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For Finite State Machines (FSMs) a rich testing theory has been developed to discover
aspects of their behavior and ensure their correct functioning. Although this theory
has been frequently used, e.g. to check conformance of protocol implementations, its
applicability is limited by restrictions of FSMs, in which inputs and outputs alternate, and
outputs are determined by the previous input and state. Labeled Transition Systems with
inputs and outputs (LTSs), as studied in ioco testing theory, provide a richer framework for
testing component oriented systems, but lack the algorithms for test generation from FSM
theory.
In this article, we propose an algorithm for the fundamental problem of state identification
during testing of LTSs. Our algorithm is a direct generalization of the well-known
algorithm for computing adaptive distinguishing sequences for FSMs proposed by Lee
and Yannakakis. Our algorithm has to deal with so-called compatible states, states that
cannot be distinguished. Analogous to the result of Lee and Yannakakis, we prove that
if an adaptive test exists that distinguishes all pairs of (incompatible) states of an LTS,
our algorithm will find one. In practice, such perfect adaptive tests typically do not exist.
However, in experiments with an implementation of our algorithm on a collection of (both
academic and industrial) benchmarks, we find that that the adaptive tests produced by our
algorithm still distinguish at least 99% of the incompatible state pairs.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Starting with Moore’s famous 1956 paper [29], a rich theory of testing finite-state machines (FSMs) has been developed
to discover aspects of their behavior and ensure their correct functioning; see e.g. [25] for a survey. One of the classical
testing problems is state identification: given some FSM, determine in which state it was initialized, by providing inputs and

observing outputs.

Various forms of distinguishing sequences were proposed, ranging from sets of sequences to single sequences solving the
problem. Moreover, when combined with state access sequences, a so-called n-complete test suites can be constructed [11].
The challenge in using n-complete test suites is to keep their size as small as possible. Using a single (adaptive) sequence for
state identification [24], helps to reach this objective. If such a single sequence does not exist, then a sequence distinguishing
most states may be supplemented with some additional sequences that distinguish the remaining states [28].
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Although state identification algorithms for FSMs have been widely used, e.g. to check conformance of protocol imple-
mentations, their applicability is limited by the expressivity of the FSM framework. In FSMs, inputs and outputs strictly
alternate, and (at least in the classical setting) outputs are fully determined by the previous input and state, and inputs
must be always enabled. Labeled Transition Systems with inputs and outputs (LTSs), as studied in ioco testing theory [38],
provide a richer framework for testing software and hardware systems: transitions are labeled by either an input or an
output, allowing any combination of inputs and outputs, multiple outputs may be starting from the same state, allowing
(observable) output nondeterminism, and states do not need to have transitions for all inputs, allowing partiality. However,
LTSs lack the algorithms for test generation from FSM theory. Although progress has been made in defining and constructing
n-complete test suites for LTSs [5], an algorithm to solve the state identification problem as in [24], and hence to provide
small n-complete test suites, is missing.

Therefore we generalize the construction algorithms for adaptive distinguishing sequences, as given in [24]. As in [5],
we have to face the problem of compatible states [32,33], which does not occur for (input enabled, deterministic, re-
duced) FSMs. States are compatible when they cannot be distinguished, e.g. when two states have a transition for the
same output to the same state. As it is easy to construct LTSs with compatible states, we made sure our algorithms can
deal with such LTSs: they accept LTSs with compatible states, but they ‘work around’ them, dealing with all incompatible
states.

This journal article extends and improves the conference paper published as [7]. Besides adding proofs, clarifications
and examples (e.g. Example 28), we have considerably strengthened the experimental evaluation of our algorithm. Whereas
in [7] our algorithm was only applied to a single case study, we evaluate it experimentally on five case studies in this
extension.

The outline of the paper is as follows. We first introduce graphs, LTSs, and some syntax for denoting trees. Then we
elaborate on compatibility and the related concept of validity. Furthermore, we introduce test cases, and define when they
distinguish states of an LTS. After that we define a data structure called splitting graph, present an algorithm that constructs a
splitting graph for a given LTS, and another algorithm that extracts a test case from a splitting graph. We show that, unlike
for classical FSMs, the splitting graph may have an exponential number of nodes. However, this is worst case behavior,
as our experiments on a collection of (both academic and industrial) benchmarks will show. Analogous to FSMs, it may
not be possible to distinguish all states of an LTS with a single test case. Our experiments show that this is typically the
case in practice, but nevertheless more than 99% of the incompatible state pairs are distinguished by the constructed test
case. Following [24], we show that our algorithms construct a test case distinguishing all (incompatible) state pairs, if it
exists.

Related work. Algorithms for computing adaptive and preset distinguishing test cases for different FSM classes are described
in many publications, see for instance [1,4,5,11-13,16,18,22-24,31-33,36]. There are (at least) three orthogonal ways in
which the classical FSM (or Mealy machine) model can be generalized.

A first generalization is to add nondeterminism. Whereas an FSM has exactly one outgoing transition for each state g and
input i, a nonderministic FSM (NDFSM) allows for more than one transition. Alur, Courcoubetis and Yannakakis [1] propose
an algorithm to generate adaptive distinguishing sequences for nondeterministic FSMs, using (overlapping) subsets of states,
similar to our algorithm. However, their sequences only distinguish pairs of states, and are not designed to distinguish more
states at the same time. Kushik, El-Fakih, Yevtushenko and Cavalli [23] give a bottom-up procedure to construct homing
and adaptive distinguishing sequences for NDFSMs. They observe that the procedure for obtaining homing and adaptive
distinguishing sequences is almost the same. In between FSMs and NDFSMs we find the observable NDFSMs, which have at
most one outgoing transition for each state g, input i and output o; one may use a determinization construction to convert
any NDFSM into an observable one. The LTSs that we consider in this article have observable nondeterminism. El-Fakih et
al. [12,13] present top-down algorithms for checking the existence and derivation of an adaptive distinguishing sequence
for complete (input-enabled) observable NDFSMs.

A second generalization of FSMs is to relax the requirement that they are complete, that is, each input is enabled in
each state. In a partial FSM, states do not necessarily have outgoing transitions for every state and every input. Petrenko
and Yevtushenko derive complete test suites for partial, observable FSMs [31]. Their test generation is based on (adaptive)
state counting [18], which is a trace search-based method which recognizes when states are distinguished, but does not
provide a constructive way to build a test that distinguishes (many) states at once. Yannakakis and Lee [41] present a
randomized algorithm which generates, with high probability, checking sequences, i.e. n-complete test suites consisting of
a single sequence. This approach is also applicable to partial FSMs, as opposed to the adaptive distinguishing sequence
construction algorithms of [24], which apply to completely specified FSMs.

A third generalization of FSMs is to relax the requirement that inputs and outputs alternate. In our LTS, inputs and
outputs may occur in arbitrary order. Bensalem, Krichen and Tripakis [4] give an algorithm for extracting adaptive distin-
guishing sequences for all states of a given LTS, by translating back and forth between a corresponding Mealy machine. This
translation is only possible, if all states of the LTS have at most one outgoing output transition. Van den Bos, Janssen and
Moerman [5] do not need such a restriction. They propose an algorithm that generates an adaptive distinguishing sequence
for all pairs of incompatible states. In this paper, we generalize the result of [5] to distinguish more states at the same
time.
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Fig. 1. Running example.

2. Preliminaries

We write f: X — Y to denote that f is a partial function from set X to set Y. For x € X, we write f(x) | if there exists a
y €Y such that f(x) =y, i.e. the result is defined, and f(x) 1 if the result is undefined. We often identify a partial function
f with the set of pairs {(x,y) e X x Y | f(x) =y}.

If ¥ is a set of symbols then T* denotes the set of all finite words over X. The empty word is denoted by €, the word
consisting of symbol a € X is denoted a, and concatenation of words is denoted by juxtaposition.

Throughout this article, we use standard notations and terminology related to finite directed graphs (digraphs) and finite
directed acyclic graphs (DAGs), as for instance defined in [9,2]. If G = (V, E) is a digraph, with V a set of vertices and
E a set of edges, and v € V, then we let Post;(v), or briefly Post(v), denote the set of direct successors of v, that is,
Post(v) = {w € V | (v, w) € E}. Similarly, Prec(v), or briefly Pre(v), denotes the set of direct predecessors of v, that is,
Pre(v) ={w e V | (w, V) € E}. Vertex v is called a root if Pre(v) =, a leaf if Post(v) =@, and internal if Post(v) # . We
write leaves(G) = {v € V | Post(v) = @}, and internal(G) = V \ leaves(G).

The automata considered in this paper are deterministic, finite labeled transition systems with transitions that are labeled
by inputs or outputs. Since a single state may have outgoing transitions labeled with different outputs, and since outputs
are not controllable, the behavior of our automata is nondeterministic in the sense that, in general, for a given sequence
of inputs, the resulting sequence of outputs is not uniquely determined. Nevertheless, our automata are deterministic in
the sense of classical automata theory: for any observed sequence of inputs and outputs the resulting state is uniquely
determined. We say that our automata have observable nondeterminism.

Throughout this article, we fix a set of input labels I and a set of output labels O. We assume sets [ and O are disjoint,
nonempty and finite, and write L =1U O. We will use a,b to denote input labels, x, y,z to denote output labels, u for
labels that are either inputs or outputs, and o, p for elements from L*.

Definition 1. An automaton (with inputs and outputs) is a triple A= (Q, T, qo) with Q a finite set of states, T: Q x L —~ Q a
transition function, and qo € Q the initial state. We associate a digraph to A as follows

digraph(A) =(Q.{(q.q) € Q x Q |FueL:T(q, u) =q'}).

Concepts and notations for digraph(A) extend to A. Thus we say, for instance, that automaton A is acyclic when digraph(A)
is acyclic, and we write Post(q) for the set of direct successors of a state q. For A=(Q,T,qo) and g € Q we write A/q for
(Q,T,q), that is, the automaton obtained from A by replacing its initial state by q.

Fig. 1 illustrates an example automaton A = (Q, T, qp) with states from Q = {1, 2, 3, 4} denoted by circles, initial state 1
marked by a small arrow, and transition relation T represented by labeled edges.

Below, we recall the definitions of some basic operations on (sets of) automata states. Operations in, out and init retrieve
all the inputs, outputs, or labels enabled in a state, respectively. To each set of states P and sequence of labels o we associate
three sets of states: P after o, P before o, and enabled(P, o). Set P after o comprises all states that can be reached starting
from a state of P via a path with trace o, whereas set P before o consists of all the states from where it is possible to
reach a state in P via trace o, and enabled(P, o) consists of all states in P from where a path with trace o is possible. The
traces operation provides the set of sequences of labels that can be observed from a state. We use a subscript if confusion
may arise due to the use of several automata in the same context, e.g. outs(q) denotes the set of outputs enabled in state
q of automaton A.

Definition 2. Let A= (Q, T, qp) be an automaton, g€ Q, € L and o € L*. Then we define:
in(q)={ael|T(q,a)l}

out(q)={x€ 0|T(q,x |}
q after € = {q}



P. van den Bos and E. Vaandrager Science of Computer Programming 209 (2021) 102678

|
T a.(x.0+ y.0)
a

x0+y.0

X y
0 O—> 02— o
0

Fig. 2. Automaton denoted by CCS expression.

T(q, n) aftero ifT(q, )|

after uo =
q after {@ otherwise

# ifqafteroc =0

bled(q, o) =
enabled(. o) {{q} otherwise

q beforec ={q' € Q | q € ¢ after o’}
traces(q) = {p € L* | q after p # ¥}

Definitions are lifted to sets of states by pointwise extension. Thus, for P C Q, in(P) = Upepin(p), P after o =
UpE p P after o, etc. Also, we sometimes write the automaton instead of its initial state. Thus, for instance, A after o =
qo after o and traces(A) = traces(qop).

We find it convenient to use a fragment of Milner’s Calculus of Communicating Systems [27] as syntax for denoting
acyclic automata. In particular, its recursive definition will allow us to incrementally construct test cases in Sections 5
and 6.

Definition 3. The set of expressions Eccs is defined by the BNF grammar

F:=0|F+F|uF

The set Tces € Eces X L x Eccs is the smallest set of triples such that, for all w € L and F, F/, G € Eccs,

1. (w.F, u,F) € Tecs
2. If (F, u,G) € Tces then (F 4+ F', u, G) € Tees
3. If (F, u,G) € Tees then (F'+F, i, G) € Tees

An expression F € Eccs is deterministic iff, for all subexpressions G of F,

(G, 1, G')eTees NG, 1, G") € Tees = G =G"

To each deterministic expression F € Eccs we associate an automaton Ar = (Q, T, F), where Q is the set of subexpressions
of F, and transition function T is defined by

G’ if (G, ., G") € Tees
TG w = { undefined otherwise
Example 4. The expression a.(x.0 + y.0) has subexpressions a.(x.0 + y.0), x.0 + y.0, x.0, y.0, and 0. These are the states of
its associated automaton, which is displayed in Fig. 2. Note that states x.0 and y.0 are not reachable from the initial state
a.(x.0+ y.0).

Suspension automata are automata with the additional property that in each state at least one output label is enabled.
We note that this requirement can be easily enforced by adding a self-loop for an additional output label, that denotes ‘no-
output’ or quiescence [38], in each state that has no output transition. We note that our definition of suspension automata,
which is taken from [5], is more general than the one from [38,40], since we only require states to be non-blocking, while
suspension automata from [38,40] adhere to some additional properties associated to this special quiescence output.

Definition 5. Let A = (Q,T,qo) be an automaton. We call a state g € Q blocking if out(q) = ¥, and call A a suspension
automaton if none of its states is blocking.
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We will use suspension automata as the specifications to derive test cases from. Note that the automaton of Fig. 1 is
in fact a suspension automaton. We use (plain) automata as an intermediate structure to do computations, and in order to
model test cases.

3. Validity and compatibility

In this section, we recall the related notions of validity and compatibility [5]. We first give an efficient algorithm for
computing valid states. After that, we show how the relation between validity and compatibility can be used to efficiently
compute all pairs of compatible states occurring in a suspension automaton. We will need this last relation when construct-
ing test cases to distinguish incompatible states.

3.1. Validity

We consider the following 2-player concurrent game, which is a minor variant of reachability games studied e.g. in [26,6].
Two players, the tester and the System Under Test (SUT), play on a state space consisting of an automaton A = (Q, T, qo). At
any point during the game there is a current state, which is qo initially. To advance the game, both the tester and the SUT
choose an action from the current state q:

e The tester chooses either an input from in(q), or the special label 6 ¢ L. By choosing 6, the tester indicates that she
performs no input.
e The SUT chooses an output from out(q), or 6 if no output is possible.

The game moves to a next state according to the following rules (this is the input-eager assumption from [6]):

1. If the tester chooses an enabled input a this will be executed, i.e. the current state changes to T(q, a).

2. If the SUT chooses an enabled output x this will only be executed when the tester has chosen 6, in this case the current
state changes to T (g, X).

3. When both players choose 6, the game terminates.

The tester wins the game if she reaches a blocking state, and the SUT wins if he has a strategy that ensures that the tester
will never win. A (memoryless) strategy for the tester is a function strategy : Q — I U {#}. We say a strategy is winning if
the tester will always win the game (within a finite number of moves) when selecting labels according to this strategy, no
matter which actions the SUT takes. Following Benes et al. [3] and Van den Bos et al. [5], we call states for which the tester
has a winning strategy invalid, and the remaining states valid. The sets of valid and invalid states are characterized by the
following lemma (cf. Proposition 2.18 of [26]):

Lemma6. Let A= (Q, T, qo) be an automaton.

1. The set of invalid states of A is the smallest set P € Q such thatq € P if

daein(q):T(q,a) € P or Vxeout(q):T(q,x) € P.
2. The set of valid states of A is the largest set P € Q such that q € P implies

Vaein(q):T(q,a) € P and 3x € out(q) : T(q, x) € P.

Note that if out(q) = @, the second condition of Lemma 6(1) is vacuously true. Therefore, all blocking states are invalid
states.

Based on Lemma 6(1), Algorithm 1 computes the set of invalid states of an automaton A and, for each invalid state g,
the move strategy(q) of a winning strategy for the tester, as well as the maximum number rank(q) of moves required to
win the game.

Algorithm 1 is a minor variation of the classical algorithm for computing attractor sets and traps in 2-player concurrent
games [26] and the procedure described by [3], which takes as input an automaton, of which each state g has in(q) =L,
and prunes away invalid states. The main reason why we have included the pseudo code here is that further on we need to
refer to specific properties of the strategy and rank functions that are computed by the algorithm.

Key invariants of the while-loop of lines 13-33 are that states in W U P are invalid, and for g € Q \ (P U W), count(q)
gives the number of output transitions to states in Q \ P.

The next lemma states some basic properties of the rank function that records the maximum number of moves required
to win.

Lemma 7. Let A = (Q, T, qo) be an automaton and P C Q the set of invalid states of A. Let strategy and rank be as computed by
Algorithm 1. Then, forallq € P anda € I,
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Input: An automaton A= (Q, T, qo).
Output: The subset P C Q of invalid states and, a winning strategy strategy for the tester, defined for each state q € P, and the maximum number
rank(q) of moves required to win.

1 Function ComputeWinningTester (Q,T,qo):
2 wW:=0; // winning states for tester that need processing
3 foreach g € Q do
4 count(q) := |out(q) |;
5 incomingtransitions(q) := set of incoming transitions of q;
6 if count(q) =0 then
7 W:=WuU{q}; // state q is invalid
8 strategy(q) :=0;
9 rank(q) :==0
10 end
11 end
12 P:=0; // winning states for tester that have been processed
13 while W # ¢ do
14 p := any element from W;
15 foreach (q, i, p) € incomingtransitions(p) do
16 if ¢ PUW then
17 if ;€ I then
18 W:=WuUl{q}; // state q has input to winning state
19 strategy(q) := [L;
20 rank(q) := rank(p) + 1
21 else
22 count(q) := count(q) — 1;
23 if count(q) =0 then
24 W:=WU{q}; // all outputs ¢ to winning states
25 strategy(q) :=06;
26 rank(q) := 1+ MaXxeout(q) rank(T (q. X))
27 end
28 end
29 end
30 end
31 W :=W\ {p}
32 P:=PU{p}
33 end
34 return set P, function strategy, and function rank;

Algorithm 1: Computing the invalid states.

1. rank(q) =0 < q is blocking,
2. rank(q) > 0 A strategy(q) =a = T(q,a) € P Arank(T(q, a)) < rank(q),
3. rank(q) > 0 A strategy(q) =6 = Vx € out(q) : rank(T(q, x)) < rank(q).

Let n be the number of states in Q, and m the number of transitions in T. We assume, for convenience, that m > n. If
we use an adjacency-list representation of A and represent the set of incoming transitions using a linked list, then the time
complexity of the initialization part (lines 2-11) is O(m). The while-loop (lines 13-33) visits each transition of A at most
twice (in lines 15 and 26) and performs a constant amount of work. Thus the time complexity of the while loop is O(m).
This means that the time complexity of Algorithm 1 is also O(m).

3.2. Compatibility

Two states of a suspension automaton are compatible [32,33] if a tester may not be able to distinguish them. For example,
if a tester wants to determine whether the SUT behaves according to state 2 or 3 of the suspension automaton of Fig. 1,
taking output transition x will result in reaching state 4, from both states, but after reaching state 4, it cannot be determined
from which of the two states the x transition was taken. Hence, states 2 and 3 are called compatible. Note that the fact
that state 2 has input a does not help to distinguish it from state 3. Since state 3 does not have an input a, this input is
‘unspecified’, meaning that all inputs and outputs are allowed after observing an a from state 3 [38]. Consequently, state
3 after a is compatible to any state, and in particular to state 2 after a. One can make underspecification explicit by applying
the operation of demonic completion to an automaton, as described in [5].

A tester may not be able to distinguish compatible states in the presence of an “adversarial” SUT. In the automaton of
Fig. 3, for instance, a tester will not succeed to distinguish states 1 and 2 in a scenario in which the SUT always chooses to
do output x in state 1.

The notion of compatible states is formalized in the following definition.

Definition 8. Let (Q, T, qo) be a suspension automaton. A relation R € Q x Q is a compatibility relation if for all (g,q’) € R
we have
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Fig. 3. Compatible states.
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Fig. 4. Synchronous composition of the suspension automaton from Fig. 1.
Va e in(q) Nin(q) : (T(q,a), T(q',a)) € R, and
Ix € out(q) Nout(q’) : (T(q,x), T(q', X)) € R
Two states q,q € Q are compatible, denoted q < ¢/, if there exists a compatibility relation R relating q and q’. Otherwise,

the states are incompatible, denoted by q<¢ q’. For P C Q a set of states, we write O(P) to denote that all states in P are
pairwise compatible, i.e. Vq,q' € P:q < ¢q'.

Note that compatibility relations are closed under unions. Therefore, there exists a largest compatibility relation. Also
note that the compatibility relation is symmetric and reflexive, but not transitive. For an elaborate discussion of compati-
bility, we refer the reader to [5]. The notions of compatibility and validity can be related using the following synchronous
composition operator:

Definition 9. Let A1 = (Q1, T1, q(l)) and Ay = (Q2, T, q(z)) be automata. The synchronous composition of A; and A,, notation
A1]|A2, is the automaton A=(Q1 x Q, T, (qé, q%)). where transition function T is given by:

(T1(q1, m), T2(q2, w)) ifT(q1, ) | and T(q2, ) |

T((q1,92), w) = { undefined otherwise

The next lemma asserts that states g and g’ of a suspension automaton S are compatible precisely when the pair (g, q’)
is a valid state of S||S."

Lemma 10. Let S = (Q, T, qo) be a suspension automaton with q,q’ € Q. Then q < q' iff (q, q') is a valid state of S||S.

Proof. (<) Suppose that (q, q’) is a valid state of S||S. Then, by Lemma 6(2), (g, q’) is contained in the largest subset P of
the states of S||S that satisfies the conditions of Lemma 6(2). Using Definition 9, we infer that, for all (r,r’) € P:

VYa ein(r) Nin(@’) : (T(r,a), T(r',a)) € P, and
3x € out(r) Nout() : (T(r,x), T(r',x)) € P

But this means that P is a compatibility relation, and therefore q ¢ ¢'.

(=) Suppose that g < ¢’. Then, by Definition 8, there exists a compatibility relation relating q and ¢’. Let R be the largest
compatibility relation. Since R € Q x Q, R is a subset of the set of states of S||S. By combining Definitions 8 and 9, we
infer that R satisfies the condition from Lemma 6(2). This implies that (g, q’) is a valid state of S||S. O

Example 11. Fig. 4 shows the synchronous self-composition of the suspension automaton of Fig. 1. The composition has 6
valid states, which are marked gray. Lemma 10 now implies that 2<3.

Lemma 10 suggests an efficient algorithm for computing compatibility of states. Suppose S is a suspension automaton
with n states and m transitions, with m > n. Then we may compute composition S||S in time O(m(n + logm)). The idea is
that we first sort the list of transitions on the value of their action label, which takes O(mlogm) time. Next we check for

! This is a variation of Lemma 22 from [5], which is stated for a slightly different composition operator that involves demonic completions. Adding
demonic completions is useful in the setting of [5], but not needed for our purposes.

7
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each transition t = (q, i, q) what are the possible transitions that may synchronize with t. Since t may only synchronize
with p-transitions, and since there are at most n p-transitions (as S is deterministic), we may compute the list of transitions
of the composition in O(mn) time. Thus, the overall time complexity of computing S||S is O(m(n+logm)). The composition
SIS has n? states and O(mn) transitions. Next we use Algorithm 1 to compute the set of invalid states of S||S, which
requires O(mn) time. Two states g and g’ of S are compatible iff (q,q’) is not in this set. Altogether, we need O(m(n +
logm)) time to compute the compatible state pairs.

4. Test cases

In this section, we introduce a simple notion of test cases. The goal of these test cases is state identification, i.e. to explore
whether a state of an SUT, that is reached after some initial interactions, has the same traces as the state where it should be
according to a given suspension automaton that acts as specification. Our test cases are adaptive in the sense that inputs that
are sent to the SUT may depend on previous outputs generated by the SUT. They are similar to the adaptive distinguishing
sequences proposed by Lee and Yannakakis [24], and the initialized, single input, output complete, acyclic NDFSMs used as
test cases by Petrenko and Yevtushenko [32], except that inputs and outputs do not necessarily alternate.

Definition 12. A test case is an acyclic automaton A in which each state enables either a single input action, or zero or more
output actions. We refer to states that enable a single input as input states, and states that enable at least one output as
output states. Thus each state from a test case is either an input state, an output state, or a leaf.

To each test case A we associate a set of observations: maximal traces that we may observe during a run of A.

Definition 13. For each test case A, Obs(A) is the set of traces that reach a leaf of A: Obs(A) = {o € traces(A) | A after o C
leaves(A)}.

The following technical lemma, which follows directly from the definitions, implies that the set of observations Obs(A)
is nonempty, for any test case A.

Lemma 14. Suppose A = (Q, T, qo) is a test case.

1. Ifqo is a leaf then Obs(A) = {€}.
2. If qo is an input state that enables input a then

Obs(A) ={ao | 0 € Obs(A/T(qo, a))}.
3. If qo is an output state then

Obs(A) = U {xo | 0 € Obs(A/T(qo,X))}.

xeout(q)

Given a suspension automaton S, we only want to consider test cases A that are consistent with S in the sense that
each input that is provided by A is also specified by S, and conversely each output that is allowed by S also occurs in A.

Definition 15. Let A= (Q, T, qo) be a test case and let S =(Q’, T’,qg) be a suspension automaton. We say that A is a test
case for S if, for each state (g, q’) of A||S reachable from initial state (qo, qp):

e if g is an input state then in(q) C in(q’),
e if g is an output state then out(q) 2 out(q’).

We say A is a test case for state ¢’ € Q' if A is a test case for S/q’. Furthermore, A is a test case for a set of states P C Q' if
A is a test case for all ¢’ € P.

The next lemma, which follows directly from the definitions, asserts that if A is a test case for a set of states P, the
remaining test case after an initial p-transition in A is a test case for P after u.

Lemma 16. Suppose A = (Q, T, qop) is a test case for a set P of states of suspension automaton S. Suppose that T (qo, ) = q1, for
some label (1 and state q1. Then A/q; is a test case for P after \t.

If A is a test case for suspension automaton S, then the composition A||S is also a test case for S. We can view A|S as
the subautomaton of A in which all outputs that are not enabled in S have been pruned away.
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Lemma 17. If A is a test case for a suspension automaton S, then the composition A||S is also a test case for S, satisfying Obs(A||S) C
Obs(A).

A test case distinguishes two states, if applying the test case in these states results in different observable traces.

Definition 18. Let A be a test case for states q and g’ of suspension automaton S. Then A distinguishes q and q' if
Obs(A[I(S/q)) N Obs(All(S/q")) = 2.

Example 19. The automaton A associated to CCS expression a.(x.0 + y.0), shown in Fig. 2, is a test case for states 1 and
2 of the suspension automaton S displayed in Fig. 1. The observable traces of the test case are Obs(A) = {ax, ay}, and it
distinguishes states 1 and 2 since

Obs(Al|(S/1)) = {ax} and Obs(A[|(S/2)) = {ay}.

Lemma 20. Let S = (Q, T, qo) be a suspension automaton with q,q' € Q. Then q< q' iff there exists a test case that distinguishes q
and q'.

Proof. (=) Assume q< q'. By Lemma 10, g q’ iff the pair (q,¢’) is an invalid state of S||S. By definition, this means that
in the game for S||S the tester has a winning strategy strategy. This strategy can be effectively computed by Algorithm 1.
Using strategy strategy, we define a test case A as follows:

o The set of states consists of the set P of invalid states of S||S, extended with a single leaf state I.

o The initial state is (g, q).

e The transition relation of A is obtained by (a) restricting the transition relation of S||S to P, (b) removing all input
transitions, except the outgoing transitions with label strategy(r,r’) from states with strategy(r,r’) € I, (c) adding an
output transition ((r,r’),x,l) for each (r,r") € P and x € O such that strategy(r,r’) =6 and (r,r’) does not have an
outgoing x-transition.

It is routine to check that A is a test case for states q and q’ of S. We claim that A distinguishes g and ¢/, that is,
Obs(A||S/q) N Obs(A||S/q") = . Because suppose o € Obs(A||S/q). Then o corresponds to a run from initial state (q,q’) of
A to leaf node I. By construction of A, o must be of the form px, where p corresponds to a run in A from (q, q") to some
state (r,1’) and x € out(r) \ out(r’). This means that A||S/q’ has a run with actions o from initial state ((g,q’),q’) to state
((r,r"),1"). However, since x ¢ out(r'), o ¢ Obs(A||S/q’). By a symmetric argument, we may conclude that o € Obs(A|S/q’)
implies o ¢ Obs(A||S/q). Thus Obs(A||S/q) NObs(A|S/q") =@, as required.

(<) Assume that there exists a test case that distinguishes g and q’. We claim if g © g’ no test case exists that distin-
guishes q and q'. This claim implies g ¢/, as required. In order to prove the claim, let A be a test case for compatible
states q and g’ of S. Let ro be the initial state of A and let R be a compatibility relation with (g, q’) € R. By induction on
the length of the maximal path of A we show that

Obs(A||(S/q)) N Obs(A|(S/q")) # @.
If the length of the maximal path of A is O then ro is a leaf. In this case, Obs(A||(S/q)) = Obs(A|(S/q')) = {€} # #. Now

assume that the length of the maximal path of A is positive. Then ry is either an input state or an output state.
If ro is an input state then, since A is a test case for q and ¢/, in(rg) C in(q) and in(rg) C in(q’). This means that
in(rg) Cin(q) Nin(q’). Let a be the input enabled by rp. Then by Lemmas 17 and 14(2),
Obs(All(S/q)) ={ao | o € Obs(A/T (ro, ) [I(S/T(q. @))),
Obs(A|(S/q")) ={ao | o € Obs(A/T (ro, ®)||(S/T(q', @))).

Since (q,q’) € R, we have, for each a € in(q) Nin(q"), (T(q,a), T(q’,a)) € R. Thus by induction hypothesis,

Obs(A/T(ro, @)||(S/T(q,a))) NObs(A/T (ro,®)|(S/T(q', a))) # .

This implies Obs(A||(S/q)) N Obs(A|(S/q’)) # ¥, as required.

If ro is an output state then, since A is a test case for q and ¢/, out(ro) 2 out(q) and out(rg) 2 out(q’). Therefore, out(rg) 2
out(q) Nout(q). Since (q,q") € R, there exists an x € out(q) Nout(q") with (T (g, x), T(q’, X)) € R. Since rq enables x, it follows
by Lemmas 17 and 14(3) that

Obs(A[(S/q)) 2 {xo | o € Obs(A/T (ro, )[I(S/T(q. %)),
Obs(All(S/q')) 2 {xo | o € Obs(A/T (ro, X)II(S/T(q', X))).

9
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Fig. 5. A suspension automaton without adaptive distinguishing graph.

By induction hypothesis,

Obs(A/T (ro, x)[(S/T(g,x))) N Obs(A/T (ro, x)I(S/T(q', X))) # .
This implies Obs(A||(S/q)) N Obs(A||(S/q)) # @, as required. O

The following definition generalizes the notion of adaptive distinguishing sequence for FSMs [16,24] to the setting of
suspension automata. Whereas an adaptive distinguishing sequence for an FSM is a tree-like test case that distinguishes all
pairs of distinct states of the FSM, an adaptive distinguishing graph for a suspension automaton is a test case that distinguishes
all pairs of incompatible states of the suspension automaton.

Definition 21. Let S be a suspension automaton, let P be a set of states of S, and let A be a test case for P. We say that A
is an adaptive distinguishing graph for P if, for all q,q’ € P with q¢ ¢/, A distinguishes q and q’. Test case A is an adaptive
distinguishing graph for S if it is an adaptive distinguishing graph for the set of all states of S.

Just like there are FSMs without an adaptive distinguishing sequence, there are suspension automata for which no adap-
tive distinguishing graph exists. This is the case for the suspension automaton from Fig. 5. We cannot construct an adaptive
distinguishing graph by choosing the root node to be an output state, since states 1 and 3 cannot be distinguished, as they
both go to state 2 with their single output transition y. The root also cannot be an input state for input a or b. After q,
states 1 and 2 both reach state 1, and after b, states 2 and 3 both reach state 3.

In the remainder of this article, we present algorithms for constructing an adaptive distinguishing graph for S from a
suspension automaton S, if it exists.

5. Splitting graphs

In this section, we present the concept of a splitting graph, as well as an algorithm for constructing such a graph.
Our algorithm generalizes the algorithm of Lee and Yannakakis [24] for computing a splitting tree for an FSM. In the
next section, we will show how to construct an adaptive distinguishing graph by extracting its parts from the splitting
graph. An adaptive distinguishing graph that distinguishes all incompatible state pairs, is only guaranteed to be found, if
some additional requirements on the splitting graph construction are satisfied. We will delay the discussion of adaptive
distinguishing graphs to the next section, and focus on splitting graphs first.

We will first give the definition of a splitting graph, and the outer loop of our algorithm for constructing it. Then we
define when a leaf node of a splitting graph is splittable (i.e. when child nodes can be added), and show that a splittable
leaf exists whenever some leaf contains incompatible states. After that, we explain how to construct the child nodes for
splittable leaves.

5.1. Splitting graph definition

A splitting graph for suspension automaton S is a directed graph in which the vertices are subsets of states of S, there
is a single root vertex, equal to the set of all states of S, and each internal vertex is the union of its children. We require
that, for each edge (v, c) of the splitting graph, ¢ is a proper subset of v; this implies that a splitting graph is a DAG. We
associate a test case W (v) to each internal vertex v and require a tight link between the observations of W (v) and the
children of v: each observation o has one child c that contains all states enabling o. As we have |c| < |v|, this means that,
after following any trace o from test case W (v), the states v \ ¢ have been distinguished from the states c.

Definition 22. A splitting graph for suspension automaton S =(Q, T, qp) is a triple Y = (V, E, W) with

e QecVCPQ)\{¥
e ECV x V such that
1. Q is the only root of Y,
2. (v,w)eE = vDw,and
3. v einternal(Y) = v = JPost(v).

10
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e W :internal(Y) — Eccs is a witness function such that, for all internal vertices v, Aw () is a test case such that:
Vo € Obs(Aw (v)), Ic € Post(v) : enabled(c, o) = enabled(v, o).

A splitting graph is complete if, for each leaf I, the states in [ are pairwise compatible, i.e. O(I). A splitting graph that is not
complete is called incomplete.

Algorithm 2 shows the main loop for constructing a splitting graph for a given suspension automaton. The idea is to
start with the trivial splitting graph with just a single node, and then repeatedly split leaf nodes, i.e. add child nodes,
until all leaves only contain pairwise compatible states. This means that incompatible states are in different leaves when
the algorithm terminates. Since nodes in a splitting graph are finite sets of states, and children are strict subsets of their
parents, Algorithm 2 will terminate after a finite number of splits.

Input: A suspension automaton S =(Q, T, qo)

Output: A complete splitting graph for S
1Y:=({Q},9,1); // here 1 denotes the empty function
2 while 3l € leaves(Y) : =< (1) do
3 Y :=splitnode (S,Y);
4 end
5 return Y;

Algorithm 2: Constructing a splitting graph.

5.2. Splitting conditions

Before we elaborate on the algorithm for the function splitnode, we first explore what conditions should hold for a
leaf | to be splittable. The formal definition of these conditions will be given below in Definition 25.

Suppose we are in leaf | and a label pu occurs during our state identification experiments. If we are lucky, w is an output
label that is enabled in a subset ¥# C P C I of states from I In this case, observing p allows us to distinguish states in P
from states in [\ P. Otherwise, it may occur that all p-transitions from I lead to states from an internal node v, i.e. a node
that has already been split. If this occurs, we may split [ in the same way v was split. We call such a split an induced split.

Definition 23. Let Y be a splitting graph for suspension automaton S. Let v be an internal node of Y, P a set of states of S,
and p € L, such that P after p C v. Then the induced split of P with x to v is:

I1(P, w, v) = {(c before ;) N P | c € Posty (v)} \ {#}.

In particular, the states of | can be split for some label w if the reached node is a least common ancestor of | after . An
internal node v is least common ancestor for a set of states P if it contains P but none of its children does.

Definition 24. Let Y be a splitting graph for suspension automaton S and let P be a set of states of S. An internal node v
of Y is a least common ancestor of P if P C v and, for all ¢ € Post(v), P ¢ c. We write LCA(Y, P) for the set of least common
ancestors of P contained in Y.

Note that we can compute the set of least common ancestors for any set P by a single pass over the splitting graph.

At any point during our state identification experiments, we will either perform a specific input or wait for the SUT to
perform any output. Correspondingly, during construction of the splitting tree, we want to split leaf nodes either on a single
input or on all outputs. The next definition and lemma show that we may always perform such a split. Note that below,
and also later in the splitting algorithm, we view the leaf | as the set of states from the automaton S, so e.g. out(l) denotes
the output transitions enabled in the states of leaf I.

Definition 25. Let Y be a splitting graph for suspension automaton S.
1. Aleaf | of Y is splittable on output if

Vx € out(l) :(3q €1: x ¢ out(q)) v LCA(Y,l after x) # &

2. A leaf | of Y is splittable on input if
Jda ein(l) : LCA(Y,l aftera) # ¢
A leaf | of Y is splittable if it is splittable on output or splittable on input.

11
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Lemma 26. Each incomplete splitting graph has a splittable leaf.

Proof. Let Y be an incomplete splitting graph for suspension automaton S = (Q, T, qg). Since Y is incomplete, there is at
least one leaf that contains a pair of incompatible states. By Lemma 10, we have that for all states q,q’ of S, ¢ q’ iff (q,q)
is an invalid state of S||S. Using Algorithm 1, we may therefore compute the set of pairs of incompatible states of S, and
functions strategy and rank on this set. Let [ be the leaf node that contains a pair of incompatible states q, q’ for which the
value rank(q, q") is minimal. We claim that [ is a splittable leaf of Y. There are three cases:

1. Suppose rank(q,q’) = 0. Then, by Lemma 7(1), (g,q’) is a blocking state of S||S. This implies that out(q) N out(q") = @.
But this means that, for each output action x, either x ¢ out(q) or x ¢ out(q’). Therefore, [ can be split on output.

2. Suppose rank(q,q’) > 0 and strategy(q,q’) = a € I. Then, by Lemma 10 and Lemma 7(2), both q and q’ enable input a
and, writing r =T(q,a) and ' = T(q’,a), we have r¢ 1, {r,r'} C 1l after a, and rank(r,r")) < rank(q, q’). Since none of
the leaves contains a pair of incompatible states with a rank value smaller than (q, q’), we know that Y does not have
a leaf node that contains both r and r’. But this implies that LCA(Y,[ after a) # @, and so [ can be split on input.

3. Suppose rank(q,q’) > 0 and strategy(q,q’) = 6. Let x € out(l). If there exists an s €[ such that x ¢ out(s) then we may
split on output. Otherwise, both q and g’ enable output x. Write r = T(q, x) and ' = T(¢’, x). Then {r,r’} C I after x and
r¢r’. By Lemma 10 and Lemma 7(2), rank(r,r’) < rank(q, q’). Since none of the leaves contains a pair of incompatible
states with a rank value smaller than (q, q’), we know that Y does not have a leaf node containing both r and r’. But
this implies that LCA(Y, 1 after x) # ¥, so | can be split on output. O

5.3. Splitting graph construction

Based on the condition of Definition 25 that holds, we assign children to splittable leaf nodes, and update the witness
function. This is worked out in the function splitnode of Algorithm 3. The algorithm chooses nondeterministically be-
tween a split on output or a split on input, if both are possible. Such a choice is denoted using Dijkstra’s syntax for guarded
commands [10], with the guards on lines 5 and 16, and their respective statements on lines 6-15, and 17-20.

Input: A suspension automaton S = (Q, T, qo)

Input: An incomplete splitting graph Y = (V, E, W) for S
Output: A splitting graph Y’ that extends Y with additional leaf nodes

1 Function splitnode (S,Y):
2 | := a splittable leaf of Y;
3 C:=0;
4 F:=0;
5 if [ splittable on output —
6 foreach x € out(l) do
7 if 3q €1:x ¢ out(q) then
8 C :=CU {enabled(l, x)};
9 F:=F+x.0;
10 else
1 Let v € LCA(Y, 1 after x);
12 C:=CUII(,x,v);
13 F:=F4+xW();
14 end
15 end
16 [1 I splittable on input —
17 Let a € in(l) with LCA(Y, ! after a) # ¥;
18 Let v € LCA(Y,I after a);
19 C:={dU(\enabled(,a)) |d eI, a,v)};
20 F:=a.W();
21 fi
22 return (VUC,EU{(l,c)|ceC}, WU {l— F});

Algorithm 3: Splitting a leaf node of a splitting graph.

If a leaf | is split on output, then a child is added for each output x € out(l). If enabled(l, x) #1, then we add enabled(l, x)
as a child, as those are the only states from which x can be observed. We also add (i.e. by using the + operator from CCS)
the term x.0 to the witness of I, as observing x distinguishes states in enabled(l, x) from states in [\ enabled(l, x).

If enabled(l, x) =1, then observing x will not distinguish any states. In this case, since leaf | is splittable on output, there
isavelLCA(Y,I after x), which means that some states of [ after x are distinguished by the witness W (v). Hence, by taking
output x, followed by W (v), some states of | are distinguished. Therefore, we add x.W (v) to the witness of I, and split [ in
the same way v was split using the induced split.

If I is splittable on some input a, then Algorithm 3 also uses an induced split to obtain the children for I. Since there
exists some v € LCA(Y, 1 after a), at least two states of | may be distinguished by the witness constructed for v, after taking
input a. To each element of the induced split, we add all the states not enabling a. If we would not do this, Algorithm 3
could assign the empty set as children to a splittable leaf, so that it would remain a leaf. As a consequence, Lemma 29 and
also Corollary 30 would then no longer hold. This will be illustrated by Example 28.
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{1,2,3,4}
x0+y.0 {1234}
X.(x.0+ y.a.(x.0 +
y.0)) + y.a.(x.0+ y.0)
X y
{1,2,3} {1,4}
a.(x.0 + y.0) x.0+y.a.(x.0+y.0)
{1,4} y {1,2}
x.0+y.a.(x.0+y.0) a.(x.0 + y.0)
(13) X .
{2,3} X.(x.0 + y.a.(x.0 + {4}
y.0)) +y.0

0{{14}} X {34}
x.0+y.0
3) m Y

Fig. 6. Splitting graph for the suspension automaton of Fig. 1 (left), where we shorten all CCS expressions 0+ F to F, and an adaptive distinguishing graph
for the suspension automaton of Fig. 1 (right), annotated with current state sets P, as used in Algorithm 4.

{1,2,3,4,5,6,7,8}

a PN

L y.0+20
1 4 z /5\ 7
N 1,2,7) (3.4,5,6)
x.(x.0 + {8} a.(x.0 +
y z j\ X .0 +2.0)
Y,

y.0+2.0)

D=()=()=( /) /1
{1.2}

{7} aa.(x.0+ {5} {6}
X y y.0+20)

Fig. 7. A suspension automaton (left), and its incomplete splitting graph (right), when replacing line 19 of Algorithm 3 by C :=TI1(l, a, v).

Example 27. We compute the splitting graph of the suspension automaton from Fig. 1, using Algorithm 2, and show the
result in Fig. 6(left).

For the root node {1, 2, 3,4}, we observe that state 4 does not enable x, while states 2 and 3 do not enable y. Hence,
the root is split on output, gets children {1, 2, 3} and {1, 4}, and witness x.0 + y.0.

Node {1, 2, 3} can be split on input a, as states 1 and 2 enable a, and since the root node is an LCA of {1, 2, 3} after a:
from T(1,a) =3 and T(2, a) =4, we obtain that the root node is an LCA, since {3,4} € {1,2, 3,4}, but {3,4} ¢ {1,2,3}, and
{3,4} ¢ {1, 4}. The induced split is {{1}, {2}}. We then need to add state 3 to both sets, because state 3 does not enable q,
so node {1,2,3} gets children {1,3} and { 2,3}. Prepending a to the witness of the root node gives us witness a.(x.0 + y.0) for
{1,2,3}.

Node {1, 4} can be split on output. As state 4 does not enable x, we only need to find an LCA for {1, 4} after y = {1, 2},
which is the previously split node {1, 2, 3}. For x we have witness x.0, and for y we use the witness of {1,2,3}, so the
witness for {1,4} is x.0 + y.a.(x.0 4+ y.0).

Next, node {1,3} can be split on output using {1,4} as LCA for x. Node {2,3} does not need to be split, as we have 2<3.
All other leaves are singletons, so we have obtained a complete splitting graph.

Example 28. Fig. 7 shows that using only the induced split as children, for splitting a leaf on input, results in an incom-
plete splitting graph. Consider the suspension automaton of Fig. 7(left). The construction of the splitting graph shown
in Fig. 7(right) goes as follows. The root node {1,2,3,4,5,6,7,8} can be split on output, as each state only enables
one of the three outputs x, y, and z: we obtain children {1,2,7}, {8}, and {3,4,5,6}. Leaf {1,2,7} can be split on
output, as {1,2,7} after x = {1, 2,8} shows that we can use the root node as LCA. Leaf {3,4,5,6} cannot be split on
output as {3,4,5,6} after z= {3,4,5,6}, so there exists no LCA for {3,4,5,6} after z. It can be split on input a as
{3,4,5, 6} after a ={7, 8}, so we can use the root node as LCA. Then I1({3,4,5,6},a,{1,2,3,4,5,6,7,8}) = {{5},{6}}, so
these are added as children. It remains to split {1,2}, as states 1 and 2 are incompatible: a test case with observations
{azzax, azzay} distinguishes 1 and 2. Leaf {1,2} cannot be split on output, as {1, 2} after x = {1, 2}, so no LCA exists. For
input a we find that {1, 2} after a = {3, 4}, and {3, 4, 5, 6} is an LCA. However, I1({1, 2}, q, {3,4,5,6}) =, as both 3 and 4
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are not contained in any child of {3, 4,5, 6}. Hence, we obtain Post({1,2}) = ¥, which means by definition that {1,2} is a
leaf. Algorithm 2 will keep trying to split {1, 2} indefinitely, and will hence not terminate.

Lemma 29. Algorithm 3 returns a splitting graph Y’ for S, when given some splitting graph Y, such that one leafl of Y has become an
internal node in Y’.

Proof. The input of Algorithm 3 is a splitting graph Y for S. All the algorithm does is to take a single leaf node [, add
children C to it, and extend the evaluation function W for some witness A to I. This means that in order to prove that
Algorithm 3 returns a splitting graph, it suffices to show that (a) for allde C, @ cd Cl, (b) I=JC, (c) A is a test case, (d)
Yo € Obs(A), 3c € C : enabled(c, o) = enabled(l, o), and (e) C # @.

To prove (a) we inspect the three places in the algorithm where a new element d was added to the set C of children of
I: line 8, line 12 and line 19:

e Line 8: In this case x € out(l) and there exists a q € such that output x is not enabled from state g. This implies
¢ C d =enabled(l, x) C 1, as required.

e Line 12: In this case, let d € T1(l, x, v) for some v € LCA(Y, [ after x). By definition of I1, # C d and there is a ¢ € Posty (v)
such that d = (c before x) N 1. Note that this implies d C I. By definition of LCA, there exists a q €| after x with q ¢ c.
Because q €I after x, there exists a state r €[ such that T(r,x) = q. Since q ¢ ¢, we know that r ¢ c before x. Hence
@ Cd Cl, as required.

e Line 19: In this case, d =e U (I \ enabled(l, a)), where e € T1(l,a, v) and v € LCA(Y,! after a). By definition of IT, # # e
and there is a ¢ € Posty (v) such that e = (c before a) N 1. This implies ¥ C d C I. By definition of LCA, there exist q €
I after a such that q ¢ c. Because q €[ after a, there exists a state r € [ such that T(r,a) =q. Since q ¢ ¢, we know that
1 ¢ ¢ before a. This means r ¢ e and thus r ¢ d. Hence ¥ C d C [, as required.

For proving (b), it remains to show that I C [ C. Choose q €l. We consider two cases:

e A split on output was performed (line 5-15). Since S is a suspension automaton, there is at least one output x that is
enabled in q. If there is another state in | that does not enable x then enabled(l, x) is added to C and thus q € | JC, as
required. Otherwise, sets (c before x) NI are added to C, for ¢ € Posty (v) and some v € LCA(Y, ! after x). Let r =T(q, X).
Since [ after x C v and v = [JPosty(v), there is some c € Posty(v) with r € c. This implies q € (c before x) Nl and
therefore q € | C, as required.

e A split on input was performed (lines 16-20). In this case, the sets e U (I \ enabled(l, a)) are added to C, for e € I1(l, a, v),
some input a and for v € LCA(Y,! after a). If state q does not enable input a then state q is in each set that is added to
C, and thus q € |JC, as required. Now suppose q enables input a. Let r = T(q, a). Then r €[ after a and thus r € v. Since
v = JPosty (v), there is some c € Posty (v) with r € c. Therefore, q € ¢ before x) Nl € T1(l, a, v), and therefore q € | JC, as
required.

For proving (c) we again consider the two cases of splitting on output or input:

e If a split on output was performed, then root of A is an output state, as each observation has an output prefix: on line
9 or 13 either x.0 or x.W (v) for some v € LCA(Y,! after x) are added to A. Since 0 is a test case, and Aw ) is a test
case since v is an internal node of Y, A is also a test case.

o If a split on input was performed, then the root of A is an input state, as it enables a single input according to line 20:
A = Aqwv) for some v € LCA(Y,I after x). As Aw () is a test case since v is an internal node of Y, A is also a test
case.

For proving (d), we inspect the three places in the algorithm where children were added to C, and where witness
observations were added to A. We will show that for each added observation o, a child d constructed at the same place
can be used to prove enabled(d, o) = enabled(l, o).

e On lines 8 and 9, a child d = enabled(l, x) was added to C, and observation x was added to A. Hence, for x € Obs(A) we
have child d with enabled(d, x) = enabled(l, x).

e On lines 12 and 13, children d € T1(l, x, v) are added to C, and observations xo are added to A for all o € Obs(Aw (v)),
using some v € LCA(Y, I after x). Since v is an internal node of Y, there is a ¢ € Post(v) such that enabled(c,o) =
enabled(v, o). If c before x N1 =@, then it holds that (I after x) Nc =@, so from | after x C v (by v € LCA(Y,I after x) it
then follows that enabled(l after x, o) = enabled(l, xo) = (. Hence any d € I1(l.x.v) can be used to show enabled(d, xo') =
enabled(l, xo) as d C I. Else, there is some d € I1(l, x, v) with d = (c before x) NI. Let e =c \ (d after x), and observe
that e N (I after x) = @. From enabled(c, o) = enabled(v, o) and [ after x C v it then follows that enabled((d after x) U
e, o) = enabled((l after x) U (v \ (I after x)),0), so we have enabled(d after x,c) = enabled(l after x, 0’). It follows that
enabled(d, xo) = enabled(l, xo).

e On lines 19 and 20 children d U (I \ enabled(l, a)) for all d € T1(l,a, v) are assigned to C, and observations ac are
added to A for all o € Obs(Aw(v)), using some v € LCA(Y,! after a). Again, since v is an internal node of Y, there
is a ¢ € Post(v) such that enabled(c, o) = enabled(v, o). If | after a N c = ¢, then it follows, with similar arguments
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Fig. 8. Suspension automaton S, for n =3, n =4, and n =5 (output transitions only).

as for lines 12 and 13, that enabled(l after a, o) = enabled(l,ac’) = (. Since enabled(l \ enabled(l, a),a) = @, and hence
also enabled(l \ enabled(l,a),ac) = ¥, we can use any child e from line 19 to show enabled(e,ac) = enabled(l, ac).
Else, there is some d € I1(l,a, v) with d = (c before a) N l. With the same reasoning as for lines 12 and 13, we ob-
tain enabled(d, ac’) = enabled(l,ac’). By again using that enabled(l \ enabled(l,a),ac’) = @, we obtain enabled(d U (I \
enabled(l, a)),ac’) = enabled(l, ac’).

For proving (e) we consider the two cases of splitting on output or input:

e Suppose an output split is performed. The body of the for-loop on lines 7-14 is then executed at least once, since the
algorithm only accepts suspension automata, so each state is non-blocking, and consequently |out(l)| > 1. Hence, sup-
pose that the for-loop is executed for some x € out(l). To prove that C # @, we now need to show that {enabled(l, x)} # ¢
(line 8), and that I1(l, x, v) # @ (line 12), using some v € LCA(Y, after x (line 11).

For line 8, we use from (a) that ¥ C enabled(l, x), so {enabled(l, x)} # @.

For line 12, we need to prove that there exists a c € Post(v) such that (c before x) Nl # ). Because there is some
v € LCA(Y, ! after x), we have | after x C v. Since x € out(l), there is a q €[ after x, so ¢} C q before x C I. Because v =
(J Post(v), there is a c¢ € Post(v) with q € c. Hence, q before x C ¢ before x. It then follows that (c before x) N1 # @.

e Suppose an input split is performed for some input a. We then have a c € Post(v) with (c before a) N1 # @, for the
same reasons as given for line 12. Consequently, I1(l, a, v) # @. Adding the (possibly empty) set | \ enabled(l, a) to each
element of I1(l, a, v) results in a non-empty set C. 0O

Corollary 30 implies that our splitting graph construction algorithm will terminate. It follows by repeated application of
Lemma 29.

Corollary 30. Algorithm 2 returns a complete splitting graph for S.

In the case of FSMs, the algorithm of Lee and Yannakakis [24] constructs a splitting tree in polynomial time, because
children of a node form a partition of that node. Our splitting graphs for suspension automaton do not have this property.
Clearly, a splitting graph for a suspension automaton with n states cannot have more than 2" nodes, as the set of nodes is a
subset of P(Q) \ {#} by Definition 22. For n € N with n > 3, consider suspension automaton S, = ({1,...,n}, Tp, 1), where
T, consists of the following output transitions:

Thn={(n,n, DH}U{(s,x,s+1)|se{l,...,.n—1},xe{1,...,n—1},s £x}.

Fig. 8 depicts suspension automata S, for n = 3,4,5. We can prove Lemma 31 by showing that S, has a splitting graph
with 2"=1 nodes.

Lemma 31. Let S be a suspension automaton with n states. Then a splitting graph returned by Algorithm 2 has O(2") nodes. This
bound is tight in the sense that, for each n, there exists a suspension automaton with n states for which the returned splitting graph has
®2") nodes.

Proof. We already showed that a splitting graph has at most an exponential number of states. We will now prove that
Algorithm 2 returns a splitting graph with exactly 2"~! nodes for suspension automaton S, with n > 3.

We first note that different states are pairwise incompatible, since we can easily construct a test case identifying any of
the states: observing output n, after having observed i (other) outputs, means that the test case was executed from state
n — i. Consequently, if a node of the split graph contains more than 1 state, it has children.

The root node is split on output, so it has children for all size n — 2 subsets of {1,...,n — 1}, and it has child {n}. We
now show that the split graph has nodes for all non-empty subsets of {1,...,n — 1}, except trivial subset {1,...,n—1}.

Suppose we have a non-trivial subset s of {1,...,n — 1} with at least two elements. For all x € s state x does not enable
output x, but all other states of s do, so we obtain child s\ {x} by a split on output x. By repeatedly removing a single
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element by splitting on that element, we can show that the split graph contains a node for any nonempty, non-trivial
subset of {1,...,n — 1}. There are 2"~! — 2 nonempty, non-trivial subsets of {1,...,n — 1}. In addition, the split graph also
has nodes {1, ...,n} and {n}. Hence, in total the splitting graph has 2"~! nodes. O

6. Extracting test cases from a splitting graph

Algorithm 4 retrieves CCS terms, of which the associated automata are test cases that distinguish states. The algorithm
composes several CCS terms while keeping track of the current set of states. Each CCS term ensures that one state is
distinguished from the rest because it lacks some output. We compute the current states for the leaves of the CCS term,
and attach another CCS term to this leaf, if the current set of states consists of some incompatible pair of states. Hence in
total, the automaton of the resulting CCS term distinguishes multiple pairs of states.

Input: A suspension automaton S = (Q, T, qo)
Input: A complete splitting graph Y = (V,E, W) for S
OQutput: A CCS term F such that, for each o € Obs(Af), &(Q after o).

1 compDG (S,Y,Q,0);

2 where

3 Function compDG (S,Y, P, F):

4 if &(P) then

5 return F

6 else

7 if F =0 then

8 Let v e LCA(Y, P);

9 return compDG (S,Y, P, W(v))
10 else if F = u.F1 then
11 return f.compDG (S, Y, P after i, Fq)
12 elseif F = F; + F, then
13 return compDG (S, Y, P, F1)+ compDG (S,Y, P, F3)
14 end
15 end

Algorithm 4: Retrieving a test case from a splitting graph.

Example 32. We construct the adaptive distinguishing graph for the suspension automaton from Fig. 1, using the splitting
graph from Fig. 6, which also shows the result of this example. Algorithm 4 starts with P = {1, 2, 3,4} and F = 0. Hence,
we search for a least common ancestor for Q. This will be the root node of the splitting graph, with witness x.0 + y.0.

The function is then called with F = x.0 + y.0, and will result in two recursive calls of the function on line 13 for
P=1{1,2,3,4} and F =x.0, and P ={1,2,3,4} and F = y.0 respectively. In the first case, the condition of line 10 holds,
and the function is called for P = {1, 2, 3, 4} after x={1,4} and F =0, which means that lines 8-9 are executed next, using
the only LCA for {1,4}, namely {1,4}.

The algorithm will then do some more recursive calls, checking whether the witness of {1,4} must be extended further
to distinguish more states. This will not be the case, because only singleton sets are reached at the leaves of the witness,
and <&{q} holds for any state g, since < is reflexive. Hence, we need to prepend x to the witness of {1,4} to obtain the left
term of the + operator of the resulting CCS term of the algorithm: x.(x.0 + y.a.(x.0 + y.0)).

As P ={1,2,3,4} after y = {1, 2}, its LCA {1,2,3} will be used to complete the construction of the right term of the +
operator of the result.

The associated automaton of the resulting CCS term is an adaptive distinguishing graph for the suspension automaton,
as it distinguishes all incompatible state pairs.

Lemma 33. Algorithm 4 terminates and outputs a CCS term F that denotes a test case satisfying, for each o € Obs(Af), ¢(Q after o).

Proof. Let S=(Q,T,qo) be the suspension automaton, and Y the splitting graph for S, that we provide to Algorithm 4.
We note that all computations are atomic, or reducing the size of the CCS expression before making a recursive call, except
line 8. However, LCAs can be computed straightforwardly: start at the root, if it is not an LCA, continue with the children
containing the set of states the LCA is computed for, and repeat. This procedure always succeeds in finding an LCA, due
to the following argument. Any set of states, with at least two incompatible states, has a least common ancestor in the
splitting graph, as the leaves of Y are sets of mutually compatible states, its root node contains all the states from S, and
all the states of a non-leaf are contained in at least one of its children, by Definition 22.

By construction, Algorithm 4 follows the labels of each o € Obs(Aw (v)) for nodes v obtained on line 8. By the property
from Definition 22 that enabled(c, o) = enabled(v, o), and ¢ C v, we see that |P| > |P after o|, so after visiting line 8 at
most |Q | — 1 times, set P will only contain mutually compatible states. O

Algorithm 4 does not always construct an adaptive distinguishing graph for all incompatible state pairs. To ensure this,
it must be able to select an injective splitting node as LCA on line 8. This will guarantee that a transition never maps two
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incompatible states to two compatible states (which cannot be distinguished anymore), or that an input is used that is not
enabled in some states.

Definition 34. Let S = (Q, T, qo) be a suspension automaton, P C Q a set of states, and u € L a label. Then u is injective
for P if

¥q.q €eP:qpq = (T(q, ) L AT@ ) L AT(q, )P T, 1)
v e 0\ (out(q) Nout(q)))

Analogous to the result of [24], Theorem 36 asserts that if an adaptive distinguishing graph exists our algorithms will
find it, provided there are no compatible states. This last assumption is motivated in Example 37. We first need to establish
the following lemma.

Lemma 35. Let S be a suspension automaton such that all pairs of distinct states are incompatible. Suppose A = (Q, T, qo) is an
adaptive distinguishing graph for a set P of states of S. Suppose that T (qo, |t) = q1, for some label . and state q1. Then w is injective
for P and A/q, is an adaptive distinguishing graph for P after u.

Proof. Since A is an adaptive distinguishing graph for P, A is a test case for P. Therefore, by Lemma 16, A/q is a test case
for P after . In order to show that w is injective for P, suppose q,q’ € P with g q’. We need to prove that

T@ W IATQ, w0 I AT@Q WP T@, 1) Ve O\ (out(q) Nout(q))
We consider two cases:

e 1€l Since A is a test case for P, it is a test case for S/q and for S/q’. Since qo is an input state, in(qo) < in(q) and
in(qo) € in(q’). Thus T(q, ) | and T(q’, i) }. Since A is an adaptive distinguishing graph for P and q¢ q’, A distin-
guishes q and q'. This means that Obs(A|(S/q)) N Obs(A||(S/q")) = @. Thus, by Lemma 14(2), Obs(A/q1|1(S/T(q, £))) N
Obs(A/q111(S/T(q’, m))) = ¥. But this is only possible when T(q, ) # T(q', ;). Since we assume all distinct pairs of
states of S are incompatible, T(q, 1) T(q’, it), as required.

e e 0. 1If u¢out(q) Nout(q’) the right disjunct of the formula we need to prove holds, and we are done. So we may
assume (€ out(q) Nout(q’). Then T(q,u) | and T(q’, ) |. Since A is an adaptive distinguishing graph for P and
q¢ q', A distinguishes q and q’ and thus Obs(A||(S/q)) N Obs(Al||(S/q’)) = @. By Lemma 14(3), Obs(A/q1||(S/T(q, i))) N
Obs(A/q111(S/T(q’, m))) = ¥. But this is only possible when T(q, ) # T(q', ;). Since we assume all distinct pairs of
states of S are incompatible, T(q, u)< T(q', 1), as required.

The above case distinction shows that, for all q,q’ € P with q¢ q’, T(q, ) | and T(q’, ) |,

Obs(A/q11l(S/T(q, w))) NObs(A/q1lI(S/T(q’, w))) = 2. (1)

Now suppose r,1’ € P after i with r< r’. Then, in particular, r # r’. This means there exist q,q' € P with q #q/, T(q, ) =
r and T(q', ) =r'. Since we assume all distinct pairs of states are incompatible, g<¢ q’. But now equation (1) implies
Obs(A/q111(S/r)) N Obs(A/q111(S/r")) = @. This shows that A/q; is an adaptive distinguishing graph for P after u. O

Theorem 36. Let S be a suspension automaton such that all pairs of distinct states are incompatible. Then S has an adaptive distin-
guishing graph if and only if, during construction of a splitting graph Y for S, Algorithm 3 can and does only perform injective splits,
that is, whenever Algorithm 3 splits a leaf | on output, then x is injective for I, for all x € out(l), and whenever it splits a leaf | on input a,
then a is injective for I. Moreover, in this case Algorithm 4 constructs an adaptive distinguishing graph for S, when Y is given as input.

Proof. Let S=(Q,T,qo).

( <= ) Suppose splitting graph Y = (V,E, W) for S has been constructed using injective splits only. Then, for each
internal node v of Y, Ay is a test case for v: inputs performed by the test case Aw(,) will be enabled in all the
corresponding states of S. This means that also the CCS term F computed from Y by Algorithm 4 will correspond to a
test case for the set Q of states of S. Since all the splits in Y are injective, we have that for any pair g, q’ of incompatible
states of S, and for any observation o of A that is enabled in both q and ¢/, the unique state in q after o is incompatible
with the unique state in q’ after o. But since, by construction, Q after o only contains mutually compatible states, for each
observation o of A, we conclude that Ar distinguishes q and q’. Therefore, Ar is an adaptive distinguishing graph for S.

(=) Suppose A= (Q’, T’,qg) is an adaptive distinguishing graph for S.

Let Y be an incomplete splitting graph. We show that Y has a leaf for which an injective split exists.

Assume w.l.o.g. that A is a tree (any DAG can be unfolded into a tree). We associate to each node r of A a height, which
is the length of the maximal path from r to a leaf. Also, we associate to each node of r a set of states from S called the
current set: the current set of q; is Q, and if the current set of state r is P and T’(r, u) =1’ then the current set of ' is
r after ;. Lemma 35 implies that if the current set of r equals P, A/r is an adaptive distinguishing graph for P.

Now, amongst the leaves of Y that contains a maximal number of states, choose a leaf [ that is contained in the current
set P of a node r of A with minimal height. We consider two cases:
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Fig. 9. Theorem 36 fails in presence of compatible state pairs.

e 1 is an input state of A. Then r enables a single input action a. Let T'(r,a) =r’. Then the current set of r’ is P after a
and the height of ' is less than the height of r. By Lemma 35, a is injective for P. By definition of injectivity, a is
also injective for subset [ of P. Since all pairs of distinct states of S are incompatible, the number of states in [ after a
equals the number of elements of . Moreover, since [ after a is contained in P after a, and amongst the leaves of Y that
contains a maximal number of states [ is contained in the current set of a node with minimal height, [ after a is not
contained in any leaf of Y. Thus leaf [ is splittable on input a, and this split is injective.

e 1 is an output state of A. Suppose x € out(l). Then either there is a q €[ such that x ¢ out(q), or the number of states in
[ after x equals the number of elements of [ and [ after x is not contained in any leaf of Y. This means that [ is splittable
on output, with a split that is injective for each output x. O

Example 37. Without the assumption that there are no compatible state pairs, Theorem 36 does not hold. The suspension
automaton S of Fig. 9(left) has an adaptive distinguishing graph, shown in Fig. 9(right), but our algorithm does not find it.
Note that states 2 and 3 are compatible, and also states 6 and 7 are compatible. When we construct a splitting graph for S,
the set of all states {1, 2,3,4,5,6,7,8} will be split on output, resulting in children {1}, {2, 3,4}, {5} and {6, 7, 8}. Now a
split of {2, 3,4} on input a or b is not injective. Similarly, there is no injective split of {6, 7, 8}.

7. Experimental results

We implemented the algorithms presented in this paper in the Haskell language. The software is freely available via
https://doi.org/10.17026/dans-zyz-9gb9.

In our implementation, the splitting graph is constructed as in Algorithm 3, so without requiring injectivity of the used
labels. However, in the construction of the adaptive distinguishing graph by Algorithm 4, we choose on line 8 an LCA which
is injective for the most pairs of states. To speed up computation time, we parallelized some parts; most notably we use
parallelization in searching for LCAs. In our implementation of Algorithm 3, we either prefer splits on output over splits on
input or the other way around. Thus the nondeterministic choice in the guarded command is always resolved in the same
manner, and our results become reproducible. Because preferring splits on output yielded similar or (slightly) better results
than when preferring splits on inputs, we will show the results for preferring splits on output in Table 2.

We applied our implementation to five different case studies: the Transmission Control Protocol (TCP), a vending ma-
chine, a leader election algorithm, the file-synchronization service Dropbox, and a piece of industrial control software called
the Engine Status Manager (ESM). In this section, we first introduce these case studies, then present the outcomes of our
experiments and discuss the results.

7.1. Benchmarks

Even though numerous benchmarks exist for model checking, automata learning and conformance testing, see for in-
stance the VLTS benchmark suite at https://cadp.inria.fr/resources/vits/ and the Automata Wiki at https://automata.cs.ru.nl/
[30], it turned out to be surprisingly difficult to find good LTSs and suspension automaton benchmarks for evaluating our
algorithms. Model checking benchmarks are typically too large to generate a splitting graph, and do not have a clear sepa-
ration of inputs and outputs. Conformance testing benchmarks are mostly FSMs, but the whole point of our research is to
go beyond classical FSMs and relax the conditions of determinism, input enabling and input/output alternation.

Below we describe how we obtained suspension automaton benchmarks for some realistic case studies.

7.1.1. Transmission control protocol

The Transmission Control Protocol (TCP) is a widely used transport layer protocol that provides reliable and ordered
delivery of a byte stream from one computer application to another. We manually constructed a suspension automaton
model that describes the opening and closing of a TCP connection, inspired by the FSM models from [14]. The automaton
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models one side of the communication, i.e. the application using the connection can open/close the connection by sending a
command, or the connection can be closed by the packets received from the other side of the connection. This includes the
acknowledgment messages which are sent by either side upon receiving a packet. The actual data transfer is not included
in the automaton.

7.1.2. Vending machine

ComMA (Component Modeling and Analysis) is a framework that supports model-based engineering (MBE) of high-tech
systems by formalizing interface specifications [21]. In order to illustrate the various features of the ComMA language, [19]
describes the interface of a vending machine that sells three types of drinks (cola, juice, water). Inserted money may be
refused and also returned. The machine contains a finite number of each of the drinks. Drinks can be out of stock and new
drinks may be loaded into the machine. Before ordering, the vending machine needs to be switched on, but this is not
possible if the machine has no drinks. Also, the machine can be out of order due to an internal error.

We constructed a suspension automaton model of the vending machine as follows. First we used TorXakis [37] to gen-
erate an mCRL2 process algebra model [17] from a TorXakis model of the vending machine. Then we used the mCRL2 tool
set [8] to generate an automaton in .dot format. As a final step, we added quiescence self-loops to obtain a suspension
automaton. Actually, we obtained three different suspension automata, via different instantiations of the model parameters:
a machine without any drinks in stock, a machine with 1 cola, 2 water, and 1 juice in stock, and a machine with 2 cola, 3
water and 1 juice in stock.

7.1.3. Leader election algorithm

Fokkink [15] describes a simple echo algorithm with extinction to choose a leader in an undirected network with an
arbitrary topology. Each process in the network carries a unique ID. Processes are connected by channels, through which
they can send messages to each other. Communication in the network is asynchronous, meaning that sending and receiving
of a message are different events. The delay of a message is arbitrary but finite, and messages may overtake each other. In
the echo algorithm with extinction, the process with the largest ID that participates in the election will become the leader,
after exchange of a number of messages.

For this case study, we constructed a mCRL2 process algebra model [17], following the description of the algorithm from
[15]. We generated suspension automata in the same way as for the vending machine. We obtained suspension automata
for two instances of the mCRL2 model: one instance is a network with three nodes, in which one node is connected to
the other two nodes; the other instance is a network with four nodes, in which one node is connected to the other three
nodes. For the three node network we generated a suspension automaton for the case the central node has the highest
value, and for the case another node has the highest value. For the four node network we only considered the first case. In
our suspension automata, sending of messages is considered as an input, and receipt of messages as an output.

7.14. Dropbox

Dropbox is a service for synchronizing files over multiple devices. A TorXakis [37] model was constructed in [39], as a
follow-up on the QuickCheck model of Dropbox of [20]. The model takes into account reading and writing of files at devices,
and synchronization with the Dropbox server by uploading and downloading files. We transformed the TorXakis model
manually to an mCRL2 process algebra model (since automatic conversion did not succeed), and generated a suspension
automaton in the way as explained for the Vending Machine. Besides the setup discussed in [39,20], which involves three
devices, we also constructed a model with four devices.

7.1.5. Engine status manager

In [35], an FSM model, with over 10.000 states, was learned of an industrial piece of software, called the Engine Status
Manager (ESM). During the learning process, testing against the ESM posed a significant challenge: it turned out to be
extremely difficult to find counterexamples for hypothesis models. Initially, existing conformance testing algorithms were
used to find counterexamples for hypothesis models (random walk, W-method, Wp-method, etc.), but for larger hypothesis
models these methods were unsuccessful. However, adaptive distinguishing sequences as in [24], augmented with additional
pairwise distinguishing sequences for states not distinguished by the adaptive sequence, were able to find the required
counterexamples. Therefore, the ESM models are good candidates to show the strength of the adaptive distinguishing graphs
of this paper too.

Of course, applying our adaptive distinguishing graphs directly on the Mealy machine models, would not show our
capability to handle the more expressive suspension automata. We therefore transformed the FSM models in such a way
that they exhibit output nondeterminism. We first split all Mealy i/o transitions in two consecutive transitions i and o, and
added a self-loop output transition “quiescence” (denoting absence of response) to all states only having input transitions,
to make it non-blocking. To ensure determinism, information about data parameters from the ESM was added to the labels
of the Mealy machine in [35]. For our experiments, we removed this information again, resulting in suspension automata
with states with multiple outgoing output transitions.

For performance reasons, we reduced the Mealy machine model with a subalphabet, before applying the transformation
steps described above, i.e. we removed all i/o transitions with i not in the subalphabet. We obtained the 5 subalpha-
bets InitldleSleep, InitldleStandbyRunning, InitldleStandbySleep, InitldleStandbyLowPower, and InitError from the MSc thesis
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Table 1

Benchmark statistics.
Benchmark States Inputs Outputs Transitions Input Output

transitions transitions

TCP 26 7 7 53 25 28
VM-000 269 8 19 687 286 401
VM-121 401 8 20 1020 425 595
VM-231 797 8 22 2012 845 1167
LE-3Center 97 6 8 247 78 169
LE-3Side 147 8 10 364 96 268
LE-4 793 9 11 2906 869 2037
Dropbox-3 752 9 16 1520 641 879
Dropbox-4 5050 11 20 10685 4485 6200
ESM-IISI 1616 15 34 8018 6060 1958
ESM-IISR 2855 26 69 15005 11778 3227
ESM-IISSI 3168 23 65 19308 15525 3783
ESM-IISL 2614 21 61 12958 9933 3025
ESM-IE 2649 14 14 14840 12012 2828

Table 2

Experimental results.
Benchmark  Compatible state Nodes in Depth  Incompatible state Average leaf Weighted

pairs splitting graph pairs not distinguished size average leaf size

TCP 78 (12.0%) 20 4 2 (0.35%) 2.00 2.21
VM-000 1424 (1.98%) 1551 21 412 (0.58%) 2.16 2.13
VM-121 2436 (1.52%) 2558 23 776 (0.49%) 2.20 2.36
VM-231 7202 (1.15%) 4783 23 2488 (0.40%) 2.73 3.12
LE-3Center 284 (3.05%) 493 8 98 (1.09%) 1.05 1.13
LE-3Side 946 (4.41%) 8443 9 202 (0.98%) 1.04 1.06
LE-4 4270 (0.68%) 91577 13 2190 (0.35%) 1.03 1.12
Dropbox-3 1142 (0.20%) 1207 6 1436 (0.25%) 2.57 2.03
Dropbox-4 6652 (0.03%) 9013 8 17738 (0.07%) 2.94 2.84
ESM-IISI 15022 (0.58%) 1121 33 2290 (0.09%) 3.95 2.72
ESM-IISR 11316 (0.14%) 2082 33 4366 (0.05%) 3.67 3.57
ESM-IISSI 22806 (0.23%) 2226 33 7652 (0.08%) 4.37 3.98
ESM-IISL 11220 (0.16%) 1809 33 5840 (0.09%) 3.90 3.79
ESM-IE 370778 (5.29%) 3097 35 35944 (0.54%) 20.93 13.43

of Smeenk [34]. This thesis contains a figure displaying interesting subalphabets based on domain knowledge. Despite
this subalphabet reduction, the resulting suspension automata still have a significant size, ranging from 1616 to 3168
states.

7.1.6. Overview of benchmarks

Table 1 summarizes some basic information about the benchmark suspension automata that we constructed, e.g. number
of states and transitions. All case studies, except for TCP, are parametrized in some way, and altogether we obtain 14
suspension automata.

7.2. Experimental results

Table 2 shows the results of the experiments. We computed several metrics on the suspension automata, their splitting
graph, and the resulting adaptive distinguishing graph, to explore the suitability of using these algorithms for test generation.
For each benchmark the following metrics were computed:

e The number of pairs of compatible states of the suspension automaton. We only count pairs (q,q’) such that g #q’, as
a state is always compatible with itself. The associated percentage gives the proportion between this number and the
total number of pairs of distinct, compatible states.

e The number of nodes in the splitting graph.

e The depth of the adaptive distinguishing graph, i.e. the length of the longest trace (i.e. observation) of the graph.

e The number of incompatible state pairs which enable an observation of the adaptive distinguishing graph that does
not distinguish them. The associated percentage gives the proportion between this number and the total number of
incompatible state pairs.

e The average size of the leaf nodes of the adaptive distinguishing graph. Here the size of a leaf is defined as the number
of automaton states that enable the (unique) observable trace o to that leaf, so |{q € Q | q after o # 0}|.
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e The weighted leaf size of nodes of the adaptive distinguishing graph, where the size of each leaf is multiplied by the
probabilistic weight of the unique observation that leads to it. Specifically, we define the weighted leaf size of some
adaptive distinguishing graph A, with initial state q(’)‘, for suspension automaton S, with states Q, as:

2o cobscayWeight(o, Q,qd) x |{q € Q | q after o # ¥}

where:
weight(e, Q',q) =1
weight(up, Q',q) =

m x weight(p, Q' after w, q after ) if e Lo
weight(p, Q' after i, q after (1) otherwise

Table 2 shows that some benchmarks, in particular TCP, LE-3Side and ESM-IE, have a rather high proportion of compatible
state pairs, i.e. state pairs that a tester may not be able to distinguish. Compatibility often occurs in situations where two
states g and ¢’ have disjoint sets of inputs and a self-loop with the “quiescence output”, indicating no regular outputs are
enabled. In these cases, the singleton set {(q,q’)} constitutes a trivial compatibility relation.

Despite Lemma 31, which says that the number of nodes of the split graph may grow exponentially, the size of the
splitting graphs for our benchmarks is roughly of the same order of magnitude as the size of the corresponding suspension
automata, except for the leader election benchmarks. Of course, based on our limited data we may not conclude that there
is no exponential growth of the split graph, but at least for the benchmarks that we considered split graph explosion is not
a problem. Note that the number of states of the leader election and Dropbox suspension automata grows exponentially in
terms of the number of nodes in the network.

We have not been able to prove a bound on the length of the longest path in the adaptive distinguishing graphs that we
construct, but for all our benchmarks the length of the longest observable trace (i.e. the depth) of the adaptive distinguishing
graph is always a few orders of magnitude smaller than the number of states in the corresponding suspension automaton.
At least 99% of the pairs of incompatible states are distinguished by the adaptive distinguishing graphs, and the (weighted)
average leaf size is small. The weighted average leaf sizes are close to or smaller than the average leaf sizes. The latter
means that the bigger leaves are deeper into the adaptive distinguishing graph, so if all outputs happen equally often, the
smaller leaves will be reached more often than bigger leaves. All in all, the numbers from Table 2 indicate that our adaptive
distinguishing graphs, although constructed from a non-injective splitting graph, can be very effective in testing.

Fig. 10 shows the leaf sizes of the five ESM benchmarks. The x-axis displays all leaf sizes, and a column of some ESM
benchmark shows the number of leaves of this size (y-axis). We note that a leaf includes states compatible to some of the
automaton states. Additionally, states may enable multiple observations, and hence a single state may increase the size of
several leaves. We see that the majority of leaves are of small size, while leaves of larger size occur less frequently. The
benchmark with subalphabet InitError has the most large leaves, which could explain the adaptive distinguishing graph’s
relatively large number of pairs of incompatible states not distinguished.

8. Conclusions and future work

We studied the state identification problem for suspension automata, generalizing results from [24]. We presented al-
gorithms to construct test cases that distinguish all incompatible state pairs, if possible, or many, if not. Our experiments
suggest that this approach is quite effective. We see several directions for future research.

Perhaps closest to our research is the work of El-Fakih et al. [12,13] on deriving their adaptive distinguishing test cases
for observable NDFSMs. It would be interesting to compare our algorithm with the implementation described in [13] on
a shared set of benchmarks. The experiments in [13] focus on randomly generated benchmarks for which an adaptive
distinguishing test case exists, and unlike our definition on adaptive distinguishing graphs, they do not allow compatible
state pairs. It should not be difficult, however, to adjust the algorithms of [12,13] to also generate test cases in settings with
compatible state pairs. In all the practical case studies that we considered the models contained compatible state pairs.

An open problem is to give tight bounds on the height of the adaptive distinguishing graphs that our algorithm con-
structs. For FSMs, a quadratic bound is known [36,24] for the height of their adaptive distinguishing sequences, and an
example by Sokolovskii [36] shows this is tight. El-Fakih, Yevtushenko and Kushik [12] generalize the example of Sokolovskii,
presenting a family of observable NDFSMs with n states, for which any adaptive distinguishing test case has a height of at
least 2" —n — 1. This result extends to our setting, as we generalize from NDFSMs. However, the examples of [36,12] use an
exponential number of inputs and transitions. Therefore, in the examples of [12], the height of the adaptive distinguishing
test case is still linear in the size of the NDFSM. Although the splitting graph that we generate may be exponential in the
size of the underlying LTS, it is possible that the minimal height of the adaptive distinguishing graph that is generated from
this splitting graph is linear (or polynomial) in the size of the LTS.

If our algorithm returns an adaptive distinguishing graph that does not distinguish all incompatible state pairs, the
question remains how to efficiently distinguish these remaining states. Graphs distinguishing pairs of states can be obtained
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Fig. 10. Leaf sizes for ESM benchmarks.

directly from our splitting graph, or by computing them as in [5], but distinguishing all remaining pairs results in a large
overhead compared to the small size of the adaptive distinguishing graph we obtained in our experiments. On the one hand,
we can optimize the obtained adaptive distinguishing graph by improving the splitting graph’s quality by applying heuristics
that optimize the choice of labels for splitting leaves. On the other hand, we can use causes for states not being distinguished
to construct an adaptive distinguishing graph that distinguishes all or at least many of the not distinguished states.

Though our distinguishing graphs significantly improve the size of an n-complete test suite, the problem to compute
good access sequences for such a test suite requires further research as well [5]. Due to the output nondeterminism of
suspension automata, we need an input-fairness assumption, to ensure that all outputs enabled from a state may eventually
be observed. However, for access sequences we rather have a more adaptive strategy, in the spirit of [6], that reacts on
the outputs as produced by the tested system right away. Adaptively choosing access sequences means that for reaching
the same state, different access sequences may be used. However, the proof of n-completeness of a test suite depends on
using one unique access sequence for accessing the same state. It remains an open problem whether using different access
sequences breaks n-completeness or not.

Finally, further experimental evaluation of our approach, and in particular the added value during testing, is an obvious
direction for future research.
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