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Abstract important technique in solving complex combinatorial
The aim of this paper is to extend our non-linear great delugeproblems. They are powerful techniques and have been

algorithm into an evolutionary approach by incorporating a applied to many complex problems e.g. the travelling

population and a mutation operator to solve the university COUrSesalesman problem [20,17,16], university exam timetabling
timetabling problems. This approach might be seen as a variatio

of memetic algorithms. The popularity of evolutionary rho]’ and university course timetabling problems [11, 22,
computation approaches has increased and become an importal 1].

technique in solving complex combinatorial optimisation

problems. The proposed approach is an extension of a non-lineaFinding good quality solutions for timetabling problems is

great deluge algorithm in which evolutionary operators are 5 very challenging task due to the combinatorial and highly

incorporated. First, we generate a population of feasible solutions,qgirained nature of these problems [13]. In recent years,
using a tailored process that incorporates heuristics fqrhgra

colouring and assignment problems. The initialisation process isseveral researchers have tackled the course timetabling
capable of producing feasible solutions even for large and mostp_mblem_r particularly the set of 11 instances of course
constrained problem instances. Then, the population of feasibleimetabling problem proposed by Socha et al. [26]. Among
timetables is subject to a steady-state evolutionary process thathe algorithms proposed there are: MAX-MIN ant system
combines mutation and stochastic local search. We conducteq2g]; tabu search hyper-heuristic strategy [8]; evolutionary
experiments to evaluate the performance of the proposedy|qgqrithm, ant colony optimisation, iterated local search,
algorithm and in particular, the contribution of the evolutionary _. . . .
simulated annealing and tabu search [24]; fuzzy multiple

operators. The results showed the effectiveness of the L . ) . . i
hybridisation between non-linear great deluge and evolutionaryN€uristic ordering [6]; variable neighbourhood search [3];

operators in solving university course timetabling problems. iterative improvement with composite neighbourhoods [2];

a graph-based hyper-heuristic [9] and a hybrid
Keywords: Evolutionary Algorithm, Non-linear Great evolutionary algorithm [1].
Deluge and Course Timetabling

There are many versions of evolutionary algorithms that have
1. Introduction been discussed in the literature, however, there is a common

underlying idea that underpins the basic structure of these
The central aim of this paper is to hybridise the non-linearalgorithms [14], such as, and most of the evolutionary
great deluge algorithm presented in our previous paperalgorithms are population-based meta-heuristics. These
[18] with the evolutionary approach by incorporating a algorithms maintain a population of solutions and conduct the
population and a mutation operator to solve the universitysearch process by simulating natural selection based on
course timetabling problem. This technique might be seenDarwin's theory of survival of the fittest. This means that
as a variation of memetic algorithms in particular as only strong individual solutions will survive and participate in
presented in [1, 12, 21, 22]. The popularity of evolutionary the selection for reproduction before being subject to the
computation approaches has increased and become aprocess of recombination and mutation. Sastry et al. [25]
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explained various types of recombination and mutation{r,r, ..., ,} and a set S of students. Each room has a
operators. Recombination is an operator which combines twolimited capacity and a set of features that might be
or more individuals from the mating pool in order to create required by the events. Each student must attend a number

one or more new candidate solutions, whereas mutation is0f events withirg. The problem is to assign the n events to
usually designed to add more diverse solutions to increase thé&h€ k timeslots and m rooms in such a way that all hard
chances of exploring large areas of the search space [25]._cons.,tr.a|nts are satisfied and the violation of soft consgraint
Mutation is only applied to one candidate solution and is minimised.

produces one new solutioBven though crossover is one of
the main components in genetic algorithms and other
evolutionary algorithms, Moscato and Norman [20] and
Radcliff and Surry [23] have argued whether crossover
should be the main operator in Genetic Algorithms. It is

Hard Constraints. There are four in this problem:

e H1: a student cannot attend two events
simultaneously.

e H2: only one event can be assigned per timeslot

not an unusual practice that some papers present different in each room.

implementations of Evolutionary Algorithms in which e H3: the room capacity must not be exceeded at
local search are used as a replacement for crossover. For any time.

example, Ackley [5] proposed a genetic hill-climbing e H4: the room assigned to an event must have
approach in which the crossover operator only plays the features required by the event.

small role in the algorithm. In addition, according to Baeck

et al. [7] the Evolutionary strategies community has Soft Constraints. There are three:

emphasised on mutation rather than crossover. e S1: students should not have exactly one event
timetabledon a day.

This paper proposes a two-stage hybrid meta-heuristc e S2: students should not have to attend more

approach to tackle course timetabling problems. The first than two consecutive events on a day.

stage constructs feasible timetables while the second stage is

an improvement process that also operates within the feasible

region of the search space. The second stage is a combination

of non-linear great deluge [18] with evolutionary operators t0 The penchmark data sets proposed by Socha et al. [26] are
improve the quality of timetables. split according to their size into 5 small, 5 medium and 1

large, as shown below :
The rest of this paper is organised as follow, in Section 2,

e S3: students should not have to attend an event
in the last timeslot of the day.

the subject problem and test instances are describglcategory Small Medium | Large

Section 3 gives the description of the evolutionary nonf Number of events n 100 400 400

linear great deluge approach proposed for solving theNumber of rooms m 5 10 10

university course timetabling problems. Computational Number of room features | 5 5 10

experiments and results are presented in Section 4 and thi|

paper ends with a conclusion in Section 5. Number of students |S]| 80 200 400
Number of events per | 20 20 20

. . . . student

2. UmverS'ty CourseT|metab|mg Maximum students per | 20 50 100
event

In general, university course timetabling is the process 9fApproximation features | 3 3 5

allocating, subject to predefined constraints, a set afper room

limited timeslots and rooms to courses, in such a way as [®Percent feature use 70 80 90

achieve as close as possible a set of desirable objectives. Th

timetabling problems, constraints are commonly divided Table 1 Parameter values for the course timetabling grobhtegories

into hard and soft constraints. A timetable is said to bein the set by Socha, Knowles and Samples [26]. Thefdastrows
feasible if no hard constraints are violated while soft give some indication about the structure of the ingtanc

constraint may be violated but we try to minimise such ) _

violation in order to increase the quality of the timetable. For all instancesk = 45 (9 hours in each of 5 days). It

In this work, we tackle the course timetabling problem should be noted that although a timetable with zero penalty
defined by Socha et al. [26] where there are: n eventg exists for each of these problem instances (the data sets
€, &, ..., &}, ktimeslotsT = {ty, t, ..., k} and m room® = were generated starting from such a timetable [26]), so far
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no heuristic method has found the ideal timetable for the Gorges-Schleuter [15] used local search as an operator in
medium and large instances. Hence, these data sets are stl/olutionary algorithms, and showed that it definitely
very challenging for most heuristic search algorithms. improves the quality of the solutions.

2.1 Problem Formulation In this work, we propose to extend the single solution non-
linear great deluge approach to population-bass
The objective in this problem is to find a feasible solution evolutionary approach by incorporating tournament
that minimises the violation of soft constraints. The selection, a mutation operator and a replacement strategy.
problem data sets described above ( Socha et al. instance3he motivation behind the introduction of evolutionary
can be formalised as follows. Lé&t is the set of all  operators into our great deluge algorithm comes from the
possible solutions, where each event has been assigned jgterest for striking a good balance between diversification
pair timeslot-room. LeA = {h1, h2, h3, h4} be the set of and intensification, which are the main strategic forces in
all hard constraints. Léb = {s1, s2, s3} be the set of all ' meta-heuristic approaches. Therefore, a good search
soft Sonstralnts for which violation should be minimised. technique must balance these two forces in order to
Let X ¢ Xbe the set of all feasible solutions that satisfy achieve robustness and effectiveness in the search as well
the hard constraints in A The cost function f(x) for both as to help the search activity to find optimal or near
problem data sets can be represented by this formulationgptimal solutions. Diversification is the ability to reach not
Each solution X € x is associated with a cost function yet visited regions in the search space and it can be
measuring the total violation of soft constraints in B. The zchieved by disturbing some of the solutions using special
man objective of this problem is to search for an optimal gperators (in our case, we use mutation) when necessary.
solutiony+ € x, in this case an optimal solution is, ik} Intensification is about exploiting the current search space
< f(x), VX e X . The cost function f(x) measures the regions by using local search (non-linear great deluge in
quality of the feasible solutioX € X by measuring the  our case) to obtain better quality of solutions.
violation of the total soft constraints given by:
Figure 2 shows the components of the proposed evolutionary
= non-great deluge algorithm. It begins by generating an initial
1 ;( 6(x9)+ T(x9)+ (X)) popl?lation of golutigns of size Pgwhichybgecomes '?he pool of
. solutions. Then, a number of generations take place and in
* fl(x’s) - number of times a studesin each of them the algorithmgworks as foIIOV\F/)s. First,
timetablex is assigned to the last timeslot of the tournament selection is used to choose 5 individuals at

day. random from the pool of solutions and the one with the best
e f,(xsS): number of times a studesin fitness is selecte(k). With probability less or equal to 0.5,

timetablex is assigned more than two mutation operator is applied tbwhile maintaining feasibility

consecutive classes. Every extra consecutive and obtaining solutionx™ ~ The probability value was

class will add 1 penalty point, for example d_etermined by experiment_ation (If we apply the mutation too
f,(xs) = 1if a studens has three consecutive R:gh or too low, no much Improvement can be found). Next,

} e non-linear great deluge algorithm is appliedxtoto
classes andf,(xs) : = 2 if the studen$ has obtain an improved solutiox. Then, the worst solution in the
four consecutive classes, and so on. pool of solutionsx” (ties broken at random) is identified and

e f(xs): number of times a studesin timetable if X is better thamx” then X replacesx” in the pool of
solutions. This evolutionary non-liner great deluge algorithm
is then executed for a pre-determined computation time
if students has only 1 class in a day and if according to the size of the problem instance. Note that this is
students has two days with only one class a steady-state evolutionary approach that uses non-linear great
f(xs) =2. deluge for intensification and a mutation operator for
diversification. The following subsections describe each of
the algorithm components is more detail.

X is assigned a single class on a dgyxs) = 1

3. Evolutionary Non-Linear Great Deluge
Approach

As discussed in the introduction, crossover operator can be
replaced by local search. For example Ackley [5] used hill-

climbing as an operator instead of crossover after arguing that
crossover was not effective and played less dominant role.
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o Timeslot 1 Timeslot 2 Timeslot k
chorate
Papulaticn
Room1 | €, | Rooml | €y Room1 | €3
11 the ten-iratior
L corrcition i et . Terrninate Room ? C‘ﬁ Room 2 gﬁ: Room 2 615
Poclaf
r’ Selutions
Room3 | €25 Room3  [€a3 | e Room3 | €355
Replace the warst Room4 | €3 Room 4 Cm Room4 | £gp
A individval sclution in
Taurhament thi poolwith the new Room’ gu Room 5 EIOO Room 5 EV
Selecticn — saluticn -
4
o S 05 e Figure 2: Solution Representation (direct encodafg) Timetable where
the sol tiors ir e events are assigned to pairs timeslot-room.
Riutaticn Mox0s5 ool
3.2 Initialisation of the Population
- Lir:'nar(irr_'at The initial population of solutions is generated using the
- [ . . . . .
Deluge heuristic described in Algorithm 1. Two well-known graph
e e colouring heuristics are incorporated, Largest Degree (LD)
| sl i werst and Saturation Degree (SD). First, the events in the pool of
Discard the new unscheduled events are sorted based on LD. After that, we
solution choose the event with the highest LD and calculate its SD.

In the first while loop, the initialisation heuristic attempts
to place all events into timeslots while avoiding conflicts.
In order to do that, the heuristic uses the SD criterion and a
list of rescheduled events to temporarily insert the
conflicting events. The heuristic tries to do this for a given
timey but once that time has elapsed, all remaining
3.1 Solution Representation unscheduled events are inserted into random timeslots. If
by the end of the first while loop the solution is not yet
feasible, at least the penalty due to hard constraint
Each solution in the population uses a direct violations is already very low. In the second while loop,
representation, consisting of a chromosome with the heuristic uses simple local search and tabu search to
information on what events or courses are assigned into achieve feasibility with two neighbourhood moves M1 and
pair of timeslot-room. In addition, the chromosome is also M2. M1 selects one event at random and assigns it to a
used to keep information on forbidden assignments for aféasible pair timeslot-room also chosen at random. M2
particular timeslot and room. Figure 2 illustrates the direct S€l€cts two events at random and swaps their timeslots and
rooms while ensuring feasibility is maintained. The local
. N ) search attempts to improve the solution but it also works as
& is an event numbeyi c {L,....n} wherenis the number of 5 perturbation operator. The tabu search uses move M2
events that need to be scheduled in the available timeslot only, which selects only an event that violates the hard
t e {1, k} wherek is the number of available timeslots. For constraints. The tabu search runs for a fixed number of
example event,dgs assigned to timeslot 1 in room 1. iterations tsmax  IN our experiments, this initialisation
heuristic always finds a feasible solution for all the
problem instances considered.

Figure 1:The Evolutionary Non-linear Great Deluggakithm.

encoding of an individual solution used in the population.
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Algorithm 1: Initialisation Heuristic decay rate. The motivation behind the use of a non-
I_r.pml:] st of events in _-.;.‘.mi[t'fff.'nle;:J)u.}uf.-.f] syoxis e‘:la-lr. E; linear decay rate and f|oating water level is to enhance
Sort 12 av ¢ usmg Larges egree | Ll leuristic; . .
while (pool O funacheduled cvents list E is not emply) do the feedback between the search activity and the water
{

ent e from E with the LD (tie break at random};
SD for event e:

level. Early in the search the algorithm is able to reduce

the penalty cost considerably and the gap between the
o i Ak o water level and the penalty cost is usually very large.
Therefore, the algorithm must prevent the cost function
T to go back near to the water level and for this reason it
suents list (those with SD = is important to reduce the gap between the water level
and the penalty cost. Later in the search, it becomes
more difficult to find the improvement moves. To

od in timeslot £ {if
O f Rescheduled ever

pool0 f Rescheduled eventa list
timeslot ¢ for event e at
e 8D for all events in the poo

ith D > () do

ve all events that remain in &
1) to the poolOfUnscheduled event

else

_ . S . manage this situation, we float the water level to
|, il Sl itiont seopeting Hasslior beson e et prevent the algorithm becoming greedy. By floating the
D water level the algorithm tries to diversify the search by
it Bedey i extending its search to a different region of the search
Sl kv R IS space. Therefore, at the early stage of the search this

. S algorithm performs more intensification and less

i Sl el diversification. However, when the search gets stuck in

| kE eept new salution; the local optima the algorithm begins to diversify the
e I search by floating the water level (increasing the water
e e B ot E i o 0 e level). The main weakness with the linear decay of the
if(f(5") < () then . water level is that the water level decreases too quick in
ol st s the later stages of the search. At the beginning, the
|k N algorithm seems to produce several successful moves.

c-.T:u:fff)_@'Ir'.l-,se_m el R However when the search is in the middle or
approaching the end of the search and the water level
] ) converges with the value of the current best solution,
4.3 The Evolutionary Operator: Mutation most of the neighbourhood solutions are rejected and
this situation hinders the algorithm in diversifying the
search. Therefore, the algorithm suffers on its own
greediness by trapping itself in local optimum. In the
conventional great deluge approach, there is no
mechanism to help escaping local optima once
the water level and the best solution penalty cost
converge. The non-linear great deluge algorithm is
1. Move M1. Selects one event at random and described in Algorithm 2.
assigns it to a feasible timeslot and room.

With a probability less or equal to 0.5 (g 0.5), the
mutation operator is applied to the solution selected
from the tournament {x The mutation operator selects
at random one out of three types of neighbourhood
moves in order to change the solution while maintaining
feasibility. These moves are described below.

5.1 Non-linear and Floating Water Level
2. Move M2. Selects two events at random and Decay
swaps their timeslots and rooms while ensuring
feasibility is maintained. Consider a problem in which the goal is to find the solution
that minimises a given objective function. The distinctive
3. Move M3. Selects three events at random, then itfeature of the conventional great delu@ensider a problem
exchanges the position of the events at randomin which the goal is to find the solution that minimises a
and ensuring feasibility is maintained. given objective function. The distinctive feature of the
conventional great deluge algorithm is that when the
candidate solution S* is worse than the current solutjon S
5. Non-linear Great Deluge Algorithm then S* replaceS depending on the current water level B
The water level is initially set according to the quality of
) ] ) _the initial solution, that is > f( s° ) wheref( s°) denotes
The non-linear great deluge algorithm is a modified {he gpjective function value of the initial solutip . The
great deluge algorithm which incorporates a non—hneardecay, i.e. the speed at whihdecreases, is determined
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by a linear function in the conventional great deluge same parameters used for medium instances and changes
algorithm: the parameters when it reaches the penalty cost to 10
B=B- AB where AB €R+ (3.0) pointg The use of the non-linear decay rate is shown in
algorithm 2 below.
The non-linear great deluge algorithm uses a non-linear
decay for decreasing the water level. The decay is given byin addition to using a non-linear decay rate for the water
the following expression: level B, we also allov to go up when its value is about to
B=Bx (exp *tmmdy 4 g converge with the penalty cost of the candidate solution
S*. This occurs when rang& 1 in Algorithm 2 (range is

The various parameters in Eq. (3.1) control the speed and€ difference between the water level and the penalty
cost). We increase the water le®by a random number

the shape of the water level decay rate. Paramgter Y _ :
L . within the interval B ., B___ 1. All the parameter values in

represents the minimum expected value corresponding to | min’ Tmax ) i

the optimal solution. In this paper, we sgt= 0 because [ Bun+ By ] Were identified by experimentation. For small

we want the water level to reach that value by the end ofProblem instances the interval used was [2, 5]. For the

the search. This is because we know that an optimal valudarge problem instance the interval used was [1,3]. For

of zero is possible for the problem instances tackled in thismedium problem instances, we first check if the penalty of

paper. If for a given minimisation problem we knew that the best solution so fak (s, ) is lower than a parameter

the minimum objective value that can be achieved is let's f.- If this is the case, then we use [1,4] as the interval
(B

say 100_, then we would sgt around_ that value.. If Fhere is . Bl Otherwise, we assume that the best solution
no previous knowledge on the minimum objec_tlv_e value so far seems to be stuck in local optimaf(S,_) >
expected, then we suggest to tynehrough preliminary bes
experimentation for the problem in hand. The role of the fiow) SO We mak® =B + 2. The concept of floating water
level might be similar to reheating concept in simulated

parameterso , min and max (more specifically the i v _
expressionexp*T™ ™) s to control the speed of the annealing, hqwever in S|mulate<_j anneal_mg to reheat the
temperature, it uses the geometric reheating method. In our
decay and hence the speed of the search process. A randofathod we increase the water level at random. In addition,
min and max are drawn from the uniform distribution ,ccentance in simulated annealing uses probability while

interval [min, max] and the min and mix are integer groat geluge does not employ probability. Full details of
numbers. By changing the value of these three parametergyis sirategy to control the water level decay rate in the
the water level goes down faster or slower. Therefore, the,,qified great deluge are shown in Algorithm 2.

lower the values of min and max, the faster the water level
goes down, and in consequence, the search quickly
achieves an improvement but it also gets stuck in local Algorithm 2: Non-linear Great Deluge Algorithm

(3.1)

optima very early. To escape from the local optima, the — [omstruet initial feasible solution 5
algorithm needs to increase the water level. Set timelimit according to problem size
Set initisl water level B «— f{S)
while clopsedTime < timelimit do
In this paper, the value of the parameters in Eq. (3.1) were Hetect mive al Tandor from M1NE, WA
) 3 . B Define the ibourhood N S
determined by experimentation. We tested different Select candidate solution S* € N(S) at random
. . . if { £{5*) < F(S) or f{5*) B ) then
combination of parameter valuesXandrnd [min, may) 8 5° {accept new solution}
and observe the effect of each combination in order to find e = i juneate best Adation)
suitable parameters for given problem. Based on the rmae st 107
H H H . 1 framnge < ) then
preliminary experiments, we now then assignéd,the if {Large or Small Problom) then

values of %10™°, 5x10°® and %107 for small, medium

B=F4+ rand[Boyn, Brmas

else

and large instances respectively. As said before, the value e R I

of B for all problem instances ig = 0. The values of o e

min and max in Eq. (3.1 ) are set according to the size of g H

the problem instance. For medium and large problems we - SO
used min = 100000 and max = 300000. For small problems B— B % (exp—S(radimin,maz}y & g
we used min = 10000 and max = 20000. The paramete! A mR el sastumcas panamieer]
values for small instance is only apply when the penalty B = 8 x (mxp—ttrmdiminmazly ; g
cost reach to 10 points. Therefore, it means that from the o

first iteration the non-linear great deluge algorithm uses the

end while
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The behaviour of the proposed Algorithm 2 can be intensification and diversification in the overall
illustrated in Figure 3. From the outset, the water level is evolutionary approach. The first strategy for this balance is
equal to the current penalty cost. When the search progrest stop the non-linear great deluge after 8000 idle
the current penalty cost is improving as shown by the blueiterations or 30 seconds of computational time, whichever
line. The water level decreases quickly to prevent a hugehappens first. The second strategy is to stop the non-linear
gap between the water level and the current penalty costgreat deluge after three seconds of computational time.
As shown in the figure, when the water level and current The first strategy gives more time to intensification while
penalty cost is about the converge the algorithm then floatthe second strategy attempts to promote diversification
the water level as shown by the up and down red line. more by stopping intensification sooner. In general, the
whole hybrid evolutionary process can be described as
follows.

50

——Penalty Cost
200

——Water Level

After generating the initial set of solutions, this population
then becomes the pool of individual solutions (refer to
Figure 1). After the tournament selection of a solution s,
this solution is mutated or not as explained above
according to the set probability. Then, the non-linear great
deluge search takes place over the solution s. The non-
0 : : linear great deluge search continues until the given
e e e stopping condition, one of the two strategies explained
above, is satisfied. We implemented three variations of the
proposed evolutionary algorithm in order to examine the
performance of the algorithm when each of the two
stopping conditions is used and also when the mutation
operator is re-moved. The three algorithm variants are:
Evolutionary Non-linear Great Deluge Without Mutation
(ENLGD-M), Evolutionary Non-linear Great Deluge using
stopping condition 1 (ENLGD-1) and Evolutionary Non-
linear Great Deluge using stopping condition 2 (ENLGD-
2). Both ENLGD-1 and ENLGD-2 have the mutation
operator incorporated. The aim of examining these
algorithm variants is to assess the robustness of the
proposed evolutionary algorithm with different settings. By
robustness we mean the reliability of the algorithm to
produce high-quality of solutions under different settings.
Table 2 shows the various parameter settings for the three
algorithm variants examined here.

151y

5 = B{exp 0D ) 4 )

Penalty Cost

Allow Bto go up

o when range <= 1

=

Rerations

Fig. 3 Non-Linear Great Deluge Behaviour.

s . e With =0 = With = 10 Linear Decay Rate

Hon-Linesr Decay Rate (B=0 }: & = - 0.0000005, Min = 10000, Max = 30000
Hon-Linear Decay Rste {B=10}: §=-0.0005, hin = 500, Max = 1000
Unear Decay rate =0.01

P}

Ohjecvie Value (Minimisation)

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

Iterations ( x 0000}

Fig. 4 Comparison between linear (Eq. 1) and non-linea
(Eq. 2) decay rates and illustration of the effect of
parametersg, ¢, min and max on the shape of the
non-linear decay rate. . )
Table 2: Parameter Setting for the Three Variantshef Proposed

. Evolutionary Non-Linear Great Deluge Algorithm.
6. Experiments and Results

In this paper we propose two different stopping condition

Parameter

ENLGD-M

ENLGD-1

[ENLGD-2

Mutation

no mutation applied

0.5

0.5

for the algorithm. Since non-linear great deluge plays the
main role in the evolutionary non-linear great deluge

Stopping conditiol

idle 8000 iterations

Idle 8000 iterations

every 3 seconds

algorithm, we want to investigate which are the adequate

or 30 seconds

or 30 seconds

of computation time

criteria for stopping the non-linear great deluge search

Replacement

Steady state

Steady state

Steady state

before it goes to the next process which is update of the

Stopping time for

small (2600 seconds)

small (2600 seconds

small (2600 seconds)

pool of solutions (see Figure 1). It should be clear that the

whole search

Medium (7200 second:

medium(7200 second

medium (7200 second|

non-linear great deluge search promotes intensification in

Process

large (10000 seconds|

large (10000 second

large (10000 seconds

the overall evolutionary method. The use of a population
of solutions and the mutation operator promote
diversification. Then, by setting the stopping condition for
the non-linear great deluge search, we are effectively
setting (in a simple manner) the balance between

We now evaluate the performance of the proposed

evolutionary algorithm (in this experiments, we used the
benchmark instances by Socha et, al. [26]). For each

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

IJCSI
www.lJCSl.org



IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.lJCSl.org 8

problem size, a fixed computation time (tigein seconds  Overall, this experimental evidence shows that by
was used as the stopping condition: 1000 for small combining some key evolutionary components with single-
problems, 7200 for medium problems and 10000 for the solution NLGD approach, we have been able to produce a
large problem. This fixed computation time is for the hybrid evolutionary approach that is still quite simple but
whole process including the construction of the initial much more effective than the single-solution stochastic
population. We executed the proposed evolutionarylocal search in generating best known solutions for a well-
algorithm 20 times for each problem instance. known set of difficult university course timetabling
instances. It is also evident that the mutation operator
Table 3 shows the experimental results for the threemakes a significant contribution to the good performance
algorithm variants described above, i.e. ENLGD- of ENLGD as the results obtained without this operator
ENLGD-1 and ENLGD-2. The Table shows the best and (ENLGD-M) are considerably worse in medium and large
the average results obtained for each method. For eaclnstances. The proposed algorithm seems particularly
dataset, the best results are indicated in bold. As shown ireffective on small and medium problem instances.
Table 3, the evolutionary non-great deluge algorithms
(ENLGD-1 and ENLGD-2) clearly outperform NLGD.
The results also show that both ENLGD-2 and ENGILD-
produce better results when compared to ENLGD-M. This
means that the tailored mutation operator malkes
significant impact to the good performance of ENLGD.
Besides that, the results also show that ENL&GD-
outperforms ENLGD-1 and ENLGD-M. This means that
balancing the intensification and divdrsation helps the
ENLGD approach to better explore the search space rathe
than run the intensification for longer which makes the 2omo= o o=w=
local search to converge earlier (as in the ENLGD-1 case).
The intensification phase is mainly carried out by NLGD. Fig. 5 Best Results Obtained by the Proposed Algorithm

WENLEE WEMLE

Persaty Oost

w
~GHYBBBAESE

Table 3: Comparison of NLGD, ENLGD-M, ENLGD-1 and ENL&@D

on the Socha et al. UCTTP Instances. .
7 W ENLGD-2 WENLGD-1

IN NLGD ENL GD-M ENLGD-1 ENLGD-2 = c ENLGD-M ™ NLGD

Best Avg Best Avg Best Avg | Best Avg 25 1
S1]| 3 3.6 0 1.55 0 095| 0 0.7 34 7
S2 | 4 4.85 0 2.2 0 1451 0 0.3 ia
S3| 6 6.85 1 2.7 0 1.3 0 1.05 g, 1
S4| 6 6.85 | O 1.7 0 135] 0 1.25 < Ll
S5]/0 175 |00 00 |0 o0 | J . . l ]
M1| 140 160.79 144 176.69 125 140 | 59 84.8 ° o - o . o
M2] 130 156 140 162 123 149.1] 51 93.8 Instances
M3| 189 212.1| 182 204.8| 178 199.3] 75 121.05
M4l 112 138.3| 135 164.6| 116 130.2 48 72.8 Fig. 6 Average Results Obtained by the Proposed Algorithmavitsion
M5] 141 1926 123 173.14 129 168.6] 65 110.2 Small Instances.
L 876 974.3| 970 1026 | 821 946.1] 703 819.2

Further investigation was also carried out to inspect the| 1200 -
overall performance of ENLGD algorithm. Figures 5, 6
and 7 the performance of the various versions of the
algorithm together with NLGD. The x-axis corresponds to
the instance type while the y-axis corresponds to the
penalty cost. Figure 5 shows the strong performance of
ENLGD-2 on medium and large instances, while also -I I.l “ -

obtaining optimal solutions with the same quality as the

other algorithms for small instances. In addition, Figure 6 M1 M2 M3 e M5 L
and Figure 7 show details of the results achieved by the

proposed algorithms. Both figures show that according to Fig. 7 Average Results Obtained by the Proposed MigorVariants on
the average results, ENLGD-2 outperformed the othermedium and large Instances.

algorithms.

M ENLGD-2 ™ ENLGD-1 ENLGD-M ™ NLGD

ost,_,
Q
Q
o

0
o
o

=]
o
o

Average Penalty C
IS
o
(=]

N
o
o

o
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Table 4: Comparison of results obtained by the EvolatipiNon-Linear
Great Deluge (ENLGD) proposed in this chapter agahestest known
results from the literature for the 11 Socha et al. UCIRERnces.

= = E 5w B = = Es A
= 3 = = 3 = & 2 B = =
ST 0 " T [T @ T [0 [0 W0
RN 11 3 [ 0 T 3 i 0 7 0
530 = 1 (] 3 o 0 0 )
T O 7 T ] T T I T O
SN = T [ T [ 0 0 T 0
MI 50 140 75 53 903 136 317 991
M2 51 150 o7 161 410 173 513 147
R 5w 365 950 367 5
Mi 48 113 1775 IS1®a8 160 o5 o
M5 85 141 100%Iuf 151171 303 130 1

752 EE)
L T03 876 100%Inf 1068 BO%Inl - 5290 1138 T30

ENLGD-2 is Evolutionary Non-Linear Great Deluge with stopping straBegy
NLGD is Non-Linear Great Deluge [18].

RRLS is the Local Search and Ant System in [27]

MMAS is the MAX-MIN Ant System in [26]

GALS is Genetic algorithm and local search by Abdullah andtieh [4].
RIICN is Randomised iterative improvement algorithm by Abdulledd.€t].
GBHH is Graph-based Hyper-heuristic by Burke et al. [9].

CFHH is the Choice Function Hyper-heuristic in [8]

VSN-T is Variable neighbourhood search with tabu by Abdullah e8hl. [
HEA is Hybrid evolutionary approach by Abdullah et al. [2].

FMHO is fuzzy multiple heuristic ordering [6]

EGD is Extended Great Deluge [19]

S1-S5 represent small problem instances 1 to 5

M1-M5 represent medium problem instances 1 to 5

6.1 Statistical Analysis

To compare the performance of the different methods
proposed, we run some statistical analysis. Even though
conclusions can usually be made based on the best and
average results obtained by each algorithm, those
conclusions and analysis might be premature. Therefore,
ANOVA was used to determine whether there as
significant difference in performance among ENLGD-2,
ENLGD-1, ENLGD-M and NLGD. Before we proceed to
the analysis, it is essential to verify the compatibility of the
models with the sample data. There are important
hypotheses that need to be verified: normality,
independency and homogeneity of the sample data. After
running the descriptive analysis, we found that our sample
data fulfils the hypothesis requirements. For that reason
variance analysis (ANOVA) is considered suitable for the
sample data hypothesis ensuring the validity of the
experiment. ANOVA is one of the existing statistical
models used to test significant differences between means
and this tool is very useful to make comparison when

. li ith th .
Table 4 compares the results obtained by the approacrﬁjealng with three or more means

proposed with the state of the art approaches in theThe analysis showed that there are statistically significant

literature that have been used to solve the COUrS€iterences among the proposed algorithms with the p-
timetabling problem. The term x%iInf in Table 4 illustrates 5, very close to zero as shown in Figure 8.

a percentage of runs that were unable to achieve feasibilityThe p-value stands for probability ranging from zero to
The figures in bold indicate the best results. Results in thegne.  Therefore, the p-value is used to measure the
Table indicate that some of the algorithms were unable tOdifference in popu|ation means and used as an evidence to
produce feasible solutions. However, in contrast, ourreject or accept the null hypothesis. In our case the null
approach was able to achieve feasible solutions. It can beéwypothesis HO is that there are no significant differences in
seen that the proposed hybrid evolutionary approachperformance between the algorithms. Therefore, if we
(ENLGD-2) matches the best known solution quality for reject HO then we accept that there are significant
all small problem instances. For medium instances, differences in performance

ENLGD-2 was able to achieve better quality solutions among the algorithms. Tables 7, 8 and 9 clearly show that
when compared against all other methods listed in Table 3there are significant differences between the algorithms as
More interestingly ENLGD-2 is able to produce high described below:

quality solutions and outperformed the best known results ¢ For small instances, the p-value are less than the
obtained by other algorithms as reported in the literature. confidence level at 0.05 for every pair of
Only on the case of the large problem instance, we see that algorithms (ENLGD-2, ENLGD-1), (ENLGD-2,
our algorithm does not match the best known result ENLGD-M), (ENLGD-2, NLGD), (ENLGD-1,
reported by Abdullah at al. [2]. However, our result is still ENLGD'M) and.(ENLGD-M, NLGD). o
comparable to other results reported in the literature. ~® FOr medium instances there are significant
Overall, this experimental evidence shows that by differences in performance between (ENLGD-2,
combining some key evolutionary components and an ENLGD-1), (ENLGD-2, ENLGD-M), (ENLGD-
effective stochastic local search procedure, we have been 2, NLGD), (ENLGD-1, ENL.GD'M) where the p-
able to produce a hybrid evolutionary approach that is still value are less tha_n the copﬁdt_ance Ie\_/el at 0'05f
quite simple but more effective than the single-solution * However, there is no significant difference in
stochastic local search in generating best know solutions performance between NLG.D and ENLGE-

for well-known set of difficult course timetabling problem Where_ the Post-Hoc analysis shows that the p-
. . . value is 0.659 (greater than 0.05).

instances. The proposed algorithm seems particular

effective on small and medium problem instances.
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e Finally for the large instance, there are significant ENLGD-2 to balance intensification and diversification
differences in performance between (ENLGD-2, proves to be a good strategy as it managed to further
ENLGD-1), (ENLGD-2, ENLGD-M) (ENLGD-2, improve the solution quality compared to ENLGD-1. As a
NLGD) and (ENLGD-1, ENLGD-M) where the conclusion, the proposed evolutionary non-linear great
p-value for the respective pairs are less than 0.05deluge approach matches the best known solution quality
significance level. Interestingly, the Post-Hoc test for almost all small problem instances and improves the
shows that there is no significant difference in best known results for most all medium instances. For
performance between (ENLGD-1, NLGD) and large instances, the evolutionary non-linear great deluge
(NLGD-M, NLGD) where the p-value are 0.697 algorithm did not match the best known results published
and 0.063 respectively, whefgoth p-value is in the literature. However, the results are still competitive
greater than significant level at 0.05. when compared to the results obtained by other algorithms

reported in the literature.
The Post-Hoc analysis clearly showed that all four
algorithms perform differently. However, at this stage we
stil do now know which algorithm is actually

Table 5: Average Penalty Cost of ENLGD-2 and ENLGBetoss the
11 Socha et al. Instances.

outperforming the others across the eleven instances. Thus, ENLGD-2 ENLGD-1
to evaluate this, we plot the mean of each algorithm with Run Small__| Medium | Large | Small | Medium | Large
Least Significant Difference (LSD) intervals at 95%] t 08 95.6 703 020 159 821
confidence level for the different algorithms as shown in-2 o4 858 927 14 1654 940
Figures 8 3 0.4 95.4 835 1 167.8 963
4 0.4 93.6 968 1.2 163.6 879
. . . 5 0.4 108.6 895 1 165.2 954
Figure 9, Figure 10 and Figure 11 present the means plog o4 %98 730 2 162 952
of each algorithm, for the specific instances. Figure 8- 02 812 782 P 146.4 938
shows that there are three homogenous groups for smal 0.4 91.6 711 12 148.2 976
instances (ENGLD-1, ENLGD-2), (ENLGD-M) and | ¢ 08 110.4 777 1 147.4 1018
(NLGD). The best algorithm is ENGLD-2 followed by | 1© 1 96.4 838 06 144.4 1020
ENLGD-1 and ENLGD-M, the worst algorithm is NLGD. |- 04 9.6 808 E 1716 | 968
In medium instances we also found three homogenol, si:: (1)8 2?‘2‘ 2‘7‘;‘ iz gzg zzz
groups as shown in Figure 9 and they are (I_ENGLD—l "1 2 964 007 o4 1592 .
(ENLGD-2) and (ENLGD-M, NLGD). The algorithm that . 04 536 49 18 165 076
performs well in medium instances is ENGLD-2 followed| 1¢ 12 90.6 713 16 156 970
by ENLGD-1 and two algorithms which perform slightly | 17 0.4 117.8 852 12 169.6 918
worst are ENLGD-M and NLGD. Finally, for the large | 18 06 1022 795 06 1728 1003
instance, we found that there are three homogenous grougf 16 106 779 06 1482 1031
(ENGLD-1, NLGD), (ENLGD-2) and ENLGD-M. In the L2 08 894 81 0.6 175.2 1072

large instance C_ase’ we found that ENL_GD'Z OUtperformSTable 6: Average Penalty Cost of ENLGD-M and NLGDrdss the 11
the other algorithms and ENLGD-M is the worst. INn gochaetal. Instances.
conclusion, considering the overall performance, ENLGD-

2 is the best algorithm followed by ENLG-1, NLGD and ENLGD-M NLGD
the worst algorithm is ENLGD-M (mutation operator | Run Small Medium | Large Small Medium | Large
removed). to 10. LSD is used to measure the significant! 2 1862 1023 38 1424 966
differences between group means in ANOVA. From the-2 2 1766 | 1070 | 48 105 1070
mean plot, we see that ENLGD-2 outperforms the other j ;'4 ﬁz jijz 22 izzz 2;2
algorithms followed by ENLGD-1, NLGD and the worst [ 12 205.8 114 s 1652 p
algorithm is ENLGDM. 6 1 189.8 984 46 166.8 942
7 1 184 923 5 165.4 895
The statistical analysis presented in the paper suggest that 18 179.6 970 5.2 156.8 976
each algorithm performs differently across all 11 Socha et® 2 166.4 1082 5.4 160.4 986
al. Instances[26]. This analysis also shows that ENIZGD-|-1° 14 185 1023 54 1728 1005
outperforms the three other algorithms across all instances— L8 1022 | 1028 | 38 185 %66
. . . 12 2 159.2 1070 4 171.6 1070
It is also evident that the mutation operator makes g
. . . . (13 2 178.8 998 4.2 177 935
significant contribution to the good performance off—, 2 1564 | 1122 w2 o1 1024
ENLGD-2 as the results obtained by ENLGD-M are| ;5 16 167.6 984 2 1724 942
considerably worse. Moreover, the strategy applied inis 2 166.6 923 5 188.4 958
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17 1.6 168.6 970 4.2 179.6 978
18 0.8 168.8 1082 5.4 182.6 1005
19 1.4 156.6 1023 5.4 196 1078
20 1.2 166.8 982 5 183.8 907
ANOVA.
Sum of Sauares of Mean Sauare F =51
[Smal Between Groups 212788 3 70.929] 3z2z2.792| Relels
Within Groups 16.700 7O 220
Totar 220488 79|
Modum  Botweon Groups 02026.508 o  oveansee| 2imeas oo
Within Groups 9870338 76| 129.873|
Total B2798.936)| 79|
lLarge Between Groups 466403500 3| 1554587.833 36.805 fatalet
Within Groups 221022.700 76| 4224 128
Total TE7A437.200) 79|
Fig 8: ANOVA Results.
Table 7: Post Hoc Tests - Small Instances
ENLGD-2 ENLGD-1 ENLGD-M NLGD
ENLGD-2 0.041 0.000 0.000
ENLGD-1 0..041 0.000 0.000
ENLGD-M 0.000 0.000 0.000
NLGD 0.000 0.000 0.000
Table 8: Post Hoc Tests - Small Instances
ENLGD-2 ENLGD-1 ENLGD-M NLGD
ENLGD-2 0.000 0.000 0.000
ENLGD-1 0..000 0.001 0.019
ENLGD-M 0.000 0.000 0.649
NLGD 0.000 0.019 0.649
Table 9: Post Hoc Test large Instances
ENLGD-2 ENLGD-1 ENLGD-M NLGD
ENLGD-2 0.000 0.000 0.000
ENLGD-1 0..000 0.003 0.697
ENLGD-M 0.000 0.003 0.063
NLGD 0.000 0.697 0.063
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Figure 8: Mean Plot and LSD Intervals (Small Instances).
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Figure 10: Mean Plot and LSD Intervals (Large Instance).

7. Conclusions

The overall endeavour of this paper was to extend our
previous approach, a non-linear great deluge algorithm,
towards an evolutionary variant by incorporating some key
operators like a population of solutions, tournament
selection, a mutation operator and a steady-state
replacement strategy. The performances of the various
versions of evolutionary non-linear great deluge were
compared along with the single-solution NLGD algorithm.
Preliminary comparisons illustrate that ENLGD-
outperforms the results produced by other versions of
ENLGD and NLGD algorithms. The results from our
experiments also provide evidence that our hybrid
evolutionary algorithm is capable of producing best known
solutions for a number of the test instances used here.
Obtaining the best timetables (with penalty equal to zero)
for the medium and large instances is still a challenge.
However, when compared to the results obtained by
ENLGD-2 to the best know results reported in the
literature, obviously, ENLGD-2 outperform all the results
of medium instances and produced comparable ones for
large instane.
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