network

(gate-level netlist). There exist two sets of such constraints to represent

the functionality of logic gate [121, 122]. Table 5.2 illustrates the set of

constraints based on these two models for basic logic gates.

Table 5.2: LP constraints for basic logic operations.

Function Logic operation Constraints Constraints
Form I [121] Form II [122]

INV b = NOT (a) b+ a = 1 b+ a = 1

c ≤ 2− (a+ b+ 1)/2 c ≤ 2− a− b
NAND c = NAND(a, b) c ≥ 1− (a+ b)/2 c ≥ 1− a

c ≥ 1− b
c ≤ 1− (a+ b)/2 c ≥ 1− (a+ b)

NOR c = NOR(a, b) c ≥ 1− (a+ b) c ≤ 1− b
c ≤ 1− a

As mentioned before, the optimization objective is to minimize the overall

circuit delay increase due to NBTI. To accurately take this into account,

post-aging delays of all critical and near-critical paths have to be considered.

It should be noted that the NBTI-induced delay increase of a near-critical

path pi could be more than that of a critical path pj (D(pi) < D(pj)) such

that D(pi) + ∆D(pi) > D(pj) + ∆D(pj). The list of all critical and near-

critical paths (i.e. the vulnerable paths) can be extracted from static timing

analysis of the circuit by setting a threshold for the slack of such paths. The

goal is to optimize (minimize) the post-aging delays of the vulnerable paths

of the circuit. The NBTI-aware Object Function (NOF) can be expressed by

Equation 5.5:

minimize : NOF =
N

max
j=0

∑
∀ gji in V Pj

(
D(gji) + ∆D(gji)

)
, (5.5)

where j is a vulnerable path, N is number of vulnerable path, gji is gate i

in the vulnerable path V Pj.

To linearize the “max” operation, we replace Equation 5.5 by a set of

constraints as follows.
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∀j : x ≥ D(V Pj) =
∑

∀ gji in V Pj

(
D(gji) + ∆D(gji)

)
(5.6)

minimize : x

PBTI is becoming an important transistor aging factor by the introduction

of high-κ/metal gate transistors. This phenomenon affects NMOS transistors

in the similar way which NBTI affects PMOS transistors. As a result the

same equation as NBTI can be used to estimate the threshold shift due

to PBTI. Therefore, similar LP formulations can be exploited as described

above to find best input vector in terms of PBTI.

5.2.2 Leakage Power Minimization

Since leakage power of each gate in the cell library is strongly dependent

of its input vectors, the total leakage power of the circuit is a function of

its primary input vector. Here, similar to [121][122], we describe a linear

programming based method to find the best input vector which results in

minimum leakage power of the circuit. The overall methodology is similar

to that presented in Sec. IV.A. Here, a pseudo-Boolean function is also used

to formulate leakage power for different gates in the LP compatible format.

The object function for different gates is similar to the table 5.1. However,

Dab should be replaced with Pab. , where Pab indicates the leakage power

corresponding to gate inputs ab which can be extracted form a look-up table.

The total leakage power can be obtained by simple adding the leakage power

of all individual gates in the circuits. As a result, the Power-aware Object

function (POF) can be written by the following equation:

minimize : POF =
N∑
i=0

P (gi), (5.7)

where N is the number of gates of the circuit.
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5.2.3 NBTI and Leakage Co-optimization

Finally, for co-optimization of NBTI and power, three different objectives

can be defined.

• In Aging-constraint leakage minimization (e.g. in high performance or

high reliability applications), the post-aging delay has to be less than

a certain threshold and power should be minimized.

minimize : POFtotal (5.8)

NOFtotal ≤ Dtarget

• In Leakage-constraint aging minimization (e.g. for low power applica-

tions), the power has to be less than a certain value and post aging

delay should be minimized.

minimize : NOFtotal (5.9)

POFtotal ≤ Ptarget

• Another approach is to minimize the combination object function.

minimize : α.POFtotal + β.NOFtotal (5.10)

α + β = 1

where α and β are pre-determined constants based on the importance

of the power and/or aging for a given application.

The proposed methodology for co-optimization of each mentioned objective

is summarized in Figure 5.1. Our proposed timing analysis tool is used

to extract the vulnerable paths of the circuit. Next, the generated gate

level netlist of the circuit is given to a logic simulator to calculate signal

probabilities of all internal nodes. This signal probability or duty cycle is

used as an input in the gate-level NBTI models to estimate delay changes

due to different input vectors for each of the gates of the circuit. Besides,

each cell in the technology library is characterized regarding the leakage

power. This information is stored in a look-up table to be used in the next

step for generating the LP formulation. Afterwords, NBTI-Power-aware LP
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generator takes the calculated NBTI coefficient of each gate, obtained from

the NBTI model and the extracted look-up table for leakage power, as well

as the netlist of the circuit and generates an LP model. Finally, an LP-

solver is exploited to solve the generated LP constraints and find the optimal

input vector which co-optimize the NBTI and leakage power. A Monte-

Carlo simulation is used for evaluating the proposed methodology in terms

of accuracy and runtime.
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Figure 5.1: Flowchart of the proposed power-aware minimum NBTI input
vector selection.
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5.2.4 Running Example

To illustrate the presented flow, let us consider the circuit depicted in Fig-

ure 5.2.
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Figure 5.2: An example circuit for LP formulation.

For finding the NBTI-aware object function, we assume the circuit has

two potential critical (vulnerable) paths, Path1 and Path2. Path1 consists

of gates g1 and g4. The NBTI-aware object function (NOF) of the Path1 is

written as:

NOFPath1 = NOFg1 +NOFg4 =(
a(D10 −D00) + b(D01 −D00) + n1(D10 +D01 −D11 −D00)

+2D00 +D11 −D10 −D01

)
+

(
n1(D11 −D01)+

n2(D11 −D10) + z1(D11 +D00 −D10 −D01)+

D10 +D01 −D11

)

Path2 consists of gates g2 and g4. The object function of the Path2 is

calculated as follows:

NOFPath2 = NOFg2 +NOFg4 =(
c(D10 −D00) + d(D01 −D00) + n2(D10 +D01 −D11 −D00)

+2D00 +D11 −D10 −D01

)
+

(
n1(D11 −D01)+

n2(D11 −D10) + z1(D11 +D00 −D10 −D01)+

D10 +D01 −D11

)

The final NBTI-aware object function for minimizing the NBTI effect of
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the circuit can be expressed as:

NOFtotal = max(NOFPath1, NOFPath2)

To represent the above constraint in a linear format, it can be replaced by

the following constraints.

minimize : x

subject to : x ≥ NOFPath1, x ≥ NOFPath2

To represent the logic network functionality, the logic constraints of all the

gates in forms of Table 5.2 need to be added to the set of constraints.

If our objective is minimizing the power, then the total power of the circuit

should be considered. In this example, the Power-aware object function

(POF) can be obtained as:

POFtotal = POFg1 + POFg2 + POFg3 + POFg4 + POFg5 =(
a(P10 − P00) + b(P01 − P00) + n1(P10 + P01 − P11 − P00)

+2P00 + P11 − P10 − P01

)
+

(
c(P10 − P00) + d(P01 − P00)

+n2(P10 + P01 − P11 − P00) + 2P00 + P11 − P10 − P01

)
+(

d(P1) + n1(P0)

)
+

(
n1(P11 − P01) + n2(P11 − P10)+

z1(P11 + P00 − P10 − P01) + P10 − P01 − P11

)
+

(
n3(P11 − P01)

+e(P11 − P10) + z2(P11 + P00 − P10 − P01) + P10 − P01 − P11

)

5.2.5 Solving LP Constraints

Binary Integer LP (BILP)

In this form of the linear programming, all the controlling variables (here

the input vectors and all the internal nodes) can only take values of 0 or

1 [122]. This is consistent with the actual situation for logic circuits where

all the nodes are 0 or 1. Solution to the BILP formulations is exact (optimum

solution). Since the number of binary variables of the BILP model is equal
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to the number of circuit nodes, the runtime of BILP solver increases with the

number of circuit nodes. The choice of the constraint forms used for logic

network representation (Table 5.2) has a strong effect on the runtime of BILP

solver. Representing the circuit with constraints of form I (2 constraints for

2-input gates) results in unacceptable runtime. For instance, it takes about 2

hours for C499 circuit from ISCAS85 benchmark. Based on this observation,

constraints of form I are infeasible to be applied to large circuits. On the

other hand, constraints of form II (3 constrains for each 2-input gate) leads

to considerable runtime reduction for BILP solver. For example, it solves

the formulation for C499 in just 0.27 seconds. Therefore, we use the logic

representation of form II for BILP solution.

Relaxed LP (RLP)

In complete relaxed LP solution, all variables can get real values anywhere

in the range between 0 to 1 [121]. This is in contrast with the BILP solution.

However, it needs a subsequent step to convert final results to binary values.

A commonly used method to assign a binary value to each input is based

on random rounding [121]. Based on this method an input with the real

value of 0 ≤ p ≤ 1 is converted to 0 by the probability of (1 − p) and

converted to 1 by the probability of p. Using constraints of form I and II in

the relaxed mode improves the LP solver runtime significantly, however, due

to this random conversion from real to binary, the optimality of the solution is

greatly reduced. In other words, the solutions obtained by RLP are extremely

sub-optimal. In our experiments, unlike the BILP mode, we found out that

logic representation of form I is more suitable (better accuracy) for the RLP

option.

Mixed-Integer LP (MILP)

As described above, BILP provides optimal solutions but its runtime in-

creases as the number of gates and vulnerable paths increases. On the other

hand, RLP has a more reasonable runtime at the expense of providing inac-

curate results. To have the best of two worlds, Mixed Integer LP (MILP) can

be used. The key idea is to force some selective variables to take only binary

values and let the other variables to be real (relaxed). By this approach, we
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take advantage of the accuracy of BILP and fast runtime of RLP. For this

purpose we exploit constraints in form II (Table 5.2) because it is the only

set of constraints which guarantees that if the gate inputs are binary then

the output is binary too. According to this property, if only the primary

inputs of the circuit have binary values then all the intermediate nodes in

the circuit will have binary values even if they are relaxed (i.e. allowed to

take real values). Hence, the accuracy of this method would be the same as

pure BILP solution. Another major advantage of using this method is that

the number of explicit binary variables is reduced to the number of primary

inputs. Thus, the LP solver runtime decreases and becomes comparable to

RLP runtime. For example for C6288 circuit from ISCAS85 benchmark, the

MILP method gives the optimal solution while it is 17X faster in comparison

with BILP method.

5.2.6 Experimental Results

We have evaluated the efficiency of the proposed methods using experiments

on selected ISCAS’85, ISCAS’89, and MCNC benchmark circuits. We have

implemented a Monte Carlo (MC) simulation to obtain the optimal input vec-

tor from the random simulation flow. Since, the simulation-based method

is very time-consuming, we consider a bound. In other words, if it cannot

find the optimal solution and does not improve the accuracy of the obtained

solution more than 0.1% after 100,000 iterations, the simulation is termi-

nated and the last obtained result is reported. In addition, we have also

implemented the Probability-Based (PB) method proposed in [120]. In each

iteration, the random input vectors are generated based on the probability

of 0/1 obtained from the best solution of last iteration. For the proposed

LP-based technique, we use the flow shown in Figure 5.1. All LP instances

are solved using CPLEX, a mixed integer linear programming solver [123].

In this experiments, Ratio of Active to Standby time (RAS) is set to be

3:7. The effectiveness of IVC to mitigate NBTI effect has an opposite rela-

tion with RAS. In other words, the higher RAS is, the lower effectiveness of

IVC to mitigate NBTI effect is. The gate delays are also extracted from the

standard cell library. All vulnerable (critical and near-critical) paths with

maximum 5% slack are extracted using PrimeTime static timing analyzer.
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Consideration of such paths as the vulnerable paths is consistent with the

previous work suggesting near-critical paths are possible to become critical

due to NBTI [124].

To compare the results obtained from various LP solutions and MC simula-

tions, we define error factor as (LP opt−MC opt)/(MC opt), where LP opt

and MC opt are the minimum circuit delay degradation due to NBTI ob-

tained by LP and MC methods, respectively. Table 5.3 compares the error

factor and runtime of different LP options (BILP, RLP, MILP), PB method,

and the MC simulation. The experiments are conducted on a workstation

with Intel Xeon E5540 2.53GHz (2 quad-core processors), 16GB RAM, and

the operating system of Windows 7 Enterprise 64bit.

The number of gates and the number of extracted vulnerable paths for each

circuit are shown in table 5.3. The fourth column (∆dmin) corresponds to the

minimum circuit delay increase obtained by MC method. The choice of input

vector during the standby mode significantly impacts the delay degradation

due to NBTI. The range of delay degradation (∆delayRange = (∆dmax −
∆dmin)/∆dmin), obtained by the MC simulation, is shown in the fifth column.

According to these results, in average, the delay degradation can vary 50%

for a circuit based on the input vector (the range from the best case to

the worst case). The next three columns compare the optimization results

obtained by various LP options and PB [120] with MC simulations. BILP

and MILP have the same accuracy and can improve the optimization by

12% compared to the MC simulation. However, the optimality of the results

obtained by RLP is 2% worse compared to the MC simulation. Moreover, PB

provides more accurate results than MC simulation, but the results obtained

by MILP and BILP are more optimized. As shown in the table, the proposed

BILP and MILP methods always have an error less than or equal to zero.

This implies that BILP/MILP methods always find better solution than MC

simulation because MC simulation cannot necessarily find the best solution

due to limited exploration of the search space. On the other hand, since RLP

method is not exact, the solution of this method is not optimal and in some

cases the solution is even worse than the solution found by MC simulation

which leads to positive errors in the table.

In terms of runtime, Monte-Carlo simulation has the highest runtime, fol-

lowed by PB, BILP, MILP, and RLP. The runtime of PB method is better

than MC simulation however it has higher runetime compared to all types
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of our proposed LP approaches in average. As shown in this table, runtime

has a direct relationship with the number of gates as well as the number of

vulnerable paths (VP). All LP-based methods are 4-5 orders of magnitude

faster than MC simulation. MC simulation is infeasible for medium to large

circuits. MILP provides a runtime balance between RLP and BILP. RLP,

despite having the fastest runtime, provides sub-optimal results (about 2%

error). While MILP and BILP have the same best accuracy, MILP can fur-

ther reduce the runtime by 7%, compared to BILP. The runtime of proposed

method can be improved by using a technique proposed in [125, 126]. In this

technique, the large circuits can be transformed into some trees to improve

the runtime of LP approach. This can be done in three steps. First, the

circuits is divided into some cicuit trees by a link-deletion algorithm. In this

algorithm, the connections between gates are deleted in a way that each gate

fans out to at most one other gate. Performing this algorithm results in some

dangling inputs which has no fanin gate. Afterwards, The linear program-

ming approach can be performed on each tree to find the best input vector.

Finally, new values are assigned to the dangling nodes and this algorithm is

performed iteratively until it converges.

Table 5.4 illustrates the minimum and maximum NBTI-induced delay

degradation and their corresponding leakage power. It also shows the min-

imum and maximum leakage power and their corresponding NBTI-induced

delay degradation. The purpose of this table is to show how the two dimen-

sional search spaces with respect to the minimum and maximum NBTI as

well as leakage is distributed, and how the optimization of one parameter

affects the other one. This table reveals that the leakage power correspond-

ing to the input vector with the best NBTI-induced delay degradation is

not equal to the minimum leakage power or even worse leakage power. This

is also true for the NBTI-induced delay degradation corresponding to input

vector with minimum leakage power. This is due to the fact that an input

vector does not affect the NBTI and leakage power in the same direction.
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Table 5.5 shows how the input vectors affect different primitive gates in

terms of NBTI-induced aging and leakage. The values are shown as the

percentage of worst aging and leakage, respectively. As shown in this table,

for NAND gate the input pattern (00) resulting in the minimum leakage

leads to the maximum NBTI degradation. On the other hand, in NOR and

inverter gates the best input vector for leakage power is the best choice for

NBTI.

Table 5.5: The impact of input vector on leakage and NBTI (Normalized to
max).

NAND NOR Inverter
Leakage Aging Leakage Aging Leakage Aging

00 17% 100% 100% 100% 0 100% 100%
01 100% 50% 88% 50%
10 45% 50% 8% 0% 1 48% 0%
11 49% 0% 12% 0%

This phenomenon implies that, IVC is a co-optimization problem in terms

of NBTI and leakage. As a result, we need to obtain a leakage-NBTI pareto-

curve (or a set of Pareto points) for each circuit [120]. As an example,

Figure 5.3 shows the distribution of normalized delay degradation and leakage

(to the worst case) of various input vectors for circuit C880. It also shows the

pareto-curve. Each point in the pareto-curve corresponds to an input vector

which results in minimum NBTI-induced delay degradation with regards to

a special leakage power. The set of Pareto points for each circuit can be

obtained based on the approaches described in Section 5.2.3. Using such

Pareto points, when an idle time is detected, a suitable input vector is selected

according to leakage/NBTI requirement of the system and applied to the

circuit.

Table 5.6 shows the minimum NBTI ∆delay of the selected benchmark

circuits with different power constraints. This table can be viewed as the

digitalized version of the leakage-NBTI pareto-curve in with 5% steps of the

leakage power compared to the minimum value. The results show that for

almost all of the circuits, the best input vector leading to minimum NBTI

degradation can be obtained by only 20% relaxation of leakage power con-

straints. For instance, in circuit C6288 by only 5% more leakage power com-

pared to the minimum value offered by IVC, NBTI minimization approach
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NBTI-Leakage

Pareto-curve

Figure 5.3: Co-optimization of input vector in terms of NBTI and
Leakage-power for C880 benchmark circuit.

is saturated. Basically, with modest relaxation in power constraint, an IVC

offering the minimum NBTI degradation can be achieved.

As shown in Table 5.3, the runtime of the LP method not only depends

on the number of gates, but also strongly depends on the number of crit-

ical paths. For example, although S13207 has more gates than C6288, its

LP runtime is extremely smaller. This is due to the fact that S13207 has

lower amount of vulnerable paths in comparison with C6288 benchmark cir-

cuit. However, based on a technique proposed in [124], the number of aging

vulnerable paths can be reduced by a factor of 50, in average. The bene-

fit of using such approach is that it can significantly reduce the number of

vulnerable paths to be considered while the accuracy is not affected. We

can exploit such technique to start with fewer vulnerable paths, which can

further improve the scalability of our method.
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Table 5.6: Co-Optimization results of NBTI and leakage power with
different power constraints.

Benchmark
Circuit

Minimum NBTI ∆D (ps) with Different Power Constraints
(Normalized to Minimum Leakage Power)

0% 5% 10% 15% 20% 25%

C432 37.18 33.19 31.58 30.30 30.30 30.30

C499 34.85 30.35 28.02 28.02 27.46 27.30

C880 38.73 36.02 32.19 29.47 26.20 25.65

C1355 29.97 28.69 27.97 26.36 26.36 26.36

C2670 45.55 34.18 28.74 27.24 27.24 27.24

C3540 45.05 43.40 41.61 40.17 40.17 40.17

C5315 18.09 10.88 9.44 8.16 7.05 7.05

C6288 138.48 114.12 114.12 114.12 114.12 114.12

i2 17.09 10.88 10.55 10.55 10.55 10.55

i3 6.71 6.71 6.71 6.71 6.71 6.71

i4 22.92 20.37 17.81 14.93 13.48 12.21

i5 24.25 17.87 12.76 11.49 11.49 11.49

i6 8.54 5.99 5.99 5.99 5.99 5.99

i7 11.21 10.32 10.32 10.32 9.26 9.26

S09234 22.03 16.92 15.98 15.98 15.98 15.98

S13207 27.06 23.23 23.23 23.23 23.23 23.23

S15850 40.45 31.57 31.57 31.57 31.57 31.57

S35932 11.65 9.10 9.10 9.10 9.10 9.10

5.3 NoP Assignment

Due to data and control hazards and memory stalls, pipelined processors

need to execute instructions that have no effect on the state of the proces-

sor [127]. These special instructions are referred as NOP and their effects

are actually to occupy the hardware resources for a certain instruction slots

with no effect on program execution. It should be noted that there are

multiple cases of instruction which can act as NOP (e.g SLL R0, R0, 0 or

ADD R0, R0, 0). Since NOPs do not change the state of the executed ap-

plication, the time spent for executing NOP instructions in a processor can

be viewed as a pseudo-idle time. Based on out observation, a considerable

fraction of total executed instructions of SPEC2000 benchmark programs are

NOP instructions. This implies that, there are plenty of opportunities for

alleviating NBTI effect. Indeed, NBTI effect strongly depends on the input

vector. Therefore, the impact of the NBTI can be reduced by executing a

suitable instruction as a NOP. The key idea in this technique is finding a
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new instruction with no effect on the program state to replace the processor’s

default NOP instruction in order to minimize the NBTI effect.

A key requirement to successfully exploit a NOP instruction for aging re-

duction is understanding the effect of different instructions on aging. For

this purpose, we investigate the impact of all possible instruction opcodes

and instruction source operands on the delay-degradation imposed by NBTI.

Our observations show that the NBTI degradation effects of the instruction

opcodes that can be used as NOP are almost the same and minimal. On

the other hand, source operands have a significant influence on the amount

of NBTI degradation to the processor. Based on this observation, we use

a linear programming approach for finding the best Maximum Aging Re-

duction (MAR) NOP (opcode and source operand values) which leads to

minimum NBTI-induced delay degradation while has no effect on the state

of the executed program and acts like a normal NOP. Finally, two different

techniques (software-based and hardware-based) are proposed to show how

the extracted MAR NOP can be applied to the processor. We evaluate our

proposed approach on a MIPS processor with various SPEC2000 benchmark

applications in terms of lifetime improvement, power and area overheads. We

show that the lifetime of the processor can be extended by 37% in average

while the observed area and power overheads are less than 1%.

5.3.1 MAR NOP Selection

NBTI Effect of Possible NOPs

NOP is an instruction with no effect on the program execution and since

it has a neutral effect, it can be inserted at any location in the program

execution. For example in a MIPS processor the default NOP instruction is:

SLL R0, R0, 0

This instruction denotes, the content of R0 is shifted left zero times. Since

the R0 is hardwired to 0, this instruction has no effect on the status of the

program. Many instructions such as ADD, OR, SUB with R0 or immediate

operands can be used alternatively as a NOP. It should be noted that, using

any other register rather than R0 even as a source operand, may cause a data
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hazard. For example, the following instruction is an alternative for default

NOP.

ADDI R0, R0, 8

Both introduced NOPs (default NOP and the ADDI example) can be used

as NOP with no effect on program execution. However, since they have

different opcode and source operands, they may cause different amount of

NBTI-induced delay degradation on the processor. We investigate the effect

of applying different NOP candidates on NBTI-induced delay degradation of

the processor, based on the flowchart depicted in Figure 5.4(a).
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We investigate the effect of different instruction opcodes and operands on

the NBTI-induced delay degradation of the processor using the proposed

variations-aware timing analysis technique. For each instruction opcode, the

delay degradation imposed by NBTI is calculated for 100,000 randomly gen-

erated source operands (e.g. the immediate values and the data stored in

source registers). According to the results illustrated in Figure 5.5, the av-

erage of the delay degradations for all instruction opcodes are almost the

same. On the other hand, the variation of the NBTI-induced delay degrada-

tion is very sensitive to the values of source operands (the ranges shown in

Figure 5.5). Therefore, it can be concluded that NBTI-induced delay degra-

dation of a processor is mostly affected by the source operands rather than

the instruction opcode. This phenomenon is mainly due to the following

reasons:

• According to the analysis of critical paths, most of the aging vulnera-

ble paths which can change the post-aging delay of the processor, are

located in the EX-stage. Since the instruction opcode mostly affects

the decoder rather than the EX-stage (specially ALU), the effect of

the instruction opcode on the NBTI-induced delay degradation of the

processor is negligible.

• Since the width of the opcode is considerably smaller than the operand

width, the number of gates affected by the opcode is less than those

affected by source operands.

Based on the above observations, to exploit NOP as a mechanism to ef-

ficiently minimize NBTI effect, one need to choose both opcode instruction

and the values of source operands of NOP precisely. As a result two con-

cerns should be addressed. First, optimized source operand values should

be obtained for each opcode instruction in terms of NBTI. For this pur-

pose, a Linear Programming approach is presented. Second, a mechanism

should be devised to replace the default NOP and apply the opcode and its

corresponding optimized source operands as a MAR NOP.

Linear Programming Approach

The straightforward solution for finding MAR NOP is to exhaustively ap-

ply and analyze all possible NOPs (and operand values) which is infeasible.
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Figure 5.5: The effect of different NOPs (opcode and operand values) on
NBTI-induced delay degradation (the range shows the impact of operand
values).

Therefore, we use our proposed LP-based technique which was discussed in

Section 5.2 to obtain MAR NOP resulting in minimum NBTI-induced delay

degradation. The main characteristic of NOPs is that they do not change the

state of the program. Therefore, only a subset of the instruction set can be

employed as NOP. Moreover, as discussed, the NBTI effect mostly depends

on the source operand rather than the instruction opcode. As a result, we

need to modify NOP in a way that, it consists of not only a suitable instruc-

tion opcode, but also the corresponding NBTI-optimized operands value. To

find a MAR NOP, first, all possible instruction opcodes that can be act as

a NOP are considered. The first column of Table 5.7 shows all possible in-

struction opcodes that can be used as NOP instruction opcode. Next, for

each opcode, the best operand values which minimize the NBTI effect on

the processor is extracted. The proposed LP approach is used to find the

optimized operand value for each opcode. Finally, the pair of opcode and

corresponding operand values resulting in the minimum delay degradation is

selected as MAR NOP.

For each opcode, the objective is to minimize the overall post aging delay

of the processor imposed by NBTI considering all critical paths. The result

of this optimization is a source operand leading to minimum NBTI of a

processor for each instruction opcode. This objective can be represented by
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the following equation:

minimize : x | ∀j : x ≥ τ(CPi) =
i∑

gi in CPj

(
τ(gi) + ∆τ(gi)

)
(5.11)

where CP is a critical path and gi is the gate i in the critical path. For

each critical path, the post-aging delay is the sum of the post-aging delay of

all the gates along that path. The post-aging delay of each gate is equal to

summation of pre-aging delay of the gate, τ(gi), and the NBTI-induced delay

increase, ∆τ(gi). As mentioned before, the NBTI-induced delay increase of

each gate depends on the state of its inputs. To represent ∆τ(gi) of each

primitive gate in a LP compatible format, we use the technique introduced

in Section 5.2.

5.3.2 Applying MAR NOPs

In this section, we present two different methods for applying the instruction

opcodes and their corresponding optimized source operand values as an MAR

NOP.

Software-based Implementation

In order to apply the operand values of MAR NOP without affecting the

program execution, we need to reserve some registers. These registers are

dedicated only to save the corresponding operands of the MAR NOP (not

available for application anymore) and are loaded right before the application

is executed. Table 5.7 shows all possible instructions of MIPS which can be

used as a NOP instruction. For example, ADD R0, Ri, Rj can act as a NOP

instruction only if the registers Ri and Rj are reserved. Otherwise, since the

application might use these registers, the output of the program could be

affected.

The last column of Table 5.7 shows the number of registers needed to

be reserved for the corresponding NOP instructions. It should be noted

that, these instructions are selected in a way that, the data stored in the

reserved registers does not change during the NOP execution. In other words,

the reserved registers keep the NBTI-optimized source operand during NOP
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Table 5.7: NOP candidates of MIPS processor in the software-based
implementation.

Operation Operand # of reserved
(OP) registers

ADD, ADDU, SUB R0 ← Ri OP Rj 2
SUBU, XOR Ri ← Ri OP R0 1

R0 ← Ri OP Rj 2
OR Ri ← Ri OP R0 1

Ri ← Ri OP Ri 1

ADDI, ADDIU R0 ← Ri OP Imm 1
ORI, XORI Ri ← Ri OP 0 1

R0 ← Ri OP Rj 2
AND Ri ← Ri OP Ri 1

R0 ← Ri OP Imm 1
ANDI Ri ← Ri OP 1 1

NOR R0 ← Ri OP Rj 2

SRA, R0 ← Ri OP SA 1
SLL, SRL Ri ← Ri OP 0 1

SRLV, ROTRV R0 ← Ri OP Rj 2
SLLV,SRAV Ri ← Ri OP R0 1

R0 ← Ri OP SA 1
ROTR Ri ← Ri OP 0 1

Ri ← Ri OP 32 1

Default R0 ← R0 SLL 0 0
NOP of MIPS

execution. In conclusion, to apply a MAR NOP in software-based approach

the following steps are performed:

1. Modify the compiler directives to generate the binary/assembly code

while reserving the required (one or two) registers.

2. Replace the default NOPs in the code with MAR NOP.

3. Add necessary instructions to the beginning of the code to assign those

reserved registers to the optimal values of MAR operands.

Another alternative of software realization of MAR NOP is round-robin allo-

cation of the registers to the operands of the MAR NOP, however, it requires

further modifications to the compiler.
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Hardware-based Implementation

Here we present a hardware-based method for replacing the default NOP

with the MAR NOP applying them during program execution. In this ap-

proach, we modify the input multiplexers of the ALU in a way that the NBTI-

optimized source operand for the NOP-instruction is directly provided in the

EX-unit (see Figure 5.6). For this purpose, an extra input is added to each of

the input multiplexer of the ALU. These inputs provide the NBTI-optimized

data for MAR NOP. In addition, decoder should be slightly changed accord-

ingly to support the modification of the input multiplexer of the ALU. Since

the operand values of the NOP are available in the EX-stage, the hardware-

based NOP implementation can handle all the situations stem in hazards (e.g

when a NOP is needed to be inserted from the EX-stage into the processor).

Moreover, to insert a NOP instruction from IF stage, due to branch hazard,

the Hazard Detection Unit should be accordingly changed to reset the in-

struction field of the IF stage to the MAR NOP (In base MIPS processor,

this field is set to the default NOP).
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Comparing Hardware versus Software Implementations

As mentioned, the software-based NOP implementation needs at least one

reserved register. This implies that, the number of available registers for

compiling a program is reduced. As a result, the performance might be de-

creased. Another limitation of the software-based approach is that, it cannot

be used for all types of hazard which have been handled by the traditional

NOP. There are some situations which might occur when the forwarding

unit cannot avoid data hazards. As an example, consider an instruction

which needs data that is provided by a preceding load instruction. In this

case, the Hazard Detection Unit in the ID-stage identifies this situation in

advance and inserts a stall between these dependent instructions. As a re-

sult, we should force the EX stage to perform a special instruction that does

not change the state of the processor. Since here NOP is inserted from EX

stage, software-based method cannot handle this situation. This is due to

the fact that the source registers are read in the ID-stage and since this type

of NOP is inserted after the ID-stage, the registers which contain the NBTI-

optimized operands cannot be read. This phenomenon might also occur in

control hazards. The most well-known method for resolving control hazards

and reducing the branch penalty is branch prediction method. In case of

misprediction, all of the instructions fetched according to the prediction, are

flushed from the pipeline. To flush an instruction, the instruction field of

the register is set to a NOP instruction. Depending on the branch execution

unit, NOPs might be inserted from the EX-stage. Similar to the previous

situation in case of data hazards, software-based MAR NOP implementation

cannot be used here as well. In order to overcome these cases, compiler can

be configured to take care of all possible hazards and stalls and hence by-

pass the hardware supports by applying the necessary NOPs statically at the

compile time. However, this may result in some performance degradation,

particularly for branches.

Despite the discussed limitations of software-based implementation, this

approach is flexible and does not need any special hardware support or mod-

ification. In addition, since the critical paths of the circuit might change due

to the different data patterns of the applications during the circuit lifetime,

the optimized operands of the MAR NOP might change as well. Changing

the appropriate operands of the MAR NOP in a software-based implemen-
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tation is very straightforward and only needs to load new operands into the

corresponding reserved registers before the program execution.

The main advantage of the hardware-based implementation of MAR NOP

is that it can be used for all situations when a NOP must be inserted to the

processor even from the EX-stage. However, since the optimized operands of

the MAR NOP are provided by a hardwired method, it is not as flexible as

the software-based implementation. To remove this drawback it is possible

to use the already available scan-chain registers for modifying the operands

according to the current state of the processor in terms of timing properties

of the critical paths, with some additional design changes and overhead.

In in-order processors, when an instruction cannot be executed due to

hazards and stalls, all the following instructions should be stalled and NOP

instructions are inserted until the new instruction can be executed. On the

other hand, in out-of-order superscalar processors, Functional Units (FUs),

such as ALU, reservation stations, reorder buffers and physical registers,

are isolated from each other with some sort of buffers. Therefore, when an

instruction faces a hazard or stall, the following instructions can be executed.

Typically, the utilization of FUs is far less than 100% and clock-gating is used

during idle cycles to reduce power consumption. Therefore, the idle time of

each FU can be exploited to apply MAR NOP. For each FU, based on its

functionality and gate-level implementation, a suitable MAR NOP can be

extracted and can be applied to the corresponding FU for any cycle that the

FU is idle. In this case, the hardware-based implementation of MAR NOP is

more favorable because software-based implementation might lead to some

performance overhead.

5.3.3 Experimental Results

To evaluate the efficiency of the proposed method a five-stage MIPS pro-

cessor is used. It should be noted that our methodology is generic and can

be applied to other processors. The processor is synthesized by Synopsys

Design Compiler and is mapped to TSMC 65nm standard cell library. By

assuming a delay degradation of 10% in 3 years, all critical paths with 10%

positive slack are extracted using PrimeTime static timing analyzer. Then,

the unrolling method is applied to remove the logic feedbacks and convert
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Figure 5.7: Lifetime improvement for selected spec2000 application using
NBTI-aware NOP assignment.

the sequential structure of the processor to a combinational one. The signal

probability (duty cycle) of each transistor is calculated by a logic simulator

as well (see Figure 5.4(a)). By the method presented in 5.3.1 the problem

of finding the best source operand for each opcode instruction is obtained

using CPLEX (LP solver) and then the best pair (opcode and correspond-

ing operand values) is selected as MAR NOP. We have also implemented

a Monte Carlo (MC) simulation to obtain the optimal source operand for

each opcode instruction to validate the LP approach. According to the re-

sults, due to large input set of the processor, the MAR NOP obtained by

LP is better optimized than MC (5%) while reduces the runtime by 150x in

average.

To analyze the efficiency of the extracted MAR NOP on the processor

lifetime, we choose SPEC2000 benchmarks. We do a profiling on these ap-

plications with the M5 simulator [128]. Based on the output of the profiling,

extracted MAR NOP, and default MIPS NOP the lifetime improvement is

calculated by using the flow depicted in Figure 5.4(c). Figure 5.7 shows

the lifetime improvements for the SPEC2000 applications, when the default

NOPs are replaced with MAR NOPs. According to the results our proposed

approach can extend the lifetime of the processor by 37% in average. It

should be noted that the actual results strongly depend on the technology

node, circuit design, and architecture which varies from one processor to

another.

The software-based implementation needs to reserve one or two registers
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for storing the optimized source operands of the MAR NOP. To investigate

the effect of register reservation on the performance of the processor, we

apply it to several selected SPEC2000 benchmarks. Each of the application

is compiled with gcc-3.4.3 with -O1. According to the results illustrated in

Table 5.8, reserving one register registers reduce the Instructions Per Clock

(IPC) by only 0.1%. Moreover, IPC decreased around 0.5% due to reservation

of two registers.

Table 5.8: Register reservation overhead on IPC.

Application One register Two registers

mcf 0.0% 0.2%

bzip2 0.0% 0.0%

parser 0.1% 0.5%

vortex 0.0% -0.4%

twolf 0.0% 0.4%

gzip 0.0% 2.1%

gcc 0.6% 1.1%

perl 0.0% 0.0%

Average 0.1% 0.5%

To analyze the hardware-based approach, the modifications, have been

applied to the RTL description of the MIPS processor and the modified

version is synthesized with Synopsys Design Compiler. The results, as shown

in Table 5.10, confirm that the overhead of this approach is quite negligible.

5.4 Adaptive Mitigation Techniques

Although static techniques are effective ways for mitigating parameter vari-

ations, they are not sufficient and need to be complemented by adaptive

techniques. In this section, we present two different adaptive techniques,

namely Adaptive IVC and Adaptive Guard-banding to further improve re-

Table 5.9: Normalized overhead of Hardware-based implementation of NOP
to original MIPS.

Original Modified Overhead

Power(mW ) 1.897 1.919 1.1%

Area(µm2) 35591 35717 0.3%

Delay(ns) 4.38 4.38 0.0%
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siliency of the chip against parameter variations. The idea is to track the

status of the chip with respect to the variations-indued delay degradation

using the proposed age/delay monitoring system (See Section 4) and adjust

the corresponding reliability knobs (such as timing margin or input vector)

during runtime.

5.4.1 Adaptive Input Vector Control (A-IVC)

Although the static-IVC technique (introduced in Section 5.2) attempts to

co-optimize BTI and leakage power, it has two shortcomings which can be

improved by an adaptive approach:

1) Critical paths may change over time due to parameter variations. There-

fore, the selected IVs might not be efficient during runtime, since they target

paths that are no longer critical.

2) The leakage-BTI pareto-curve is affected considerably by the PVT cor-

ner. For example, Fig. 5.8 shows the pareto-curve of the b19 benchmark

circuit at two different temperatures. First, when the circuit temperature is

25◦C, we select IVi to minimize the delay while meeting the leakage limit.

Next, when the circuit temperature is reduced to 20◦C, the leakage-BTI

pareto curve also shifts consequently. In the static-IVC method, the same

IV (IVi) is selected to meet the leakage constraint. However, more delay

reduction can be achieved if we select another IV (IV j) adaptively, while

satisfying the requirement of limiting leakage.
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Figure 5.8: Comparison of the proposed A-IVC against static-IVC.

The concept of fine-grained monitoring and fine-grained adaptation enables

us to address the above two shortcomings of static-IVC. Fig. 5.9 illustrates

the overall flow of the proposed technique that allows us to continuously
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Figure 5.9: Fine-grained clustering, monitoring, and runtime adaptation.

re-evaluate chip conditions and apply countermeasures to efficiently tackle

parameter variations by jointly co-optimizing frequency and leakage. As

shown in the figure, the proposed technique consists of two different phases:

1) fine-grained clustering and offline Characterization, and 2) Fine-grained

monitoring and adaptation.

Fine-grained clustering and offline characterization: In circuits with

millions of Critical Paths (CPs), monitoring and adjusting the configuration

of each CP individually is infeasible. To address this problem, we use ma-

chine learning to identify and exploit topological and electrical similarities

among critical paths. We propose to group the critical paths into several

clusters, such that the variation-induced delay increase of the paths in the

same cluster are highly correlated. In other words, critical paths that belong

to the same cluster tend to follow similar trends in terms of delay variation.

This implies that if we monitor the delay of one path for each cluster, namely

the CR, the status of the whole cluster in term of parameter variations can be

determined with high accuracy. Note that to monitor the delay of each CR,

we can place any available in-situ delay sensor such as described in [85, 129]

at the downstream flip-flop of the path. For example, Fig. 5.10 illustrates

how critical paths are grouped into four different clusters (groups). In this

example, by only measuring the delay of four CR (represented by black cir-

cles), we can accurately estimate delays of other 14 CPs (represented by

white circles) and hence the status of all four clusters.

In the offline phase, we also characterize each cluster at different parameter

variations to find the corresponding near-optimal configuration (e.g., in A-
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IVC, this configuration is IV) for each cluster. For this purpose, the BTI-

leakage pareto-curve is obtained at different PVT corners for each generated

path cluster. Pareto-curves of a cluster minimize the BTI-induced delay

degradation of the cluster at a certain PVT corner under the constraint of

leakage power for the entire circuit. The Pareto-curves obtained in this way

are sampled and the corresponding IVs are stored a LUT of the ARC module

to be used during runtime adaptation.

CR

Cluster1
Cluster2

Cluster3

Cluster4

Figure 5.10: Illustration of path clustering and CR selection.

Fine-grained monitoring and adaptation: During runtime, an adaptive

controller, namely Adaptive Reliability Controller (ARC) obtains the status

of the PVT variations of the path clusters using available process, voltage

droop, and thermal sensors such as in [130, 131]. Moreover, the proposed

age/delay monitoring systems, the ARC module tracks the delay and BTI-

induced delay degradation of path clusters. The ARC relies on a LUT,

which is indexed based on readouts of the sensors, to adaptively adjust the

configuration (e.g., suitable IVs) of each cluster. Note that the LUT is loaded

with offline characterization data.

Implementation Issues of A-IVC

To pre-characterize the LUT (i.e., find appropriate IVs for different condi-

tions), we adopt the linear programming (LP) approach presented in [7] to

consider both path clustering and PVT corners. In addition, we rely on ex-

isting clock-gating units to realize the hardware implementation of IVC. A

two-input multiplexer is added in front of the functional unit. One input is

connected to the ARC module, which provides the input vectors in the IVC

technique. The other input is the normal input of the logic core. A clock-

gating unit is used to select the input to the multiplexer. As an example,

Fig. 5.11 conceptually illustrates how aging-leakage aware IVs are applied
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to the ALU of the LEON processor during idle times. Note that the IV is

selected based on the LUT indices, which are the outputs of temperature,

voltage, and delay sensors.

FU
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MUX
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MEM/WB

IV

IV

Operand2

EX/MEM

MEM/WB

Immediate

Select: Normal/IVC

ENB

Figure 5.11: Hardware realization of A-IVC for the functional unit of the
LEON processor.

The size of the LUT for the ARC module is a major practical concern in

the proposed techniques. The LUT size depends on the number of sampling

points of PVT corners and the number of sampling points of the delay sensors

that are dedicated to monitor the delay of each CR/cluster. The sampling

points represent a tradeoff between accuracy and overhead (i.e., the size of

the LUT). To make a tradeoff, we use a non-uniform sampling approach such

that more samples are used for the critical range of each parameter. To ac-

complish this goal, we perform two kinds of analysis. 1) Sensitivity analysis:

We vary each parameter (e.g., channel length, threshold voltage, voltage,

and temperature.) from its nominal value and observe the sensitivity of the

corresponding path delay as well as the leakage power. 2) Frequency anal-

ysis: We determine what range of parameter variation is more likely to be

experienced by the processor. Based on above analysis, we use 7, 7, 5, 4 sam-

pling points for voltage, temperature, delay sensors, and process variation,

respectively. Less than 1 KB of memory is required to store the LUT. Since

process variation does not change over time, we can reduce the LUT size to

less than 256 B by incorporating a software approach. In this method, the

total size of the LUT (i.e., 1 KB) is divided into 4 pages with the size of 256

B corresponding to the 4 different process variation points. After fabrication,

when sensors determine the actual process corner, the corresponding page is

copied to the dedicated physical LUT in the ARC module.
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Experimental Results

To evaluate the efficiency and accuracy of the A-IVC, experiments are per-

formed on various ISCAS’89, IWLS’05, and ITC’99 benchmark circuits [78,

94]. Synopsys Design Compiler and Cadence SOC Encounter are used for

synthesis and place-route, respectively, with the Nangate 45nm target library

[80]. An iterative profiling process similar to [132] is conducted to obtain the

temperature, voltage, and BTI of each individual gate within the circuit.

The BTI-induced threshold voltage change is estimated by assuming a delay

degradation of 10% in 3 years [7]. As in recent related work, circuit calibra-

tion and cell characterization are based on 120◦C and 1 V as the operating

temperature and the voltage, respectively [133]. Moreover, based on ITRS,

we assume 10% variations in voltage droop and relevant fabrication process

parameters [2]. The power profile and the corresponding temperature profile

are calculated by running different randomly generated input vectors with

a switching activity factor of 0.2. Synopsys Primetime is used to extract

critical and near-critical paths of the circuit in the presence of aging and

variations.

Fig. 5.12 compares the lifetime improvement obtained by the proposed

adaptive-IVC to static-IVC presented in [7]. Static-IVC can extend the life-

time by 32% on average, while the proposed A-IVC extends the lifetime by

60% on average. Moroever, we observe that in the presence of PVT varia-

tions, leakage power improvement provided by A-IVC is 64% higher on aver-

age over all benchmark circuits compared to static-IVC. The reason for this

considerable lifetime-leakage improvement is that the proposed technique is

capable of tracking the usage and operating conditions of the chip. Therefore,

it adaptively adjusts the IVs during runtime, which results in more power

saving and longer lifetime.
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Figure 5.12: Lifetime improvement using A-IVC compared to static-IVC [7].

To estimate the overhead of the proposed technique, all the modification
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depicted in Fig. 5.11 are implemented for ALU of LEON2 processor. The

results obtained by Synopsys Design Compiler show that the overhead is

negligible (See Table 5.10).

Table 5.10: Overhead of the of A-IVC for the LEON processor.

Original Modified Percentage Overhead

Power[mW ] 5.5976 5.5256 1.3%

Area[µm2] 41305 41676 0.9%

Delay[ns] 1.58 1.59 0.6%

5.4.2 Adaptive Guard-banding

Static guard-banding is the most common design-time technique to tackle

aging and variations. In this technique, at design time a conservative timing

margin based on the worst-case variability corners combined with maximum

target lifetime is considered for the circuit in order to avoid timing failures.

However, aging is a gradual process and hence the entire margin is not re-

quired earlier in the lifetime. In addition, not all the fabricated chip suffers

from wors-case process variations. Therefore, static guard-banding may lead

to considerable performance loss. To minimize the performance overhead,

the impact of transistor aging and variation on the overall circuit delay can

be accurately obtained by the proposed age/delay monitoring (See Section

4). Based on the exact amount of delay, the actual value of delay degradation

has to be set as timing margin to gain performance. Fig. 5.13 shows the per-

formance gain for circuit when b17, when static guard-banding is replaced

by adaptive guard-banding. As illustrated in this figure, in the adaptive

method, the timing margin is gradually increased over time but in the static

method timing margin is fixed. Note that performance gain is eroded over

time. When the circuit is fresh (t = 0), performance gain is very high.

However, when the circuit is already aged (e.g., after 10 years) the timing

margins of adaptive and static approaches become same and hence we do not

gain any performance. Note that our approach also enables us to reduce the

timing margin that is allocated for tackling process variations. Table 5.11

shows the performance improvement of the adaptive guard-banding to static

guard-banding for different circuits at t = 0 year and t = 5 years.
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Figure 5.13: Performance gain obtained by adaptive guard-banding based
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Table 5.11: Performance improvements of adaptive guard-banding to static
guard-banding.

Benchmark No.of gates
Performance improvements (%)
@t = 0year @t = 5years

b17 27K 30% 10%
b18 88K 25% 10%
b19 185K 25% 10%
b22 40K 29% 10%

RISC 61K 22% 10%

5.5 Conclusions

In this section, we introduced a set of complementary static and adaptive mit-

igation techniques to tackle the adverse impact of parameter variations. We

proposed IVC method that can be used to co-optimize power consumption

and aging-degradation during idle cycles by applying a suitable input vector.

We also illustrated that how IVC method can be used for NOP assignment

to maximum BTI relaxation on the processor. Two methods, software-based

and hardware-based, are proposed to replace the original NOP with this max-

imum aging reduction NOP. Finally, we presented two adaptive techniques

to adjust the timing margin and the IVC on the basis of dynamic workload-

dependent variations using the proposed RCP-based delay/age monitoring

system.
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CHAPTER 6

SUMMARY AND CONCLUSION
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Technology scaling is the key to continue the success of semiconductor in-

dustry by integrating faster while low power transistors in smaller area. As

semiconductor integrated circuits become denser and more complex due to

technology scaling, chip designers face several reliability challenges. Param-

eter variation is considered as a major reliability concern in the nanoscale

regime for integrated circuits. Parameter variations can arise either from

process variations or workload-dependent runtime variations such as temper-

ature variations, voltage droop and transistor aging. Undesirable variations

in chip parameters can result in mismatch between electrical design specifi-

cations and runtime characteristics. This inconsistency is then translated to

to loss of performance, timing violations, unexpected failures, and reduced

lifetime.

Process variations such as random dopant fluctuations are the results of

the imperfection in the chip manufacturing process. Temperature variations

is related to workload-dependent power consumption and power density of

the chip. Voltage drop occurs when a large number of logic gates in the

circuit draw high switching current from the on-chip power supply network.

Transistor aging mainly due to BTI and HCI increases the threshold voltage

of transistors over time. As a consequence of parameter variations, there is

an increase in gate delays, resulting in higher path delays, and the eventual

occurrence of intermittent and transient faults during chip operation.

To fully address the problem of parameter variations, it is important to

1) model and analyze the chip delay in the presence of parameter variations,

2) be able to monitor and track the adverse impacts of them on circuit de-

lay and lifetime, and 3) compensate and mitigate their undesirable effects

on the chip. Due to importance of parameter variations, over the past few

years several attempts have been done to address each of these three aspects.

The main shortcoming of state-of-the-art timing analysis techniques is that

the interaction among parameter variations is neglected. However, all these

phenomena are tightly coupled and hence the combined effect of all these

variations on the circuit timing has to be considered. Existing monitoring

techniques also suffer from huge area/performance overheads. In addition,

these techniques do not provide fine-grained information about status of each

individual critical path in the circuit. Finally, the available mitigation tech-

niques cannot tackle the detrimental impacts of parameter variations in an

efficient way.

110



The objective of this thesis was to appropriately address the shortcomings

of prior techniques by different novel means. In Chapter 3, the interdepen-

dence between parameter variations were studied and modeled which enabled

us to improve the accuracy of timing analysis flow. In Chapter 4, we pro-

posed a learning machine techniques for age/delay monitoring of the chip

in-filed. This technique allows to analyze the status of each critical paths in

the circuit under the influence of parameter variations with negligible over-

heads during runtime. On top of the proposed timing analysis framework and

monitoring system, a set of complementary static and adaptive techniques

were also proposed in Chapter 5, which can significantly improve the lifetime

and frequency of the chip.

Our novel techniques to model, track, and mitigate parameter variations

can be exploited in a variety of applications. For example, critical appli-

cations such as automotive, medical, and space applications can benefit

from them to improve the lifetime and resiliency against undesirable un-

expected failures. By introduction of new reliability issues such as uninten-

tional design-time attacks, and intentional hardware bugs which are inserted

for malicious purpose, one extension of this work could be capturing these

anomalies as well. Another promising extension of this thesis might be ab-

stracting some of the proposed models to be able to consider them in other

domains such as cloud computing.
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