48,856 research outputs found

    A Unified Model for Evolutionary Multiobjective Optimization and its Implementation in a General Purpose Software Framework: ParadisEO-MOEO

    Get PDF
    This paper gives a concise overview of evolutionary algorithms for multiobjective optimization. A substantial number of evolutionary computation methods for multiobjective problem solving has been proposed so far, and an attempt of unifying existing approaches is here presented. Based on a fine-grained decomposition and following the main issues of fitness assignment, diversity preservation and elitism, a conceptual global model is proposed and is validated by regarding a number of state-of-the-art algorithms as simple variants of the same structure. The presented model is then incorporated into a general-purpose software framework dedicated to the design and the implementation of evolutionary multiobjective optimization techniques: ParadisEO-MOEO. This package has proven its validity and flexibility by enabling the resolution of many real-world and hard multiobjective optimization problems

    A software framework based on a conceptual unified model for evolutionary multiobjective optimization: ParadisEO-MOEO

    Get PDF
    International audienceThis paper presents a general-purpose software framework dedicated to the design and the implementation of evolutionary multiobjective optimization techniques: ParadisEO-MOEO. A concise overview of evolutionary algorithms for multiobjective optimization is given. A substantial number of methods has been proposed so far, and an attempt of conceptually unifying existing approaches is presented here. Based on a fine-grained decomposition and following the main issues of fitness assignment, diversity preservation and elitism, a conceptual model is proposed and is validated by regarding a number of state-of-the-art algorithms as simple variants of the same structure. This model is then incorporated into the ParadisEO-MOEO software framework. This framework has proven its validity and high flexibility by enabling the resolution of many academic, real-world and hard multiobjective optimization problems

    PasMoQAP: A Parallel Asynchronous Memetic Algorithm for solving the Multi-Objective Quadratic Assignment Problem

    Full text link
    Multi-Objective Optimization Problems (MOPs) have attracted growing attention during the last decades. Multi-Objective Evolutionary Algorithms (MOEAs) have been extensively used to address MOPs because are able to approximate a set of non-dominated high-quality solutions. The Multi-Objective Quadratic Assignment Problem (mQAP) is a MOP. The mQAP is a generalization of the classical QAP which has been extensively studied, and used in several real-life applications. The mQAP is defined as having as input several flows between the facilities which generate multiple cost functions that must be optimized simultaneously. In this study, we propose PasMoQAP, a parallel asynchronous memetic algorithm to solve the Multi-Objective Quadratic Assignment Problem. PasMoQAP is based on an island model that structures the population by creating sub-populations. The memetic algorithm on each island individually evolve a reduced population of solutions, and they asynchronously cooperate by sending selected solutions to the neighboring islands. The experimental results show that our approach significatively outperforms all the island-based variants of the multi-objective evolutionary algorithm NSGA-II. We show that PasMoQAP is a suitable alternative to solve the Multi-Objective Quadratic Assignment Problem.Comment: 8 pages, 3 figures, 2 tables. Accepted at Conference on Evolutionary Computation 2017 (CEC 2017

    Evolutionary Algorithms for Reinforcement Learning

    Full text link
    There are two distinct approaches to solving reinforcement learning problems, namely, searching in value function space and searching in policy space. Temporal difference methods and evolutionary algorithms are well-known examples of these approaches. Kaelbling, Littman and Moore recently provided an informative survey of temporal difference methods. This article focuses on the application of evolutionary algorithms to the reinforcement learning problem, emphasizing alternative policy representations, credit assignment methods, and problem-specific genetic operators. Strengths and weaknesses of the evolutionary approach to reinforcement learning are presented, along with a survey of representative applications

    An evolutionary non-Linear great deluge approach for solving course timetabling problems

    Get PDF
    The aim of this paper is to extend our non-linear great deluge algorithm into an evolutionary approach by incorporating a population and a mutation operator to solve the university course timetabling problems. This approach might be seen as a variation of memetic algorithms. The popularity of evolutionary computation approaches has increased and become an important technique in solving complex combinatorial optimisation problems. The proposed approach is an extension of a non-linear great deluge algorithm in which evolutionary operators are incorporated. First, we generate a population of feasible solutions using a tailored process that incorporates heuristics for graph colouring and assignment problems. The initialisation process is capable of producing feasible solutions even for large and most constrained problem instances. Then, the population of feasible timetables is subject to a steady-state evolutionary process that combines mutation and stochastic local search. We conducted experiments to evaluate the performance of the proposed algorithm and in particular, the contribution of the evolutionary operators. The results showed the effectiveness of the hybridisation between non-linear great deluge and evolutionary operators in solving university course timetabling problems

    An evolutionary non-Linear great deluge approach for solving course timetabling problems

    Get PDF
    The aim of this paper is to extend our non-linear great deluge algorithm into an evolutionary approach by incorporating a population and a mutation operator to solve the university course timetabling problems. This approach might be seen as a variation of memetic algorithms. The popularity of evolutionary computation approaches has increased and become an important technique in solving complex combinatorial optimisation problems. The proposed approach is an extension of a non-linear great deluge algorithm in which evolutionary operators are incorporated. First, we generate a population of feasible solutions using a tailored process that incorporates heuristics for graph colouring and assignment problems. The initialisation process is capable of producing feasible solutions even for large and most constrained problem instances. Then, the population of feasible timetables is subject to a steady-state evolutionary process that combines mutation and stochastic local search. We conducted experiments to evaluate the performance of the proposed algorithm and in particular, the contribution of the evolutionary operators. The results showed the effectiveness of the hybridisation between non-linear great deluge and evolutionary operators in solving university course timetabling problems

    ETEA: A euclidean minimum spanning tree-Based evolutionary algorithm for multiobjective optimization

    Get PDF
    © the Massachusetts Institute of TechnologyAbstract The Euclidean minimum spanning tree (EMST), widely used in a variety of domains, is a minimum spanning tree of a set of points in the space, where the edge weight between each pair of points is their Euclidean distance. Since the generation of an EMST is entirely determined by the Euclidean distance between solutions (points), the properties of EMSTs have a close relation with the distribution and position information of solutions. This paper explores the properties of EMSTs and proposes an EMST-based Evolutionary Algorithm (ETEA) to solve multiobjective optimization problems (MOPs). Unlike most EMO algorithms that focus on the Pareto dominance relation, the proposed algorithm mainly considers distance-based measures to evaluate and compare individuals during the evolutionary search. Specifically in ETEA, four strategies are introduced: 1) An EMST-based crowding distance (ETCD) is presented to estimate the density of individuals in the population; 2) A distance comparison approach incorporating ETCD is used to assign the fitness value for individuals; 3) A fitness adjustment technique is designed to avoid the partial overcrowding in environmental selection; 4) Three diversity indicators-the minimum edge, degree, and ETCD-with regard to EMSTs are applied to determine the survival of individuals in archive truncation. From a series of extensive experiments on 32 test instances with different characteristics, ETEA is found to be competitive against five state-of-the-art algorithms and its predecessor in providing a good balance among convergence, uniformity, and spread.Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom under Grant EP/K001310/1, and the National Natural Science Foundation of China under Grant 61070088
    corecore