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Abstract 
The aim of this paper is to extend our non-linear great deluge 
algorithm into an evolutionary approach by incorporating a 
population and a mutation operator to solve the university course 
timetabling problems. This approach might be seen as a variation 
of memetic algorithms. The popularity of evolutionary 
computation approaches has increased and become an important 
technique in solving complex combinatorial optimisation 
problems. The proposed approach is an extension of a non-linear 
great deluge algorithm in which evolutionary operators are 
incorporated. First, we generate a population of feasible solutions 
using a tailored process that incorporates heuristics for graph 
colouring and assignment problems. The initialisation process is 
capable of producing feasible solutions even for large and most 
constrained problem instances. Then, the population of feasible 
timetables is subject to a steady-state evolutionary process that 
combines mutation and stochastic local search. We conducted 
experiments to evaluate the performance of the proposed 
algorithm and in particular, the contribution of the evolutionary 
operators. The results showed the effectiveness of the 
hybridisation between non-linear great deluge and evolutionary 
operators in solving university course timetabling problems. 
 
Keywords: Evolutionary Algorithm, Non-linear Great 
Deluge and Course Timetabling. 
 
1. Introduction 
  
The central aim of this paper is to hybridise the non-linear 
great deluge algorithm presented in our previous paper 
[18] with the evolutionary approach by incorporating a 
population and a mutation operator to solve the university 
course timetabling problem. This technique might be seen 
as a variation of memetic algorithms in particular as 
presented in [1, 12, 21, 22]. The popularity of evolutionary 
computation approaches has increased and become an 

important technique in solving complex combinatorial 
problems. They are powerful techniques and have been 
applied to many complex problems e.g. the travelling 
salesman problem [20,17,16], university exam timetabling 
[10], and university course timetabling problems [11, 22, 
21]. 
 
Finding good quality solutions for timetabling problems is 
a very challenging task due to the combinatorial and highly 
constrained nature of these problems [13]. In recent years, 
several researchers have tackled the course timetabling 
problem, particularly the set of 11 instances of course 
timetabling problem proposed by Socha et al. [26]. Among 
the algorithms proposed there are: MAX-MIN ant system 
[26]; tabu search hyper-heuristic strategy [8]; evolutionary 
algorithm, ant colony optimisation, iterated local search, 
simulated annealing and tabu search [24]; fuzzy multiple 
heuristic ordering [6]; variable neighbourhood search [3]; 
iterative improvement with composite neighbourhoods [2]; 
a graph-based hyper-heuristic [9] and a hybrid 
evolutionary algorithm [1]. 
 
There are many versions of evolutionary algorithms that have 
been discussed in the literature, however, there is a common 
underlying idea that underpins the basic structure of these 
algorithms [14], such as, and most of the evolutionary 
algorithms are population-based meta-heuristics. These 
algorithms maintain a population of solutions and conduct the 
search process by simulating natural selection based on 
Darwin's theory of survival of the fittest.  This means that 
only strong individual solutions will survive and participate in 
the selection for reproduction before being subject to the 
process of recombination and mutation.  Sastry et al. [25] 
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explained various types of recombination and mutation 
operators.  Recombination is an operator which combines two 
or more individuals from the mating pool in order to create 
one or more new candidate solutions, whereas mutation is 
usually designed to add more diverse solutions to increase the 
chances of exploring large areas of the search space [25]. 
Mutation is only applied to one candidate solution and 
produces one new solution. Even though crossover is one of 
the main components in genetic algorithms and other 
evolutionary algorithms, Moscato and Norman [20] and 
Radcliff and Surry [23] have argued whether crossover 
should be the main operator in Genetic Algorithms. It is 
not an unusual practice that some papers present different 
implementations of Evolutionary Algorithms in which 
local search are used as a replacement for crossover. For 
example, Ackley [5] proposed a genetic hill-climbing 
approach in which the crossover operator only plays a 
small role in the algorithm. In addition, according to Bäeck 
et al. [7] the Evolutionary strategies community has 
emphasised on mutation rather than crossover. 
  
This paper proposes a two-stage hybrid meta-heuristic 
approach to tackle course timetabling problems. The first 
stage constructs feasible timetables while the second stage is 
an improvement process that also operates within the feasible 
region of the search space. The second stage is a combination 
of non-linear great deluge [18] with evolutionary operators to 
improve the quality of timetables. 
 
The rest of this paper is organised as follow, in Section 2, 
the subject problem and test instances are described. 
Section 3 gives the description of the evolutionary non-
linear great deluge approach proposed for solving the 
university course timetabling problems. Computational 
experiments and results are presented in Section 4 and the 
paper ends with a conclusion in Section 5. 

 
2. University Course Timetabling 
    
In general, university course timetabling is the process of 
allocating, subject to predefined constraints, a set of 
limited timeslots and rooms to courses, in such a way as to 
achieve as close as possible a set of desirable objectives. In 
timetabling problems, constraints are commonly divided 
into hard and soft constraints. A timetable is said to be 
feasible if no hard constraints are violated while soft 
constraint may be violated but we try to minimise such 
violation in order to increase the quality of the timetable. 
In this work, we tackle the course timetabling problem 
defined by Socha et al. [26] where there are: n events E = { 

e1, e2, ..., en }, k timeslots T =  { t1, t2, ..., tk }  and m rooms R = 

{ r 1, r2, ... , rm } and a set S of students. Each room has a 
limited capacity and a set F of features that might be 
required by the events. Each student must attend a number 
of events within E. The problem is to assign the n events to 
the k timeslots and m rooms in such a way that all hard 
constraints are satisfied and the violation of soft constraints 
is minimised. 
 
Hard Constraints.  There are four in this problem:  

 H1: a student cannot attend two events  
       simultaneously.  

 H2: only one event can be assigned per timeslot  
       in each room. 

 H3: the room capacity must not be exceeded at  
       any time. 

 H4: the room assigned to an event must have  
       the features required by the event. 

 
Soft Constraints. There are three: 

 S1: students should not have exactly one event  
      timetabled on a day. 

 S2: students should not have to attend more  
      than two consecutive events on a day. 

 S3: students should not have to attend an event  
      in the last timeslot of the day. 

 
The benchmark data sets proposed by Socha et al. [26] are 
split according to their size into 5 small, 5 medium and 1 
large, as shown below :  

 
Category  Small Medium Large 
Number of events n 100 400 400 
Number of rooms m 5 10 10 
Number of room features 
|F| 

5 5 10 

Number of students |S| 80 200 400 
Number of events per 
student  

20 20 20 

Maximum students per 
event 

20 50 100 

Approximation features 
per room 

3 3 5 

Percent feature use 70 80 90 
 
Table 1 Parameter values for the course timetabling problem categories 
in the set by Socha, Knowles and Samples [26]. The last four rows 
give some indication about the structure of the instances. 
 

For all instances, k = 45 (9 hours in each of 5 days). It 
should be noted that although a timetable with zero penalty 
exists for each of these problem instances (the data sets 
were generated starting from such a timetable [26]), so far 
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no heuristic method has found the ideal timetable for the 
medium and large instances. Hence, these data sets are still 
very challenging for most heuristic search algorithms. 

 
2.1  Problem Formulation 
 
The objective in this problem is to find a feasible solution 
that minimises the violation of soft constraints. The 
problem data sets described above ( Socha et al. instances) 
can be formalised as follows.  Let X is the set of all 
possible solutions, where each event has been assigned a 
pair timeslot-room. Let A = {h1, h2, h3, h4} be the set of 
all hard constraints.  Let B = {s1, s2, s3} be the set of all 
soft constraints for which violation should be minimised. 
Let XX ~ be the set of all feasible solutions that satisfy 
the hard constraints in A. The cost function f(x) for both 
problem data sets can be represented by this formulation. 
Each solution  x  X

~  is associated with a cost function 
measuring the total violation of soft constraints in B.  The 
main objective of this problem is to search for an optimal 
solution *x  X

~ , in this case an optimal solution is, if f(x* ) 

  f(x), x  X .  The cost function f(x) measures the 
quality of the feasible solution x X  by measuring the 
violation of the total soft constraints given by:  
 
f(x) = 




Ss

sxfsxfsxf )),(),(),(( 321
 

 ),(1 sxf  : number of times a student s in  

timetable x is assigned to the last timeslot of the 
day. 

 ),(2 sxf : number of times a student s in       

        timetable x is assigned more than two     
       consecutive classes. Every extra consecutive  
       class will add 1 penalty point, for example      
      ),(2 sxf  = 1 if a student s has three consecutive  

       classes and ),(2 sxf : = 2 if the student s has  

       four consecutive classes, and so on. 
 ),(3 sxf : number of times a student s in timetable 

x is assigned a single class on a day. ),(3 sxf  = 1 

if student s has only 1 class in a day and if 
student s has two days with only one class  

),(3 sxf   = 2. 

 

3. Evolutionary Non-Linear Great Deluge      
    Approach 
 
As discussed in the introduction, crossover operator can be 
replaced by local search. For example Ackley [5] used hill-
climbing as an operator instead of crossover after arguing that 
crossover was not effective and played less dominant role. 

Gorges-Schleuter [15] used local search as an operator in 
evolutionary algorithms, and showed that it definitely 
improves the quality of the solutions. 
 
In this work, we propose to extend the single solution non-
linear great deluge approach to a population-based 
evolutionary approach by incorporating tournament 
selection, a mutation operator and a replacement strategy. 
The motivation behind the introduction of evolutionary 
operators into our great deluge algorithm comes from the 
interest for striking a good balance between diversification 
and intensification, which are the main strategic forces in 
meta-heuristic approaches. Therefore, a good search 
technique must balance these two forces in order to 
achieve robustness and effectiveness in the search as well 
as to help the search activity to find optimal or near 
optimal solutions. Diversification is the ability to reach not 
yet visited regions in the search space and it can be 
achieved by disturbing some of the solutions using special 
operators (in our case, we use mutation) when necessary. 
Intensification is about exploiting the current search space 
regions by using local search (non-linear great deluge in 
our case) to obtain better quality of solutions. 
 
Figure 2 shows the components of the proposed evolutionary 
non-great deluge algorithm. It begins by generating an initial 
population of solutions of size P which becomes the pool of 
solutions. Then, a number of generations take place and in 
each of them the algorithm works as follows.  First, 
tournament selection is used to choose 5 individuals at 
random from the pool of solutions and the one with the best 
fitness is selected (xt).  With probability less or equal to 0.5, a 
mutation operator is applied to xt while maintaining feasibility 
and obtaining solution xm.  The probability value was 
determined by experimentation (If we apply the mutation too 
high or too low, no much improvement can be found). Next, 
the non-linear great deluge algorithm is applied to xm to 
obtain an improved solution xi. Then, the worst solution in the 
pool of solutions, xw (ties broken at random) is identified and 
if xi is better than xw 

 then xi replaces xw in the pool of 
solutions. This evolutionary non-liner great deluge algorithm 
is then executed for a pre-determined computation time 
according to the size of the problem instance. Note that this is 
a steady-state evolutionary approach that uses non-linear great 
deluge for intensification and a mutation operator for 
diversification. The following subsections describe each of 
the algorithm components is more detail. 
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Figure 1:The Evolutionary Non-linear Great Deluge Algorithm. 

 
3.1 Solution Representation 
 
 
Each solution in the population uses a direct 
representation, consisting of a chromosome with 
information on what events or courses are assigned into a 
pair of timeslot-room.  In addition, the chromosome is also 
used to keep information on forbidden assignments for a 
particular timeslot and room. Figure 2 illustrates the direct 
encoding of an individual solution used in the population. 

ei is an event number i, i 姦 {1,...,n}  where n is the number of 

events that need to be scheduled in the available timeslot t, 

t 姦 {1, k }  where k is the number of available timeslots. For 
example event e4 is assigned to timeslot 1 in room 1. 

 
Figure 2: Solution Representation (direct encoding) of a Timetable where 
events are assigned to pairs  timeslot-room. 
 

3.2 Initialisation of the Population 
 
The initial population of solutions is generated using the 
heuristic described in Algorithm 1. Two well-known graph 
colouring heuristics are incorporated, Largest Degree (LD) 
and Saturation Degree (SD). First, the events in the pool of 
unscheduled events are sorted based on LD. After that, we 
choose the event with the highest LD and calculate its SD. 
In the first while loop, the initialisation heuristic attempts 
to place all events into timeslots while avoiding conflicts. 
In order to do that, the heuristic uses the SD criterion and a 
list of rescheduled events to temporarily insert the 
conflicting events. The heuristic tries to do this for a given 
timeU but once that time has elapsed, all remaining 
unscheduled events are inserted into random timeslots. If 
by the end of the first while loop the solution is not yet 
feasible, at least the penalty due to hard constraint 
violations is already very low. In the second while loop, 
the heuristic uses simple local search and tabu search to 
achieve feasibility with two neighbourhood moves M1 and 
M2. M1 selects one event at random and assigns it to a 
feasible pair timeslot-room also chosen at random. M2 
selects two events at random and swaps their timeslots and 
rooms while ensuring feasibility is maintained. The local 
search attempts to improve the solution but it also works as 
a perturbation operator. The tabu search uses move M2 
only, which selects only an event that violates the hard 
constraints. The tabu search runs for  a fixed number of 
iterations tsmax.  In our experiments, this initialisation 
heuristic always finds a feasible solution for all the 
problem instances considered. 
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4.3 The Evolutionary Operator: Mutation 
 
With a probability less or equal to 0.5 (p  ≤  0.5), the 
mutation operator is applied to the solution selected 
from the tournament (xt). The mutation operator selects 
at random one out of three types of neighbourhood 
moves in order to change the solution while maintaining 
feasibility. These moves are described below. 
 

1. Move M1.  Selects one event at random and 
assigns it to a feasible timeslot and room.  

 
2. Move M2. Selects two events at random and 

swaps their timeslots and rooms while ensuring 
feasibility is maintained.  

 
3. Move M3. Selects three events at random, then it 

exchanges the position of the events at random 
and ensuring feasibility is maintained.  

 

5. Non-linear Great Deluge Algorithm 

 
The non-linear great deluge algorithm is a modified 
great deluge algorithm which incorporates a non-linear 

decay rate. The motivation behind the use of a non-
linear decay rate and floating water level is to enhance 
the feedback between the search activity and the water 
level. Early in the search the algorithm is able to reduce 
the penalty cost considerably and the gap between the 
water level and the penalty cost is usually very large. 
Therefore, the algorithm must prevent the cost function 
to go back near to the water level and for this reason it 
is important to reduce the gap between the water level 
and the penalty cost. Later in the search, it becomes 
more difficult to find the improvement moves. To 
manage this situation, we float the water level to 
prevent the algorithm becoming greedy. By floating the 
water level the algorithm tries to diversify the search by 
extending its search to a different region of the search 
space. Therefore, at the early stage of the search this 
algorithm performs more intensification and less 
diversification. However, when the search gets stuck in 
the local optima the algorithm begins to diversify the 
search by floating the water level (increasing the water 
level). The main weakness with the linear decay of the 
water level is that the water level decreases too quick in 
the later stages of the search. At the beginning, the 
algorithm seems to produce several successful moves. 
However when the search is in the middle or 
approaching the end of the search and the water level 
converges with the value of the current best solution, 
most of the neighbourhood solutions are rejected and 
this situation hinders the algorithm in diversifying the 
search. Therefore, the algorithm suffers on its own 
greediness by trapping itself in local optimum. In the 
conventional great deluge approach, there is no 
mechanism to help escaping local optima once 
the water level and the best solution penalty cost 
converge. The non-linear great deluge algorithm is 
described in Algorithm 2. 
 
5.1 Non-linear and Floating Water Level                    
      Decay 
 
Consider a problem in which the goal is to find the solution 
that minimises a given objective function. The distinctive 
feature of the conventional great deluge Consider a problem 
in which the goal is to find the solution that minimises a 
given objective function. The distinctive feature of the 
conventional great deluge algorithm is that when the 
candidate solution S*  is worse than the current solution S, 
then S*  replaces S depending on the current water level B. 
The water level is initially set according to the quality of 
the initial solution, that is, B > f( S ) where f( S ) denotes 
the objective function value of the initial solution S . The 
decay, i.e. the speed at which B decreases, is determined 
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by a linear function in the conventional great deluge 
algorithm: 

             B = B - B where B 
   (3.0) 

The non-linear great deluge algorithm uses a non-linear 
decay for decreasing the water level. The decay is given by 
the following expression: 

          B = B X   )(exp max])([min,
         (3.1) 

 
The various parameters in Eq. (3.1) control the speed and 
the shape of the water level decay rate. Parameter   

represents the minimum expected value corresponding to 
the optimal solution. In this paper, we set   = 0 because 

we want the water level to reach that value by the end of 
the search. This is because we know that an optimal value 
of zero is possible for the problem instances tackled in this 
paper. If for a given minimisation problem we knew that 
the minimum objective value that can be achieved is let's 
say 100, then we would set   around that value. If there is 

no previous knowledge on the minimum objective value 
expected, then we suggest to tune   through preliminary 

experimentation for the problem in hand. The role of the 
parameters  , min and max (more specifically the 
expression max])([min,exp  ) is to control the speed of the 

decay and hence the speed of the search process. A random 
min and max are drawn from the uniform distribution 
interval [min, max] and the min and mix are integer 
numbers. By changing the value of these three parameters, 
the water level goes down faster or slower. Therefore, the 
lower the values of min and max, the faster the water level 
goes down, and in consequence, the search quickly 
achieves an improvement but it also gets stuck in local 
optima very early. To escape from the local optima, the 
algorithm needs to increase the water level. 
  
In this paper, the value of the parameters in Eq. (3.1) were 
determined by experimentation. We tested different 
combination of parameter values (- and rnd [min, max]) 
and observe the effect of each combination in order to find 
suitable parameters for given problem. Based on the 
preliminary experiments, we now then assigned,   the 

values of 5X 1010 , 5X
810  and 5X 910  for small, medium 

and large instances respectively. As said before, the value 
of   for all problem instances is   = 0. The values of 

min and max in Eq. (3.1 ) are set according to the size of 
the problem instance. For medium and large problems we 
used min = 100000 and max = 300000. For small problems 
we used min = 10000 and max = 20000. The parameter 
values for small instance is only apply when the penalty 
cost reach to 10 points. Therefore, it means that from the 
first iteration the non-linear great deluge algorithm uses the 

same parameters used for medium instances and changes 
the parameters when it reaches the penalty cost to 10 
points. The use of the non-linear decay rate is shown in 
algorithm 2 below.  
 
In addition to using a non-linear decay rate for the water 
level B, we also allow B to go up when its value is about to 
converge with the penalty cost of the candidate solution 
S*. This occurs when range   1 in Algorithm 2 (range is 
the difference between the water level and the penalty 
cost). We increase the water level B by a random number 
within the interval [

minB , 
maxB ]. All the parameter values in 

[
minB , 

maxB ] were identified by experimentation. For small 

problem instances the interval used was [2, 5]. For the 
large problem instance the interval used was [1,3].  For 
medium problem instances, we first check if the penalty of 
the best solution so far )( bestSf  is lower than a parameter 

lowf .  If this is the case, then we use [1,4] as the interval 

[
minB , 

maxB ]. Otherwise, we assume that the best solution 

so far seems to be stuck in local optima ( )( bestSf  >  

lowf ) so we make B = B + 2. The concept of floating water 

level might be similar to reheating concept in simulated 
annealing, however in simulated annealing to reheat the 
temperature, it uses the geometric reheating method. In our 
method we increase the water level at random. In addition, 
acceptance in simulated annealing uses probability while 
great deluge does not employ probability. Full details of 
this strategy to control the water level decay rate in the 
modified great deluge are shown in Algorithm 2.   
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The behaviour of the proposed Algorithm 2 can be 
illustrated in Figure 3. From the outset, the water level is 
equal to the current penalty cost. When the search progress 
the current penalty cost is improving as shown by the blue 
line. The water level decreases quickly to prevent a huge 
gap between the water level and the current penalty cost. 
As shown in the figure, when the water level and current 
penalty cost is about the converge the algorithm then float 
the water level as shown by the up and down red line. 
 

 
            Fig. 3 Non-Linear Great Deluge Behaviour. 
 
 

 
        Fig. 4 Comparison between linear (Eq. 1) and non-linear     
        (Eq. 2) decay rates and illustration of the effect of   

        parameters  ,  , min and max on the shape of the      

        non-linear decay rate. 

 

6. Experiments and Results 
      
In this paper we propose two different stopping conditions 
for the algorithm. Since non-linear great deluge plays the 
main role in the evolutionary non-linear great deluge 
algorithm, we want to investigate which are the adequate 
criteria for stopping the non-linear great deluge search 
before it goes to the next process which is update of the 
pool of solutions (see Figure 1). It should be clear that the 
non-linear great deluge search promotes intensification in 
the overall evolutionary method. The use of a population 
of solutions and the mutation operator promote 
diversification. Then, by setting the stopping condition for 
the non-linear great deluge search, we are effectively 
setting (in a simple manner) the balance between 

intensification and diversification in the overall 
evolutionary approach. The first strategy for this balance is 
to stop the non-linear great deluge after 8000 idle 
iterations or 30 seconds of computational time, whichever 
happens first. The second strategy is to stop the non-linear 
great deluge after three seconds of computational time. 
The first strategy gives more time to intensification while 
the second strategy attempts to promote diversification 
more by stopping intensification sooner. In general, the 
whole hybrid evolutionary process can be described as 
follows. 
  
After generating the initial set of solutions, this population 
then becomes the pool of individual solutions (refer to 
Figure 1). After the tournament selection of a solution s, 
this solution is mutated or not as explained above 
according to the set probability. Then, the non-linear great 
deluge search takes place over the solution s. The non-
linear great deluge search continues until the given 
stopping condition, one of the two strategies explained 
above, is satisfied. We implemented three variations of the 
proposed evolutionary algorithm in order to examine the 
performance of the algorithm when each of the two 
stopping conditions is used and also when the mutation 
operator is re-moved. The three algorithm variants are: 
Evolutionary Non-linear Great Deluge Without Mutation 
(ENLGD-M), Evolutionary Non-linear Great Deluge using 
stopping condition 1 (ENLGD-1) and Evolutionary Non-
linear Great Deluge using stopping condition 2 (ENLGD-
2). Both ENLGD-1 and ENLGD-2 have the mutation 
operator incorporated. The aim of examining these 
algorithm variants is to assess the robustness of the 
proposed evolutionary algorithm with different settings. By 
robustness we mean the reliability of the algorithm to 
produce high-quality of solutions under different settings. 
Table 2 shows the various parameter settings for the three 
algorithm variants examined here. 

 
Table 2:  Parameter Setting for the Three Variants of the Proposed 
Evolutionary Non-Linear Great Deluge Algorithm. 

    

Parameter ENLGD-M ENLGD-1 ENLGD-2 

Mutation no mutation applied 0.5 0.5 

Stopping condition idle 8000 iterations Idle 8000 iterations every 3 seconds 

 or 30 seconds or 30 seconds of computation time 

Replacement Steady state Steady state Steady state 

Stopping time for small (2600 seconds) small (2600 seconds) small (2600 seconds) 

whole search Medium (7200 seconds) medium(7200 seconds) medium (7200 seconds) 

Process large (10000 seconds) large (10000 seconds) large (10000 seconds) 

 
We now evaluate the performance of the proposed 
evolutionary algorithm (in this experiments, we used the 
benchmark instances by Socha et, al. [26]). For each 
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problem size, a fixed computation time (timemax) in seconds 
was used as the stopping condition: 1000 for small 
problems, 7200 for medium problems and 10000 for the 
large problem. This fixed computation time is for the 
whole process including the construction of the initial 
population. We executed the proposed evolutionary 
algorithm 20 times for each problem instance. 
  
Table 3 shows the experimental results for the three 
algorithm variants described above, i.e. ENLGD-M, 
ENLGD-1 and ENLGD-2. The Table shows the best and 
the average results obtained for each method. For each 
dataset, the best results are indicated in bold. As shown in 
Table 3, the evolutionary non-great deluge algorithms 
(ENLGD-1 and ENLGD-2) clearly outperform NLGD. 
The results also show that both ENLGD-2 and ENGLD-1 
produce better results when compared to ENLGD-M. This 
means that the tailored mutation operator makes a 
significant impact to the good performance of ENLGD. 
Besides that, the results also show that ENLGD-2 
outperforms ENLGD-1 and ENLGD-M. This means that 
balancing the intensification and diversification helps the 
ENLGD approach to better explore the search space rather 
than run the intensification for longer which makes the 
local search to converge earlier (as in the ENLGD-1 case). 
The intensification phase is mainly carried out by NLGD. 

 
Table 3:  Comparison of NLGD, ENLGD-M, ENLGD-1 and ENLGD-2 
on the Socha et al.  UCTTP Instances. 
 
IN NLGD ENLGD-M ENLGD-1 ENLGD-2 

 Best Avg Best Avg Best Avg Best Avg 
S1 3 3.6 0 1.55 0 0.95 0 0.7 
S2 4 4.85 0 2.2 0 1.45 0 0.3 
S3 6 6.85 1 2.7 0 1.3 0 1.05 
S4 6 6.85 0 1.7 0 1.35 0 1.25 
S5 0 1.75 0 0 0 0 0 0 
M1 140 160.75 144 176.65 125 140 59 84.8 
M2 130 156 140 162 123 149.1 51 93.8 
M3 189 212.1 182 204.8 178 199.3 75 121.05 
M4 112 138.3 135 164.6 116 130.2 48 72.8 
M5 141 192.6 123 173.15 129 168.6 65 110.2 
L 876 974.3 970 1026 821 946.1 703 819.2 
 

Further investigation was also carried out to inspect the 
overall performance of ENLGD algorithm. Figures 5, 6 
and 7 the performance of the various versions of the 
algorithm together with NLGD. The x-axis corresponds to 
the instance type while the y-axis corresponds to the 
penalty cost. Figure 5 shows the strong performance of 
ENLGD-2 on medium and large instances, while also 
obtaining optimal solutions with the same quality as the 
other algorithms for small instances. In addition, Figure 6 
and Figure 7 show details of the results achieved by the 
proposed algorithms. Both figures show that according to 
the average results, ENLGD-2 outperformed the other 
algorithms. 

Overall, this experimental evidence shows that by 
combining some key evolutionary components with single-
solution NLGD approach, we have been able to produce a 
hybrid evolutionary approach that is still quite simple but 
much more effective than the single-solution stochastic 
local search in generating best known solutions for a well-
known set of difficult university course timetabling 
instances. It is also evident that the mutation operator 
makes a significant contribution to the good performance 
of ENLGD as the results obtained without this operator 
(ENLGD-M) are considerably worse in medium and large 
instances. The proposed algorithm seems particularly 
effective on small and medium problem instances. 
 
 

 
Fig. 5  Best Results Obtained by the Proposed Algorithm 

 
 

 
 
Fig. 6  Average Results Obtained by the Proposed Algorithm Variants on 
Small Instances. 

 
 

 
 
Fig. 7  Average Results Obtained by the Proposed Algorithm Variants on 
medium and large Instances. 
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Table 4: Comparison of results obtained by the Evolutionary Non-Linear 
Great Deluge (ENLGD) proposed in this chapter against the best known 
results from the literature for the 11 Socha et al. UCTTP instances. 

 
ENLGD-2 is Evolutionary Non-Linear Great Deluge with stopping strategy 2.  
NLGD is Non-Linear Great Deluge [18].  
RRLS is the Local Search and Ant System in [27]  
MMAS is the MAX-MIN Ant System in [26]  
GALS is Genetic algorithm and local search by Abdullah and Turabieh [4].  
RIICN is Randomised iterative improvement algorithm by Abdullah et al. [1].  
GBHH is Graph-based Hyper-heuristic by Burke et al. [9].  
CFHH is the Choice Function Hyper-heuristic in [8]  
VSN-T is Variable neighbourhood search with tabu by Abdullah et al. [3].  
HEA is Hybrid evolutionary approach by Abdullah et al. [2].  
FMHO is fuzzy multiple heuristic ordering [6]  
EGD is Extended Great Deluge [19]  
S1-S5 represent small problem instances 1 to 5  
M1-M5 represent medium problem instances 1 to 5 
 

Table 4 compares the results obtained by the approach 
proposed with the state of the art approaches in the 
literature that have been used to solve the course 
timetabling problem. The term x%Inf in Table 4 illustrates 
a percentage of runs that were unable to achieve feasibility. 
The figures in bold indicate the best results. Results in the 
Table indicate that some of the algorithms were unable to 
produce feasible solutions. However, in contrast, our 
approach was able to achieve feasible solutions. It can be 
seen that the proposed hybrid evolutionary approach 
(ENLGD-2) matches the best known solution quality for 
all small problem instances. For medium instances, 
ENLGD-2 was able to achieve better quality solutions 
when compared against all other methods listed in Table 3. 
More interestingly ENLGD-2 is able to produce high 
quality solutions and outperformed the best known results 
obtained by other algorithms as reported in the literature. 
Only on the case of the large problem instance, we see that 
our algorithm does not match the best known result 
reported by Abdullah at al. [2]. However, our result is still 
comparable to other results reported in the literature.  
Overall, this experimental evidence shows that by 
combining some key evolutionary components and an 
effective stochastic local search procedure, we have been 
able to produce a hybrid evolutionary approach that is still 
quite simple but more effective than the single-solution 
stochastic local search in generating best know solutions 
for well-known set of difficult course timetabling problem 
instances. The proposed algorithm seems particular 
effective on small and medium problem instances.  

 
6.1 Statistical Analysis 
 
To compare the performance of the different methods 
proposed, we run some statistical analysis. Even though 
conclusions can usually be made based on the best and 
average results obtained by each algorithm, those 
conclusions and analysis might be premature. Therefore, 
ANOVA was used to determine whether there is a 
significant difference in performance among ENLGD-2, 
ENLGD-1, ENLGD-M and NLGD. Before we proceed to 
the analysis, it is essential to verify the compatibility of the 
models with the sample data. There are important 
hypotheses that need to be verified: normality, 
independency and homogeneity of the sample data. After 
running the descriptive analysis, we found that our sample 
data fulfils the hypothesis requirements. For that reason 
variance analysis (ANOVA) is considered suitable for the 
sample data hypothesis ensuring the validity of the 
experiment. ANOVA is one of the existing statistical 
models used to test significant differences between means 
and this tool is very useful to make comparison when 
dealing with three or more means. 
 
The analysis showed that there are statistically significant 
differences among the proposed algorithms with the p-
value very close to zero as shown in Figure 8. 
The p-value stands for probability ranging from zero to 
one. Therefore, the p-value is used to measure the 
difference in population means and used as an evidence to 
reject or accept the null hypothesis. In our case the null 
hypothesis H0 is that there are no significant differences in 
performance between the algorithms. Therefore, if we 
reject H0 then we accept that there are significant 
differences in performance 
among the algorithms. Tables 7, 8 and 9 clearly show that 
there are significant differences between the algorithms as 
described below: 

 For small instances, the p-value are less than the 
confidence level at 0.05 for every pair of 
algorithms (ENLGD-2, ENLGD-1), (ENLGD-2, 
ENLGD-M), (ENLGD-2, NLGD), (ENLGD-1, 
ENLGD-M) and (ENLGD-M, NLGD). 

 For medium instances there are significant 
differences in performance between (ENLGD-2, 
ENLGD-1), (ENLGD-2, ENLGD-M), (ENLGD-
2, NLGD), (ENLGD-1, ENLGD-M) where the p-
value are less than the confidence level at 0.05. 

 However, there is no significant difference in 
performance between NLGD and ENLGD-M, 
where the Post-Hoc analysis shows that the p-
value is 0.659 (greater than 0.05). 
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 Finally for the large instance, there are significant 
differences in performance between (ENLGD-2, 
ENLGD-1), (ENLGD-2, ENLGD-M) (ENLGD-2, 
NLGD) and (ENLGD-1, ENLGD-M) where the 
p-value for the respective pairs are less than 0.05 
significance level. Interestingly, the Post-Hoc test 
shows that there is no significant difference in 
performance between (ENLGD-1, NLGD) and 
(NLGD-M, NLGD) where the p-value are 0.697 
and 0.063 respectively, where both p-value is 
greater than significant level at 0.05. 

 
The Post-Hoc analysis clearly showed that all four 
algorithms perform differently. However, at this stage we 
still do now know which algorithm is actually 
outperforming the others across the eleven instances. Thus, 
to evaluate this, we plot the mean of each algorithm with 
Least Significant Difference (LSD) intervals at 95% 
confidence level for the different algorithms as shown in 
Figures 8.  
     
Figure 9, Figure 10 and Figure 11 present the means plot 
of each algorithm, for the specific instances. Figure 8 
shows that there are three homogenous groups for small 
instances (ENGLD-1, ENLGD-2), (ENLGD-M) and 
(NLGD). The best algorithm is ENGLD-2 followed by 
ENLGD-1 and ENLGD-M, the worst algorithm is NLGD. 
In medium instances we also found three homogenous 
groups as shown in Figure 9 and they are (ENGLD-1), 
(ENLGD-2) and (ENLGD-M, NLGD). The algorithm that 
performs well in medium instances is ENGLD-2 followed 
by ENLGD-1 and two algorithms which perform slightly 
worst are ENLGD-M and NLGD. Finally, for the large 
instance, we found that there are three homogenous group 
(ENGLD-1, NLGD), (ENLGD-2) and ENLGD-M. In the 
large instance case, we found that ENLGD-2 outperforms 
the other algorithms and ENLGD-M is the worst. In 
conclusion, considering the overall performance, ENLGD-
2 is the best algorithm followed by ENLG-1, NLGD and 
the worst algorithm is ENLGD-M (mutation operator 
removed). to 10. LSD is used to measure the significant 
differences between group means in ANOVA. From the 
mean plot, we see that ENLGD-2 outperforms the other 
algorithms followed by ENLGD-1, NLGD and the worst 
algorithm is ENLGD-M. 
  
The statistical analysis presented in the paper suggest that 
each algorithm performs differently across all 11 Socha et 
al. Instances[26]. This analysis also shows that ENLGD-2 
outperforms the three other algorithms across all instances. 
It is also evident that the mutation operator makes a 
significant contribution to the good performance of 
ENLGD-2 as the results obtained by ENLGD-M are 
considerably worse. Moreover, the strategy applied in 

ENLGD-2 to balance intensification and diversification 
proves to be a good strategy as it managed to further 
improve the solution quality compared to ENLGD-1. As a 
conclusion, the proposed evolutionary non-linear great 
deluge approach matches the best known solution quality 
for almost all small problem instances and improves the 
best known results for most all medium instances. For 
large instances, the evolutionary non-linear great deluge 
algorithm did not match the best known results published 
in the literature. However, the results are still competitive 
when compared to the results obtained by other algorithms 
reported in the literature.  
 
Table 5:  Average Penalty Cost of ENLGD-2 and ENLGD-1 Across the 
11 Socha et al.  Instances. 
 
 ENLGD-2 ENLGD-1 
Run Small Medium Large Small Medium Large 

1 0.8 95.6 703 0.20 159 821 

2 0.4 85.8 927 1.4 165.4 940 

3 0.4 95.4 835 1 167.8 963 

4 0.4 93.6 968 1.2 163.6 879 

5 0.4 108.6 895 1 165.2 954 

6 0.4 99.8 730 1.2 162 952 

7 0.2 81.2 782 8.8 146.4 938 

8 0.4 91.6 711 1.2 148.2 976 

9 0.8 110.4 777 1 147.4 1018 

10 1 96.4 838 0.6 144.4 1020 

11 0.4 96.6 808 1 171.6 968 

12 1 98.4 944 1.6 178 904 

13 0.8 91.2 870 1.2 158.8 958 

14 1.2 96.4 807 0.4 159.2 876 

15 0.4 83.6 849 1.8 165 876 

16 1.2 90.6 713 1.6 156 970 

17 0.4 117.8 852 1.2 169.6 918 

18 0.6 102.2 795 0.6 172.8 1003 

19 1.6 106 779 0.6 148.2 1031 

20 0.8 89.4 801 0.6 175.2 1072 

 
Table 6:  Average Penalty Cost of ENLGD-M and NLGD Across  the 11 
Socha et al.  Instances.  
 
 ENLGD-M NLGD 

Run Small Medium Large Small Medium Large 

1 2 186.2 1023 3.8 142.4 966 

2 2 176.6 1070 4.8 165 1070 

3 1.4 191.6 998 6 165.6 876 

4 2 177.6 1142 5.2 162.2 935 

5 1.4 205.8 1114 5 165.2 971 

6 1 189.8 984 4.6 166.8 942 

7 1 184 923 5 165.4 895 

8 1.8 179.6 970 5.2 156.8 976 

9 2 166.4 1082 5.4 160.4 986 

10 1.4 185 1023 5.4 172.8 1005 

11 1.8 192.2 1023 3.8 185 966 

12 2 159.2 1070 4 171.6 1070 

13 2 178.8 998 4.2 177 935 

14 2.2 156.4 1142 4.2 181 1024 

15 1.6 167.6 984 4 172.4 942 

16 2 166.6 923 5 188.4 958 
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17 1.6 168.6 970 4.2 179.6 978 

18 0.8 168.8 1082 5.4 182.6 1005 

19 1.4 156.6 1023 5.4 196 1078 

20 1.2 166.8 982 5 183.8 907 

 
 

 
Fig 8:  ANOVA Results. 

   
 

    Table 7:  Post Hoc Tests - Small Instances 

 
 ENLGD-2 ENLGD-1 ENLGD-M NLGD 

ENLGD-2 - 0.041 0.000 0.000 

ENLGD-1 0..041 - 0.000 0.000 

ENLGD-M 0.000 0.000 - 0.000 

NLGD 0.000 0.000 0.000 - 

 
 Table 8:  Post Hoc Tests - Small Instances 

 
 ENLGD-2 ENLGD-1 ENLGD-M NLGD 

ENLGD-2 - 0.000 0.000 0.000 

ENLGD-1 0..000 - 0.001 0.019 

ENLGD-M 0.000 0.000 - 0.649 

NLGD 0.000 0.019 0.649 - 

 
Table 9:  Post Hoc Tests - large Instances 

 
 ENLGD-2 ENLGD-1 ENLGD-M NLGD 

ENLGD-2 - 0.000 0.000 0.000 

ENLGD-1 0..000 - 0.003 0.697 

ENLGD-M 0.000 0.003 - 0.063 

NLGD 0.000 0.697 0.063 - 

 

 

 

 
 
 

7.  Conclusions 
 
The overall endeavour of this paper was to extend our 
previous approach, a non-linear great deluge algorithm, 
towards an evolutionary variant by incorporating some key 
operators like a population of solutions, tournament 
selection, a mutation operator and a steady-state 
replacement strategy. The performances of the various 
versions of evolutionary non-linear great deluge were 
compared along with the single-solution NLGD algorithm. 
Preliminary comparisons illustrate that ENLGD-2 
outperforms the results produced by other versions of 
ENLGD and NLGD algorithms. The results from our 
experiments also provide evidence that our hybrid 
evolutionary algorithm is capable of producing best known 
solutions for a number of the test instances used here. 
Obtaining the best timetables (with penalty equal to zero) 
for the medium and large instances is still a challenge. 
However, when compared to the results obtained by 
ENLGD-2 to the best know results reported in the 
literature, obviously, ENLGD-2 outperform all the results 
of medium instances and produced comparable ones for 
large instance. 
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