30,082 research outputs found

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Improving the Asymmetric TSP by Considering Graph Structure

    Get PDF
    Recent works on cost based relaxations have improved Constraint Programming (CP) models for the Traveling Salesman Problem (TSP). We provide a short survey over solving asymmetric TSP with CP. Then, we suggest new implied propagators based on general graph properties. We experimentally show that such implied propagators bring robustness to pathological instances and highlight the fact that graph structure can significantly improve search heuristics behavior. Finally, we show that our approach outperforms current state of the art results.Comment: Technical repor

    Sequential and Parallel Algorithms for Mixed Packing and Covering

    Full text link
    Mixed packing and covering problems are problems that can be formulated as linear programs using only non-negative coefficients. Examples include multicommodity network flow, the Held-Karp lower bound on TSP, fractional relaxations of set cover, bin-packing, knapsack, scheduling problems, minimum-weight triangulation, etc. This paper gives approximation algorithms for the general class of problems. The sequential algorithm is a simple greedy algorithm that can be implemented to find an epsilon-approximate solution in O(epsilon^-2 log m) linear-time iterations. The parallel algorithm does comparable work but finishes in polylogarithmic time. The results generalize previous work on pure packing and covering (the special case when the constraints are all "less-than" or all "greater-than") by Michael Luby and Noam Nisan (1993) and Naveen Garg and Jochen Konemann (1998)
    • …
    corecore