
Obit, Joe Henry and Ouelhadj, Djamila and Landa-Silva,
Dario and Alfred, Rayner (2012) An evolutionary non-
Linear great deluge approach for solving course
timetabling problems. International Journal of Computer
Science Issues, 9 (4). pp. 1-13. ISSN 1694-0814

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/32127/1/dls_ijcsi2012.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title
and full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33575983?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk

An Evolutionary Non-Linear Great Deluge Approach for Solving

Course Timetabling Problems

Joe Henry Obit1, Djamila Ouelhadj2, Dario Landa-Silva3 and Rayner Alfred 4

1 Labuan School of Informatics Science, Universiti Malaysia Sabah,
 87000 Labuan F.T, Malaysia

2 Department of Mathematics, University of Portsmouth,
 PO3 1HF, United Kingdom

3 School of Computer Science, (ASAP), University of Nottingham,
Jubilee Campus Wollaton Road Nottingham, NG8 1BB, United Kingdom

4 School of Engineering and Information Technology, Universiti Malaysia Sabah,

2073, 88999, Kota Kinabalu, Malaysia

Abstract
The aim of this paper is to extend our non-linear great deluge
algorithm into an evolutionary approach by incorporating a
population and a mutation operator to solve the university course
timetabling problems. This approach might be seen as a variation
of memetic algorithms. The popularity of evolutionary
computation approaches has increased and become an important
technique in solving complex combinatorial optimisation
problems. The proposed approach is an extension of a non-linear
great deluge algorithm in which evolutionary operators are
incorporated. First, we generate a population of feasible solutions
using a tailored process that incorporates heuristics for graph
colouring and assignment problems. The initialisation process is
capable of producing feasible solutions even for large and most
constrained problem instances. Then, the population of feasible
timetables is subject to a steady-state evolutionary process that
combines mutation and stochastic local search. We conducted
experiments to evaluate the performance of the proposed
algorithm and in particular, the contribution of the evolutionary
operators. The results showed the effectiveness of the
hybridisation between non-linear great deluge and evolutionary
operators in solving university course timetabling problems.

Keywords: Evolutionary Algorithm, Non-linear Great
Deluge and Course Timetabling.

1. Introduction

The central aim of this paper is to hybridise the non-linear
great deluge algorithm presented in our previous paper
[18] with the evolutionary approach by incorporating a
population and a mutation operator to solve the university
course timetabling problem. This technique might be seen
as a variation of memetic algorithms in particular as
presented in [1, 12, 21, 22]. The popularity of evolutionary
computation approaches has increased and become an

important technique in solving complex combinatorial
problems. They are powerful techniques and have been
applied to many complex problems e.g. the travelling
salesman problem [20,17,16], university exam timetabling
[10], and university course timetabling problems [11, 22,
21].

Finding good quality solutions for timetabling problems is
a very challenging task due to the combinatorial and highly
constrained nature of these problems [13]. In recent years,
several researchers have tackled the course timetabling
problem, particularly the set of 11 instances of course
timetabling problem proposed by Socha et al. [26]. Among
the algorithms proposed there are: MAX-MIN ant system
[26]; tabu search hyper-heuristic strategy [8]; evolutionary
algorithm, ant colony optimisation, iterated local search,
simulated annealing and tabu search [24]; fuzzy multiple
heuristic ordering [6]; variable neighbourhood search [3];
iterative improvement with composite neighbourhoods [2];
a graph-based hyper-heuristic [9] and a hybrid
evolutionary algorithm [1].

There are many versions of evolutionary algorithms that have
been discussed in the literature, however, there is a common
underlying idea that underpins the basic structure of these
algorithms [14], such as, and most of the evolutionary
algorithms are population-based meta-heuristics. These
algorithms maintain a population of solutions and conduct the
search process by simulating natural selection based on
Darwin's theory of survival of the fittest. This means that
only strong individual solutions will survive and participate in
the selection for reproduction before being subject to the
process of recombination and mutation. Sastry et al. [25]

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012

ISSN (Online): 1694-0814

www.IJCSI.org 1

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

explained various types of recombination and mutation
operators. Recombination is an operator which combines two
or more individuals from the mating pool in order to create
one or more new candidate solutions, whereas mutation is
usually designed to add more diverse solutions to increase the
chances of exploring large areas of the search space [25].
Mutation is only applied to one candidate solution and
produces one new solution. Even though crossover is one of
the main components in genetic algorithms and other
evolutionary algorithms, Moscato and Norman [20] and
Radcliff and Surry [23] have argued whether crossover
should be the main operator in Genetic Algorithms. It is
not an unusual practice that some papers present different
implementations of Evolutionary Algorithms in which
local search are used as a replacement for crossover. For
example, Ackley [5] proposed a genetic hill-climbing
approach in which the crossover operator only plays a
small role in the algorithm. In addition, according to Bäeck
et al. [7] the Evolutionary strategies community has
emphasised on mutation rather than crossover.

This paper proposes a two-stage hybrid meta-heuristic
approach to tackle course timetabling problems. The first
stage constructs feasible timetables while the second stage is
an improvement process that also operates within the feasible
region of the search space. The second stage is a combination
of non-linear great deluge [18] with evolutionary operators to
improve the quality of timetables.

The rest of this paper is organised as follow, in Section 2,
the subject problem and test instances are described.
Section 3 gives the description of the evolutionary non-
linear great deluge approach proposed for solving the
university course timetabling problems. Computational
experiments and results are presented in Section 4 and the
paper ends with a conclusion in Section 5.

2. University Course Timetabling

In general, university course timetabling is the process of
allocating, subject to predefined constraints, a set of
limited timeslots and rooms to courses, in such a way as to
achieve as close as possible a set of desirable objectives. In
timetabling problems, constraints are commonly divided
into hard and soft constraints. A timetable is said to be
feasible if no hard constraints are violated while soft
constraint may be violated but we try to minimise such
violation in order to increase the quality of the timetable.
In this work, we tackle the course timetabling problem
defined by Socha et al. [26] where there are: n events E = {

e1, e2, ..., en }, k timeslots T = { t1, t2, ..., tk } and m rooms R =

{ r 1, r2, ... , rm } and a set S of students. Each room has a
limited capacity and a set F of features that might be
required by the events. Each student must attend a number
of events within E. The problem is to assign the n events to
the k timeslots and m rooms in such a way that all hard
constraints are satisfied and the violation of soft constraints
is minimised.

Hard Constraints. There are four in this problem:

 H1: a student cannot attend two events
 simultaneously.

 H2: only one event can be assigned per timeslot
 in each room.

 H3: the room capacity must not be exceeded at
 any time.

 H4: the room assigned to an event must have
 the features required by the event.

Soft Constraints. There are three:

 S1: students should not have exactly one event
 timetabled on a day.

 S2: students should not have to attend more
 than two consecutive events on a day.

 S3: students should not have to attend an event
 in the last timeslot of the day.

The benchmark data sets proposed by Socha et al. [26] are
split according to their size into 5 small, 5 medium and 1
large, as shown below :

Category Small Medium Large
Number of events n 100 400 400
Number of rooms m 5 10 10
Number of room features
|F|

5 5 10

Number of students |S| 80 200 400
Number of events per
student

20 20 20

Maximum students per
event

20 50 100

Approximation features
per room

3 3 5

Percent feature use 70 80 90

Table 1 Parameter values for the course timetabling problem categories
in the set by Socha, Knowles and Samples [26]. The last four rows
give some indication about the structure of the instances.

For all instances, k = 45 (9 hours in each of 5 days). It
should be noted that although a timetable with zero penalty
exists for each of these problem instances (the data sets
were generated starting from such a timetable [26]), so far

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012

ISSN (Online): 1694-0814

www.IJCSI.org 2

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

no heuristic method has found the ideal timetable for the
medium and large instances. Hence, these data sets are still
very challenging for most heuristic search algorithms.

2.1 Problem Formulation

The objective in this problem is to find a feasible solution
that minimises the violation of soft constraints. The
problem data sets described above (Socha et al. instances)
can be formalised as follows. Let X is the set of all
possible solutions, where each event has been assigned a
pair timeslot-room. Let A = {h1, h2, h3, h4} be the set of
all hard constraints. Let B = {s1, s2, s3} be the set of all
soft constraints for which violation should be minimised.
Let XX ~ be the set of all feasible solutions that satisfy
the hard constraints in A. The cost function f(x) for both
problem data sets can be represented by this formulation.
Each solution x X

~ is associated with a cost function
measuring the total violation of soft constraints in B. The
main objective of this problem is to search for an optimal
solution *x X

~ , in this case an optimal solution is, if f(x*)

 f(x), x X . The cost function f(x) measures the
quality of the feasible solution x X by measuring the
violation of the total soft constraints given by:

f(x) =

Ss

sxfsxfsxf)),(),(),((321

),(1 sxf : number of times a student s in

timetable x is assigned to the last timeslot of the
day.

),(2 sxf : number of times a student s in

 timetable x is assigned more than two
 consecutive classes. Every extra consecutive
 class will add 1 penalty point, for example
),(2 sxf = 1 if a student s has three consecutive

 classes and),(2 sxf : = 2 if the student s has

 four consecutive classes, and so on.
),(3 sxf : number of times a student s in timetable

x is assigned a single class on a day.),(3 sxf = 1

if student s has only 1 class in a day and if
student s has two days with only one class

),(3 sxf = 2.

3. Evolutionary Non-Linear Great Deluge
 Approach

As discussed in the introduction, crossover operator can be
replaced by local search. For example Ackley [5] used hill-
climbing as an operator instead of crossover after arguing that
crossover was not effective and played less dominant role.

Gorges-Schleuter [15] used local search as an operator in
evolutionary algorithms, and showed that it definitely
improves the quality of the solutions.

In this work, we propose to extend the single solution non-
linear great deluge approach to a population-based
evolutionary approach by incorporating tournament
selection, a mutation operator and a replacement strategy.
The motivation behind the introduction of evolutionary
operators into our great deluge algorithm comes from the
interest for striking a good balance between diversification
and intensification, which are the main strategic forces in
meta-heuristic approaches. Therefore, a good search
technique must balance these two forces in order to
achieve robustness and effectiveness in the search as well
as to help the search activity to find optimal or near
optimal solutions. Diversification is the ability to reach not
yet visited regions in the search space and it can be
achieved by disturbing some of the solutions using special
operators (in our case, we use mutation) when necessary.
Intensification is about exploiting the current search space
regions by using local search (non-linear great deluge in
our case) to obtain better quality of solutions.

Figure 2 shows the components of the proposed evolutionary
non-great deluge algorithm. It begins by generating an initial
population of solutions of size P which becomes the pool of
solutions. Then, a number of generations take place and in
each of them the algorithm works as follows. First,
tournament selection is used to choose 5 individuals at
random from the pool of solutions and the one with the best
fitness is selected (xt). With probability less or equal to 0.5, a
mutation operator is applied to xt while maintaining feasibility
and obtaining solution xm. The probability value was
determined by experimentation (If we apply the mutation too
high or too low, no much improvement can be found). Next,
the non-linear great deluge algorithm is applied to xm to
obtain an improved solution xi. Then, the worst solution in the
pool of solutions, xw (ties broken at random) is identified and
if xi is better than xw

 then xi replaces xw in the pool of
solutions. This evolutionary non-liner great deluge algorithm
is then executed for a pre-determined computation time
according to the size of the problem instance. Note that this is
a steady-state evolutionary approach that uses non-linear great
deluge for intensification and a mutation operator for
diversification. The following subsections describe each of
the algorithm components is more detail.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012

ISSN (Online): 1694-0814

www.IJCSI.org 3

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Figure 1:The Evolutionary Non-linear Great Deluge Algorithm.

3.1 Solution Representation

Each solution in the population uses a direct
representation, consisting of a chromosome with
information on what events or courses are assigned into a
pair of timeslot-room. In addition, the chromosome is also
used to keep information on forbidden assignments for a
particular timeslot and room. Figure 2 illustrates the direct
encoding of an individual solution used in the population.

ei is an event number i, i 姦 {1,...,n} where n is the number of

events that need to be scheduled in the available timeslot t,

t 姦 {1, k } where k is the number of available timeslots. For
example event e4 is assigned to timeslot 1 in room 1.

Figure 2: Solution Representation (direct encoding) of a Timetable where
events are assigned to pairs timeslot-room.

3.2 Initialisation of the Population

The initial population of solutions is generated using the
heuristic described in Algorithm 1. Two well-known graph
colouring heuristics are incorporated, Largest Degree (LD)
and Saturation Degree (SD). First, the events in the pool of
unscheduled events are sorted based on LD. After that, we
choose the event with the highest LD and calculate its SD.
In the first while loop, the initialisation heuristic attempts
to place all events into timeslots while avoiding conflicts.
In order to do that, the heuristic uses the SD criterion and a
list of rescheduled events to temporarily insert the
conflicting events. The heuristic tries to do this for a given
timeU but once that time has elapsed, all remaining
unscheduled events are inserted into random timeslots. If
by the end of the first while loop the solution is not yet
feasible, at least the penalty due to hard constraint
violations is already very low. In the second while loop,
the heuristic uses simple local search and tabu search to
achieve feasibility with two neighbourhood moves M1 and
M2. M1 selects one event at random and assigns it to a
feasible pair timeslot-room also chosen at random. M2
selects two events at random and swaps their timeslots and
rooms while ensuring feasibility is maintained. The local
search attempts to improve the solution but it also works as
a perturbation operator. The tabu search uses move M2
only, which selects only an event that violates the hard
constraints. The tabu search runs for a fixed number of
iterations tsmax. In our experiments, this initialisation
heuristic always finds a feasible solution for all the
problem instances considered.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012

ISSN (Online): 1694-0814

www.IJCSI.org 4

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

4.3 The Evolutionary Operator: Mutation

With a probability less or equal to 0.5 (p ≤ 0.5), the
mutation operator is applied to the solution selected
from the tournament (xt). The mutation operator selects
at random one out of three types of neighbourhood
moves in order to change the solution while maintaining
feasibility. These moves are described below.

1. Move M1. Selects one event at random and
assigns it to a feasible timeslot and room.

2. Move M2. Selects two events at random and

swaps their timeslots and rooms while ensuring
feasibility is maintained.

3. Move M3. Selects three events at random, then it

exchanges the position of the events at random
and ensuring feasibility is maintained.

5. Non-linear Great Deluge Algorithm

The non-linear great deluge algorithm is a modified
great deluge algorithm which incorporates a non-linear

decay rate. The motivation behind the use of a non-
linear decay rate and floating water level is to enhance
the feedback between the search activity and the water
level. Early in the search the algorithm is able to reduce
the penalty cost considerably and the gap between the
water level and the penalty cost is usually very large.
Therefore, the algorithm must prevent the cost function
to go back near to the water level and for this reason it
is important to reduce the gap between the water level
and the penalty cost. Later in the search, it becomes
more difficult to find the improvement moves. To
manage this situation, we float the water level to
prevent the algorithm becoming greedy. By floating the
water level the algorithm tries to diversify the search by
extending its search to a different region of the search
space. Therefore, at the early stage of the search this
algorithm performs more intensification and less
diversification. However, when the search gets stuck in
the local optima the algorithm begins to diversify the
search by floating the water level (increasing the water
level). The main weakness with the linear decay of the
water level is that the water level decreases too quick in
the later stages of the search. At the beginning, the
algorithm seems to produce several successful moves.
However when the search is in the middle or
approaching the end of the search and the water level
converges with the value of the current best solution,
most of the neighbourhood solutions are rejected and
this situation hinders the algorithm in diversifying the
search. Therefore, the algorithm suffers on its own
greediness by trapping itself in local optimum. In the
conventional great deluge approach, there is no
mechanism to help escaping local optima once
the water level and the best solution penalty cost
converge. The non-linear great deluge algorithm is
described in Algorithm 2.

5.1 Non-linear and Floating Water Level
 Decay

Consider a problem in which the goal is to find the solution
that minimises a given objective function. The distinctive
feature of the conventional great deluge Consider a problem
in which the goal is to find the solution that minimises a
given objective function. The distinctive feature of the
conventional great deluge algorithm is that when the
candidate solution S* is worse than the current solution S,
then S* replaces S depending on the current water level B.
The water level is initially set according to the quality of
the initial solution, that is, B > f(S) where f(S) denotes
the objective function value of the initial solution S . The
decay, i.e. the speed at which B decreases, is determined

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012

ISSN (Online): 1694-0814

www.IJCSI.org 5

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

by a linear function in the conventional great deluge
algorithm:

 B = B - B where B
 (3.0)

The non-linear great deluge algorithm uses a non-linear
decay for decreasing the water level. The decay is given by
the following expression:

 B = B X)(exp max])([min,
 (3.1)

The various parameters in Eq. (3.1) control the speed and
the shape of the water level decay rate. Parameter

represents the minimum expected value corresponding to
the optimal solution. In this paper, we set = 0 because

we want the water level to reach that value by the end of
the search. This is because we know that an optimal value
of zero is possible for the problem instances tackled in this
paper. If for a given minimisation problem we knew that
the minimum objective value that can be achieved is let's
say 100, then we would set around that value. If there is

no previous knowledge on the minimum objective value
expected, then we suggest to tune through preliminary

experimentation for the problem in hand. The role of the
parameters , min and max (more specifically the
expression max])([min,exp) is to control the speed of the

decay and hence the speed of the search process. A random
min and max are drawn from the uniform distribution
interval [min, max] and the min and mix are integer
numbers. By changing the value of these three parameters,
the water level goes down faster or slower. Therefore, the
lower the values of min and max, the faster the water level
goes down, and in consequence, the search quickly
achieves an improvement but it also gets stuck in local
optima very early. To escape from the local optima, the
algorithm needs to increase the water level.

In this paper, the value of the parameters in Eq. (3.1) were
determined by experimentation. We tested different
combination of parameter values (- and rnd [min, max])
and observe the effect of each combination in order to find
suitable parameters for given problem. Based on the
preliminary experiments, we now then assigned, the

values of 5X 1010 , 5X
810 and 5X 910 for small, medium

and large instances respectively. As said before, the value
of for all problem instances is = 0. The values of

min and max in Eq. (3.1) are set according to the size of
the problem instance. For medium and large problems we
used min = 100000 and max = 300000. For small problems
we used min = 10000 and max = 20000. The parameter
values for small instance is only apply when the penalty
cost reach to 10 points. Therefore, it means that from the
first iteration the non-linear great deluge algorithm uses the

same parameters used for medium instances and changes
the parameters when it reaches the penalty cost to 10
points. The use of the non-linear decay rate is shown in
algorithm 2 below.

In addition to using a non-linear decay rate for the water
level B, we also allow B to go up when its value is about to
converge with the penalty cost of the candidate solution
S*. This occurs when range 1 in Algorithm 2 (range is
the difference between the water level and the penalty
cost). We increase the water level B by a random number
within the interval [

minB ,
maxB]. All the parameter values in

[
minB ,

maxB] were identified by experimentation. For small

problem instances the interval used was [2, 5]. For the
large problem instance the interval used was [1,3]. For
medium problem instances, we first check if the penalty of
the best solution so far)(bestSf is lower than a parameter

lowf . If this is the case, then we use [1,4] as the interval

[
minB ,

maxB]. Otherwise, we assume that the best solution

so far seems to be stuck in local optima ()(bestSf >

lowf) so we make B = B + 2. The concept of floating water

level might be similar to reheating concept in simulated
annealing, however in simulated annealing to reheat the
temperature, it uses the geometric reheating method. In our
method we increase the water level at random. In addition,
acceptance in simulated annealing uses probability while
great deluge does not employ probability. Full details of
this strategy to control the water level decay rate in the
modified great deluge are shown in Algorithm 2.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012

ISSN (Online): 1694-0814

www.IJCSI.org 6

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

The behaviour of the proposed Algorithm 2 can be
illustrated in Figure 3. From the outset, the water level is
equal to the current penalty cost. When the search progress
the current penalty cost is improving as shown by the blue
line. The water level decreases quickly to prevent a huge
gap between the water level and the current penalty cost.
As shown in the figure, when the water level and current
penalty cost is about the converge the algorithm then float
the water level as shown by the up and down red line.

 Fig. 3 Non-Linear Great Deluge Behaviour.

 Fig. 4 Comparison between linear (Eq. 1) and non-linear
 (Eq. 2) decay rates and illustration of the effect of

 parameters , , min and max on the shape of the

 non-linear decay rate.

6. Experiments and Results

In this paper we propose two different stopping conditions
for the algorithm. Since non-linear great deluge plays the
main role in the evolutionary non-linear great deluge
algorithm, we want to investigate which are the adequate
criteria for stopping the non-linear great deluge search
before it goes to the next process which is update of the
pool of solutions (see Figure 1). It should be clear that the
non-linear great deluge search promotes intensification in
the overall evolutionary method. The use of a population
of solutions and the mutation operator promote
diversification. Then, by setting the stopping condition for
the non-linear great deluge search, we are effectively
setting (in a simple manner) the balance between

intensification and diversification in the overall
evolutionary approach. The first strategy for this balance is
to stop the non-linear great deluge after 8000 idle
iterations or 30 seconds of computational time, whichever
happens first. The second strategy is to stop the non-linear
great deluge after three seconds of computational time.
The first strategy gives more time to intensification while
the second strategy attempts to promote diversification
more by stopping intensification sooner. In general, the
whole hybrid evolutionary process can be described as
follows.

After generating the initial set of solutions, this population
then becomes the pool of individual solutions (refer to
Figure 1). After the tournament selection of a solution s,
this solution is mutated or not as explained above
according to the set probability. Then, the non-linear great
deluge search takes place over the solution s. The non-
linear great deluge search continues until the given
stopping condition, one of the two strategies explained
above, is satisfied. We implemented three variations of the
proposed evolutionary algorithm in order to examine the
performance of the algorithm when each of the two
stopping conditions is used and also when the mutation
operator is re-moved. The three algorithm variants are:
Evolutionary Non-linear Great Deluge Without Mutation
(ENLGD-M), Evolutionary Non-linear Great Deluge using
stopping condition 1 (ENLGD-1) and Evolutionary Non-
linear Great Deluge using stopping condition 2 (ENLGD-
2). Both ENLGD-1 and ENLGD-2 have the mutation
operator incorporated. The aim of examining these
algorithm variants is to assess the robustness of the
proposed evolutionary algorithm with different settings. By
robustness we mean the reliability of the algorithm to
produce high-quality of solutions under different settings.
Table 2 shows the various parameter settings for the three
algorithm variants examined here.

Table 2: Parameter Setting for the Three Variants of the Proposed
Evolutionary Non-Linear Great Deluge Algorithm.

Parameter ENLGD-M ENLGD-1 ENLGD-2

Mutation no mutation applied 0.5 0.5

Stopping condition idle 8000 iterations Idle 8000 iterations every 3 seconds

 or 30 seconds or 30 seconds of computation time

Replacement Steady state Steady state Steady state

Stopping time for small (2600 seconds) small (2600 seconds) small (2600 seconds)

whole search Medium (7200 seconds) medium(7200 seconds) medium (7200 seconds)

Process large (10000 seconds) large (10000 seconds) large (10000 seconds)

We now evaluate the performance of the proposed
evolutionary algorithm (in this experiments, we used the
benchmark instances by Socha et, al. [26]). For each

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012

ISSN (Online): 1694-0814

www.IJCSI.org 7

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

problem size, a fixed computation time (timemax) in seconds
was used as the stopping condition: 1000 for small
problems, 7200 for medium problems and 10000 for the
large problem. This fixed computation time is for the
whole process including the construction of the initial
population. We executed the proposed evolutionary
algorithm 20 times for each problem instance.

Table 3 shows the experimental results for the three
algorithm variants described above, i.e. ENLGD-M,
ENLGD-1 and ENLGD-2. The Table shows the best and
the average results obtained for each method. For each
dataset, the best results are indicated in bold. As shown in
Table 3, the evolutionary non-great deluge algorithms
(ENLGD-1 and ENLGD-2) clearly outperform NLGD.
The results also show that both ENLGD-2 and ENGLD-1
produce better results when compared to ENLGD-M. This
means that the tailored mutation operator makes a
significant impact to the good performance of ENLGD.
Besides that, the results also show that ENLGD-2
outperforms ENLGD-1 and ENLGD-M. This means that
balancing the intensification and diversification helps the
ENLGD approach to better explore the search space rather
than run the intensification for longer which makes the
local search to converge earlier (as in the ENLGD-1 case).
The intensification phase is mainly carried out by NLGD.

Table 3: Comparison of NLGD, ENLGD-M, ENLGD-1 and ENLGD-2
on the Socha et al. UCTTP Instances.

IN NLGD ENLGD-M ENLGD-1 ENLGD-2

 Best Avg Best Avg Best Avg Best Avg
S1 3 3.6 0 1.55 0 0.95 0 0.7
S2 4 4.85 0 2.2 0 1.45 0 0.3
S3 6 6.85 1 2.7 0 1.3 0 1.05
S4 6 6.85 0 1.7 0 1.35 0 1.25
S5 0 1.75 0 0 0 0 0 0
M1 140 160.75 144 176.65 125 140 59 84.8
M2 130 156 140 162 123 149.1 51 93.8
M3 189 212.1 182 204.8 178 199.3 75 121.05
M4 112 138.3 135 164.6 116 130.2 48 72.8
M5 141 192.6 123 173.15 129 168.6 65 110.2
L 876 974.3 970 1026 821 946.1 703 819.2

Further investigation was also carried out to inspect the
overall performance of ENLGD algorithm. Figures 5, 6
and 7 the performance of the various versions of the
algorithm together with NLGD. The x-axis corresponds to
the instance type while the y-axis corresponds to the
penalty cost. Figure 5 shows the strong performance of
ENLGD-2 on medium and large instances, while also
obtaining optimal solutions with the same quality as the
other algorithms for small instances. In addition, Figure 6
and Figure 7 show details of the results achieved by the
proposed algorithms. Both figures show that according to
the average results, ENLGD-2 outperformed the other
algorithms.

Overall, this experimental evidence shows that by
combining some key evolutionary components with single-
solution NLGD approach, we have been able to produce a
hybrid evolutionary approach that is still quite simple but
much more effective than the single-solution stochastic
local search in generating best known solutions for a well-
known set of difficult university course timetabling
instances. It is also evident that the mutation operator
makes a significant contribution to the good performance
of ENLGD as the results obtained without this operator
(ENLGD-M) are considerably worse in medium and large
instances. The proposed algorithm seems particularly
effective on small and medium problem instances.

Fig. 5 Best Results Obtained by the Proposed Algorithm

Fig. 6 Average Results Obtained by the Proposed Algorithm Variants on
Small Instances.

Fig. 7 Average Results Obtained by the Proposed Algorithm Variants on
medium and large Instances.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012

ISSN (Online): 1694-0814

www.IJCSI.org 8

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Table 4: Comparison of results obtained by the Evolutionary Non-Linear
Great Deluge (ENLGD) proposed in this chapter against the best known
results from the literature for the 11 Socha et al. UCTTP instances.

ENLGD-2 is Evolutionary Non-Linear Great Deluge with stopping strategy 2.
NLGD is Non-Linear Great Deluge [18].
RRLS is the Local Search and Ant System in [27]
MMAS is the MAX-MIN Ant System in [26]
GALS is Genetic algorithm and local search by Abdullah and Turabieh [4].
RIICN is Randomised iterative improvement algorithm by Abdullah et al. [1].
GBHH is Graph-based Hyper-heuristic by Burke et al. [9].
CFHH is the Choice Function Hyper-heuristic in [8]
VSN-T is Variable neighbourhood search with tabu by Abdullah et al. [3].
HEA is Hybrid evolutionary approach by Abdullah et al. [2].
FMHO is fuzzy multiple heuristic ordering [6]
EGD is Extended Great Deluge [19]
S1-S5 represent small problem instances 1 to 5
M1-M5 represent medium problem instances 1 to 5

Table 4 compares the results obtained by the approach
proposed with the state of the art approaches in the
literature that have been used to solve the course
timetabling problem. The term x%Inf in Table 4 illustrates
a percentage of runs that were unable to achieve feasibility.
The figures in bold indicate the best results. Results in the
Table indicate that some of the algorithms were unable to
produce feasible solutions. However, in contrast, our
approach was able to achieve feasible solutions. It can be
seen that the proposed hybrid evolutionary approach
(ENLGD-2) matches the best known solution quality for
all small problem instances. For medium instances,
ENLGD-2 was able to achieve better quality solutions
when compared against all other methods listed in Table 3.
More interestingly ENLGD-2 is able to produce high
quality solutions and outperformed the best known results
obtained by other algorithms as reported in the literature.
Only on the case of the large problem instance, we see that
our algorithm does not match the best known result
reported by Abdullah at al. [2]. However, our result is still
comparable to other results reported in the literature.
Overall, this experimental evidence shows that by
combining some key evolutionary components and an
effective stochastic local search procedure, we have been
able to produce a hybrid evolutionary approach that is still
quite simple but more effective than the single-solution
stochastic local search in generating best know solutions
for well-known set of difficult course timetabling problem
instances. The proposed algorithm seems particular
effective on small and medium problem instances.

6.1 Statistical Analysis

To compare the performance of the different methods
proposed, we run some statistical analysis. Even though
conclusions can usually be made based on the best and
average results obtained by each algorithm, those
conclusions and analysis might be premature. Therefore,
ANOVA was used to determine whether there is a
significant difference in performance among ENLGD-2,
ENLGD-1, ENLGD-M and NLGD. Before we proceed to
the analysis, it is essential to verify the compatibility of the
models with the sample data. There are important
hypotheses that need to be verified: normality,
independency and homogeneity of the sample data. After
running the descriptive analysis, we found that our sample
data fulfils the hypothesis requirements. For that reason
variance analysis (ANOVA) is considered suitable for the
sample data hypothesis ensuring the validity of the
experiment. ANOVA is one of the existing statistical
models used to test significant differences between means
and this tool is very useful to make comparison when
dealing with three or more means.

The analysis showed that there are statistically significant
differences among the proposed algorithms with the p-
value very close to zero as shown in Figure 8.
The p-value stands for probability ranging from zero to
one. Therefore, the p-value is used to measure the
difference in population means and used as an evidence to
reject or accept the null hypothesis. In our case the null
hypothesis H0 is that there are no significant differences in
performance between the algorithms. Therefore, if we
reject H0 then we accept that there are significant
differences in performance
among the algorithms. Tables 7, 8 and 9 clearly show that
there are significant differences between the algorithms as
described below:

 For small instances, the p-value are less than the
confidence level at 0.05 for every pair of
algorithms (ENLGD-2, ENLGD-1), (ENLGD-2,
ENLGD-M), (ENLGD-2, NLGD), (ENLGD-1,
ENLGD-M) and (ENLGD-M, NLGD).

 For medium instances there are significant
differences in performance between (ENLGD-2,
ENLGD-1), (ENLGD-2, ENLGD-M), (ENLGD-
2, NLGD), (ENLGD-1, ENLGD-M) where the p-
value are less than the confidence level at 0.05.

 However, there is no significant difference in
performance between NLGD and ENLGD-M,
where the Post-Hoc analysis shows that the p-
value is 0.659 (greater than 0.05).

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012

ISSN (Online): 1694-0814

www.IJCSI.org 9

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 Finally for the large instance, there are significant
differences in performance between (ENLGD-2,
ENLGD-1), (ENLGD-2, ENLGD-M) (ENLGD-2,
NLGD) and (ENLGD-1, ENLGD-M) where the
p-value for the respective pairs are less than 0.05
significance level. Interestingly, the Post-Hoc test
shows that there is no significant difference in
performance between (ENLGD-1, NLGD) and
(NLGD-M, NLGD) where the p-value are 0.697
and 0.063 respectively, where both p-value is
greater than significant level at 0.05.

The Post-Hoc analysis clearly showed that all four
algorithms perform differently. However, at this stage we
still do now know which algorithm is actually
outperforming the others across the eleven instances. Thus,
to evaluate this, we plot the mean of each algorithm with
Least Significant Difference (LSD) intervals at 95%
confidence level for the different algorithms as shown in
Figures 8.

Figure 9, Figure 10 and Figure 11 present the means plot
of each algorithm, for the specific instances. Figure 8
shows that there are three homogenous groups for small
instances (ENGLD-1, ENLGD-2), (ENLGD-M) and
(NLGD). The best algorithm is ENGLD-2 followed by
ENLGD-1 and ENLGD-M, the worst algorithm is NLGD.
In medium instances we also found three homogenous
groups as shown in Figure 9 and they are (ENGLD-1),
(ENLGD-2) and (ENLGD-M, NLGD). The algorithm that
performs well in medium instances is ENGLD-2 followed
by ENLGD-1 and two algorithms which perform slightly
worst are ENLGD-M and NLGD. Finally, for the large
instance, we found that there are three homogenous group
(ENGLD-1, NLGD), (ENLGD-2) and ENLGD-M. In the
large instance case, we found that ENLGD-2 outperforms
the other algorithms and ENLGD-M is the worst. In
conclusion, considering the overall performance, ENLGD-
2 is the best algorithm followed by ENLG-1, NLGD and
the worst algorithm is ENLGD-M (mutation operator
removed). to 10. LSD is used to measure the significant
differences between group means in ANOVA. From the
mean plot, we see that ENLGD-2 outperforms the other
algorithms followed by ENLGD-1, NLGD and the worst
algorithm is ENLGD-M.

The statistical analysis presented in the paper suggest that
each algorithm performs differently across all 11 Socha et
al. Instances[26]. This analysis also shows that ENLGD-2
outperforms the three other algorithms across all instances.
It is also evident that the mutation operator makes a
significant contribution to the good performance of
ENLGD-2 as the results obtained by ENLGD-M are
considerably worse. Moreover, the strategy applied in

ENLGD-2 to balance intensification and diversification
proves to be a good strategy as it managed to further
improve the solution quality compared to ENLGD-1. As a
conclusion, the proposed evolutionary non-linear great
deluge approach matches the best known solution quality
for almost all small problem instances and improves the
best known results for most all medium instances. For
large instances, the evolutionary non-linear great deluge
algorithm did not match the best known results published
in the literature. However, the results are still competitive
when compared to the results obtained by other algorithms
reported in the literature.

Table 5: Average Penalty Cost of ENLGD-2 and ENLGD-1 Across the
11 Socha et al. Instances.

 ENLGD-2 ENLGD-1
Run Small Medium Large Small Medium Large

1 0.8 95.6 703 0.20 159 821

2 0.4 85.8 927 1.4 165.4 940

3 0.4 95.4 835 1 167.8 963

4 0.4 93.6 968 1.2 163.6 879

5 0.4 108.6 895 1 165.2 954

6 0.4 99.8 730 1.2 162 952

7 0.2 81.2 782 8.8 146.4 938

8 0.4 91.6 711 1.2 148.2 976

9 0.8 110.4 777 1 147.4 1018

10 1 96.4 838 0.6 144.4 1020

11 0.4 96.6 808 1 171.6 968

12 1 98.4 944 1.6 178 904

13 0.8 91.2 870 1.2 158.8 958

14 1.2 96.4 807 0.4 159.2 876

15 0.4 83.6 849 1.8 165 876

16 1.2 90.6 713 1.6 156 970

17 0.4 117.8 852 1.2 169.6 918

18 0.6 102.2 795 0.6 172.8 1003

19 1.6 106 779 0.6 148.2 1031

20 0.8 89.4 801 0.6 175.2 1072

Table 6: Average Penalty Cost of ENLGD-M and NLGD Across the 11
Socha et al. Instances.

 ENLGD-M NLGD

Run Small Medium Large Small Medium Large

1 2 186.2 1023 3.8 142.4 966

2 2 176.6 1070 4.8 165 1070

3 1.4 191.6 998 6 165.6 876

4 2 177.6 1142 5.2 162.2 935

5 1.4 205.8 1114 5 165.2 971

6 1 189.8 984 4.6 166.8 942

7 1 184 923 5 165.4 895

8 1.8 179.6 970 5.2 156.8 976

9 2 166.4 1082 5.4 160.4 986

10 1.4 185 1023 5.4 172.8 1005

11 1.8 192.2 1023 3.8 185 966

12 2 159.2 1070 4 171.6 1070

13 2 178.8 998 4.2 177 935

14 2.2 156.4 1142 4.2 181 1024

15 1.6 167.6 984 4 172.4 942

16 2 166.6 923 5 188.4 958

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012

ISSN (Online): 1694-0814

www.IJCSI.org 10

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

17 1.6 168.6 970 4.2 179.6 978

18 0.8 168.8 1082 5.4 182.6 1005

19 1.4 156.6 1023 5.4 196 1078

20 1.2 166.8 982 5 183.8 907

Fig 8: ANOVA Results.

 Table 7: Post Hoc Tests - Small Instances

 ENLGD-2 ENLGD-1 ENLGD-M NLGD

ENLGD-2 - 0.041 0.000 0.000

ENLGD-1 0..041 - 0.000 0.000

ENLGD-M 0.000 0.000 - 0.000

NLGD 0.000 0.000 0.000 -

 Table 8: Post Hoc Tests - Small Instances

 ENLGD-2 ENLGD-1 ENLGD-M NLGD

ENLGD-2 - 0.000 0.000 0.000

ENLGD-1 0..000 - 0.001 0.019

ENLGD-M 0.000 0.000 - 0.649

NLGD 0.000 0.019 0.649 -

Table 9: Post Hoc Tests - large Instances

 ENLGD-2 ENLGD-1 ENLGD-M NLGD

ENLGD-2 - 0.000 0.000 0.000

ENLGD-1 0..000 - 0.003 0.697

ENLGD-M 0.000 0.003 - 0.063

NLGD 0.000 0.697 0.063 -

7. Conclusions

The overall endeavour of this paper was to extend our
previous approach, a non-linear great deluge algorithm,
towards an evolutionary variant by incorporating some key
operators like a population of solutions, tournament
selection, a mutation operator and a steady-state
replacement strategy. The performances of the various
versions of evolutionary non-linear great deluge were
compared along with the single-solution NLGD algorithm.
Preliminary comparisons illustrate that ENLGD-2
outperforms the results produced by other versions of
ENLGD and NLGD algorithms. The results from our
experiments also provide evidence that our hybrid
evolutionary algorithm is capable of producing best known
solutions for a number of the test instances used here.
Obtaining the best timetables (with penalty equal to zero)
for the medium and large instances is still a challenge.
However, when compared to the results obtained by
ENLGD-2 to the best know results reported in the
literature, obviously, ENLGD-2 outperform all the results
of medium instances and produced comparable ones for
large instance.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012

ISSN (Online): 1694-0814

www.IJCSI.org 11

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

References
[1] S. Abdullah, E. K. Burke and B. McCollum, “A Hybrid
 Evolutionary Approach to the University Course
 Timetabling problem”. in proceedings of CEC: The IEEE
 Congress on Evolutionary Computation, 2007, pp. 1764-
 1768.
[2] S. Abdullah, E.K. Burke and B. McCollum, “Using a
 Randomised Iterative Improvement Algorithm with
 Composite Neighbourhood Structures for University
 Course Timetabling”, Metaheuristics-Progress in
 Complex Systems Optimization, 2007, pp. 153-172.
 [3] S. Abdullah, E. K. Burke and B. McCollum, “ An
 Investigation of Variable Neighbourhood Search
 for University Course Timetabling”, in The 2nd
 Multidisciplinary Conference on Scheduling:
 Theory and Applications, NY, USA, 2005,
 pp. 413-427.
 [4] S. Abdullah, H. Turabieh, “ Generating University
 Course Timetable Using Genetic Algorithms and Local
 Search”, in The Third International Conference on
 Convergence and Hybrid Information Technology
 (ICCIT), 2008, pp. 254-260.
[5] D.H. Ackley, A Connectionist Machine for Genetic
 Hill Climbing, Kluwer Academic Press, Boston,
 1987.
[6] H. Asmuni, E.K. Burke and J. Garibaldi, “Fuzzy
 Multiple Heuristic Ordering for Course Timetabling”,
 in Proceedings of the 5th United Kingdom, Workshop
 on Computational Intelligence (UKCI), 2005, pp. 302-309.
[7] T. Back, F. Hoofmeister and H. Schwefel, “A survey
 of Evolution Strategies”, in Proceedings of the Fourth
 International Conference on Genetic Algorithms, 1991,
 pp. 2-9.
[8] E. Burke, G. Kendall and E. Soubeiga, “A Tabu Search
 Hyperheuristic for Timetabling and Rostering”, Journal
 of Heuristics, 2003, vol. 9, pp. 451-470.
 [9] E. Burke, B. McCollum, A. Meisels, S. Petrovic and
 Q. Rong, “A Graph based Hyper-heuristic for Educational
 Timetabling Problems”, European Journal of Operational
 Research, 2007, vol. 176, pp. 177-192.
[10] E. Burke, J. Newall and R. Weare, “A Memetic
 Algorithm for University Exam Timetabling” , in
 Burke, E. Ross. P.(eds), The Practice Theory of
 Automated Timetabling: Selected Papers PATAT95,
 Napier University, Lecture Notes in Computer Science,
 Springer, New York, 1996, vol. 1153, pp. 241-25.
[11] E. K. Burke and J. P. Newall, “A Multi-Stage Evolutionary
 Algorithm for the Timetable Problem”, IEEE Transactions
 On Evolutionary Computation, 1999, vol. 13(1), pp. 63-74.
[12] T. Cooper and H. Kingston, “The Complexity of
 Timetable Construction Problems”, in Selected paper
 from the 1st International Conference on the Practice and
 Theory of Automated Timetabling (PATAT'95), LNCS,
 Springer, 1996, vol. 1153, pp. 283-295.
 [13] G. Dueck, “New Optimization Heuristic: The Great
 Deluge Algorithm and the Record-to-Record Travel”,
 Journal of Computational Physics, 1993, vol. 104,
 pp. 86-92.
[14] A. Eiben and J. E Smith, Introduction to Evolutionary
 Computing, Natural Computing Series. Springer first

 edition, 2003.

[15] M. Gorges-Schleuter, “ASPARAGOS: An
 Asynchronous Parallel Genetic Optimization Strategy”, in
 proceedings of the Third International Conference on
 Genetic Algorithms, Morgan Kaufmann (San
 Mateo), 1989, pp. 422-427.
[16] G. Gutin and D. Karapetyan, “ A Memetic Algorithm for
 the Generalized Travelling Salesman Problem”, Natural
 Computing, 2010, vol. 9(1), pp. 47-60.
[17] D. Haibin and X. Yu, “Hybrid ant Colony Optimization
 Using Memetic Algorithm for Travelling Salesman
 Problem”, in proceedings of the IEEE Symposium on
 Approximate Dynamic Programming and Reinforcement
 Learning (ADPRL), 2007, pp. 92-95.
[18] D. Landa-Silva and J. Henry Obit, “Great Deluge with
 Nonlinear Decay Rate for Solving Course Timetabling
 Problems”, in proceedings of the IEEE Conference on
 Intelligent Systems, IEEE Press, 2008, pp. 8.11-8.18.
[19] P. McMullan, “An Extended Implementation of the Great
 Deluge Algorithm for Course Timetabling”, Springer-
 Verlag Berlin Heidelberg, Part I, LNCS, 2007, vol. 4487,
 pp. 538-545.
[20] P. Moscato and M.G. Norman, “A Memetic Approach for
 the Traveling Salesman Problem Implementation of a
 Computational Ecology for Combinatorial Optimization
 on Message-Passing Systems”, in proceedings of the
 International Conference on Parallel Computing and
 Transporter Applications, 1992, vol. 28, pp. 177-186.
[21] E. Ozcan and A. Alkan, “A Memetic Algorithm for
 Solving a Timetabling Problem: An Incremental
 Strategy”, in P. Baptiste, G. Kendall, A. Munier-Kordon,
 and F. Sourd, editors, in proceedings of the 3rd
 Multidisciplinary International Conference on Scheduling:
 Theory and Applications (MISTA): Paris, France, 2007,
 pp. 394-401.
[22] B. Paechter , A.P. Cumming, M. Norman and H. Luchian,
 “ Extensions to a Memetic Timetabling System”, The
 Practice and Theory of Automated Timetabling I:
 Selected Papers from 1st International Conference on
 the Practice and Theory of Automated Timetabling
 (PATAT I), Springer-Verlag: Edinburgh, UK, 1996,
 vol. 1153, pp. 251-265.
[23] N. J. Radclife and P. D. Surry, “Formal Memetic
 Algorithms”, in Evolutionary Computing: AISB Workshop
 Workshop, Ed: T.C. Fogarty, Springer-Verlag LNCS,
 1994, vol. 865, pp. 1-16.
[24] O. Rossi-Doria, M. Sampels, M. Birattari, M. Chiarandini,
 M. Dorigo, L.C. Gambardella, J. Knowles, M. Manfrin.
 M. Mastrolilli, B. Paechter, B. Paquete and T. Stutzle, “A
 Comparison of the Performance of Different
 Metaheuristics on the Timetabling Problems”, selected
 papers from the 4th International Conference on the
 Practice and Theory of Automated Timetabling
 (PATAT), 2003, vol. 2740, pp. 330-352.
[25] K. Sastry, D. Goldberg and G.Kendall, “Genetic
 Algorithms”, in E. Burke and G. Kendall, editors, Search
 Methodology, Springer, 2005, pp. 97-125.
 [26] K. Socha, K.. Knowles and J. Samples, M, “A Max-Min
 Ant System for the University Course Timetabling
 Problems. in Ant Algorithms", in proceedings of The 3rd

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012

ISSN (Online): 1694-0814

www.IJCSI.org 12

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 International Workshop (ANTS), 2002, vol.2463,
 pp. 1-13.
 [27] K. Socha, M. Sampels and M. Manfrin, “Ant Algorithms
 for the University Course Timetabling Problems with
 Regard to the State-of-the-Art”, in Applications of
 Evolutionary Computing, proceedings of the
 EvoWorkshops, Springer, LNCS, 2003, vol. 2611, pp.
 334-345.

First Author Dr. Joe Henry Obit is a Senior Lecturer in the School
of Informatics Science in E-Commerce Department at the
Universiti Malaysia Sabah, Labuan International Campus. His
main research interest lies at the interface of Operational
Research and Computer Science. In particular, the exploration
and development of innovative Operational Research, Artificial
Intelligence, and Distributed Artificial Intelligence models and
methodologies for automatically producing high quality solutions to
a wide range of real world combinatorial optimisation and
scheduling problems. Dr. Joe Obtained his Bachelor Degree in
Finance at Universiti Kebangsaan Malaysia in 1999, an MSc
Information Technology from Universiti Putra Malaysia in 2001and
a PhD in Computer Science from the School of Computer Science
at the University of Nottingham. His PhD thesis is Developing a
Novel Meta-heuristic, Hyper-heuristic and Cooperative Search,
and it was under the supervision of Associate Professor Dr. Dario
Landa-Silva.

Second Author Dr. Djamila Ouelhadj is a Senior Lecturer in
Operational Research Department of Mathematics at the
University of Portsmouth. Her main research interest lies at the
interface of Operational Research and Computer Science. In
particular, the exploration and development of innovative
Operational Research, Artificial Intelligence, and Distributed
Artificial Intelligence models and methodologies for automatically
producing high quality solutions to a wide range of real world
combinatorial optimisation and scheduling problems. Dr. Djamila
Ouelhadj obtained her PhD in Computer Science from the School
of Computer Science at the University of Nottingham in 2002.

Third Author Dr. Dario Landa-Silva is an Associate Professor in
Computer Science for the School of Computer Science at the
University of Nottingham. He is a member of the Automated
Scheduling, Optimisation and Planning (ASAP) research group.
He is also a member of the Institute for Operations Research and
Management Sciences (INFORMS), the Operational Research
Society (ORS) and a member of the editorial board for the Neural
Computing and Application Journal. Dario Landa-Silva obtained a
Technical Professional Qualification in Electro-mechanics from the
CBTis 13 (Mexico) in 1987, a BEng in Industrial Electronic
Engineering from Instituto Tecnologico de Veracruz (Mexico) in
1991, an MSc in Engineering-Computer Science from DEPI in the
Instituto Tecnologico de Chihuahua in 1997 and a PhD in
Computer Science from the School of Computer Science at the
University of Nottingham in 2003.

Fourth Author Dr. Rayner Alfred is a Senior Lecturer in Software
Engineering Department for the School of Engineering and
Information Technology at Universiti Malaysia Sabah. His main
research interest lies at the Machine Learning in Knowledge
Discovery. Dr. Rayner Alfred obtained his BSc in Computer
Science at Polytechnic University of Brooklyn, New York, United
States of America in 1994, an MSc in Computer Science from
Western Michigan University, Michigan, United States of America
in 1997 and a PhD in Computer Science from the School of
Computer Science at the University of York, UK in 2008.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012

ISSN (Online): 1694-0814

www.IJCSI.org 13

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://www.nottingham.ac.uk/cs
http://www.nottingham.ac.uk/cs
http://www.nottingham.ac.uk/
http://www.nottingham.ac.uk/cs
http://www.nottingham.ac.uk/
http://asap.cs.nott.ac.uk/
http://asap.cs.nott.ac.uk/
http://www.informs.org/
http://www.informs.org/
http://www.theorsociety.com/
http://www.theorsociety.com/
http://www.itver.edu.mx/
http://depi.itchihuahua.edu.mx/
http://www.itch.edu.mx/
http://www.nottingham.ac.uk/cs
http://www.nottingham.ac.uk/
http://www.nottingham.ac.uk/cs
http://www.nottingham.ac.uk/cs
http://www.nottingham.ac.uk/

