30,107 research outputs found

    State Identification for Labeled Transition Systems with Inputs and Outputs

    Get PDF
    For Finite State Machines (FSMs) a rich testing theory has been developed to discover aspects of their behavior and ensure their correct functioning. Although this theory is widely used, e.g., to check conformance of protocol implementations, its applicability is limited by restrictions of the FSM framework: the fact that inputs and outputs alternate in an FSM, and outputs are fully determined by the previous input and state. Labeled Transition Systems with inputs and outputs (LTSs), as studied in ioco testing theory, provide a richer framework for testing component oriented systems, but lack the algorithms for test generation from FSM theory. In this article, we propose an algorithm for the fundamental problem of state identification during testing of LTSs. Our algorithm is a direct generalization of the well-known algorithm for computing adaptive distinguishing sequences for FSMs proposed by Lee & Yannakakis. Our algorithm has to deal with so-called compatible states, states that cannot be distinguished in case of an adversarial system-under-test. Analogous to the result of Lee & Yannakakis, we prove that if an (adaptive) test exists that distinguishes all pairs of incompatible states of an LTS, our algorithm will find one. In practice, such adaptive tests typically do not exist. However, in experiments with an implementation of our algorithm on an industrial benchmark, we find that tests produced by our algorithm still distinguish more than 99% of the incompatible state pairs

    Distinguishing sequences for partially specified FSMs

    Get PDF
    Distinguishing Sequences (DSs) are used inmany Finite State Machine (FSM) based test techniques. Although Partially Specified FSMs (PSFSMs) generalise FSMs, the computational complexity of constructing Adaptive and Preset DSs (ADSs/PDSs) for PSFSMs has not been addressed. This paper shows that it is possible to check the existence of an ADS in polynomial time but the corresponding problem for PDSs is PSPACE-complete. We also report on the results of experiments with benchmarks and over 8 * 106 PSFSMs. Ā© 2014 Springer International Publishing

    Synthesis of behavioral models from scenarios

    No full text

    Learning Markov Decision Processes for Model Checking

    Full text link
    Constructing an accurate system model for formal model verification can be both resource demanding and time-consuming. To alleviate this shortcoming, algorithms have been proposed for automatically learning system models based on observed system behaviors. In this paper we extend the algorithm on learning probabilistic automata to reactive systems, where the observed system behavior is in the form of alternating sequences of inputs and outputs. We propose an algorithm for automatically learning a deterministic labeled Markov decision process model from the observed behavior of a reactive system. The proposed learning algorithm is adapted from algorithms for learning deterministic probabilistic finite automata, and extended to include both probabilistic and nondeterministic transitions. The algorithm is empirically analyzed and evaluated by learning system models of slot machines. The evaluation is performed by analyzing the probabilistic linear temporal logic properties of the system as well as by analyzing the schedulers, in particular the optimal schedulers, induced by the learned models.Comment: In Proceedings QFM 2012, arXiv:1212.345

    Generating Complete and Finite Test Suite for ioco: Is It Possible?

    Get PDF
    Testing from Input/Output Transition Systems has been intensely investigated. The conformance between the implementation and the specification is often determined by the so-called ioco-relation. However, generating tests for ioco is usually hindered by the problem of conflicts between inputs and outputs. Moreover, the generation is mainly based on nondeterministic methods, which may deliver complete test suites but require an unbounded number of executions. In this paper, we investigate whether it is possible to construct a finite test suite which is complete in a predefined fault domain for the classical ioco relation even in the presence of input/output conflicts. We demonstrate that it is possible under certain assumptions about the specification and implementation, by proposing a method for complete test generation, based on a traditional method developed for FSM.Comment: In Proceedings MBT 2014, arXiv:1403.704

    Learning phase transitions from dynamics

    Get PDF
    We propose the use of recurrent neural networks for classifying phases of matter based on the dynamics of experimentally accessible observables. We demonstrate this approach by training recurrent networks on the magnetization traces of two distinct models of one-dimensional disordered and interacting spin chains. The obtained phase diagram for a well-studied model of the many-body localization transition shows excellent agreement with previously known results obtained from time-independent entanglement spectra. For a periodically-driven model featuring an inherently dynamical time-crystalline phase, the phase diagram that our network traces in a previously-unexplored regime coincides with an order parameter for its expected phases.Comment: 5 pages + 3 fig, appendix + 5 fi
    • ā€¦
    corecore