50 research outputs found

    Solutions and application areas of flip-flop metastability

    Get PDF
    PhD ThesisThe state space of every continuous multi-stable system is bound to contain one or more metastable regions where the net attraction to the stable states can be infinitely-small. Flip-flops are among these systems and can take an unbounded amount of time to decide which logic state to settle to once they become metastable. This problematic behavior is often prevented by placing the setup and hold time conditions on the flip-flop’s input. However, in applications such as clock domain crossing where these constraints cannot be placed flip-flops can become metastable and induce catastrophic failures. These events are fundamentally impossible to prevent but their probability can be significantly reduced by employing synchronizer circuits. The latter grant flip-flops longer decision time at the expense of introducing latency in processing the synchronized input. This thesis presents a collection of research work involving the phenomenon of flip-flop metastability in digital systems. The main contributions include three novel solutions for the problem of synchronization. Two of these solutions are speculative methods that rely on duplicate state machines to pre-compute data-dependent states ahead of the completion of synchronization. Speculation is a core theme of this thesis and is investigated in terms of its functional correctness, cost efficacy and fitness for being automated by electronic design automation tools. It is shown that speculation can outperform conventional synchronization solutions in practical terms and is a viable option for future technologies. The third solution attempts to address the problem of synchronization in the more-specific context of variable supply voltages. Finally, the thesis also identifies a novel application of metastability as a means of quantifying intra-chip physical parameters. A digital sensor is proposed based on the sensitivity of metastable flip-flops to changes in their environmental parameters and is shown to have better precision while being more compact than conventional digital sensors

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Defect-based testing of LTS digital circuits

    Get PDF
    A Defect-Based Test (DBT) methodology for Superconductor Electronics (SCE) is presented in this thesis, so that commercial production and efficient testing of systems can be implemented in this technology in the future. In the first chapter, the features and prospects for SCE have been presented. The motivation for this research and the outline of the thesis were also described in Chapter 1. It has been shown that high-end applications such as Software-Defined Radio (SDR) and petaflop computers which are extremely difficult to implement in top-of-the-art semiconductor technologies can be realised using SCE. But, a systematic structural test methodology had yet to be developed for SCE and has been addressed in this thesis. A detailed introduction to Rapid Single-Flux Quantum (RSFQ) circuits was presented in Chapter 2. A Josephson Junction (JJ) was described with associated theory behind its operation. The JJ model used in the simulator used in this research work was also presented. RSFQ logic with logic protocols as well as the design and implementation of an example D-type flip-flop (DFF) was also introduced. Finally, advantages and disadvantages of RSFQ circuits have been discussed with focus on the latest developments in the field. Various techniques for testing RSFQ circuits were discussed in Chapter 3. A Process Defect Monitor (PDM) approach was presented for fabrication process analysis. The presented defect-monitor structures were used to gather measurement data, to find the probability of the occurrence of defects in the process which forms the first step for Inductive Fault Analysis (IFA). Results from measurements on these structures were used to create a database for defects. This information can be used as input for performing IFA. "Defect-sprinkling" over a fault-free circuit can be carried out according to the measured defect densities over various layers. After layout extraction and extensive fault simulation, the resulting information will indicate realistic faults. In addition, possible Design-for-Testability (DfT) schemes for monitoring Single-Flux Quantum (SFQ) pulses within an RSFQ circuit has also been discussed in Chapter 3. The requirement for a DfT scheme is inevitable for RSFQ circuits because of their very high frequency of operation and very low operating temperature. It was demonstrated how SFQ pulses can be monitored at an internal node of an SCE circuit, introducing observability using Test-Point Insertion (TPI). Various techniques were discussed for the introduction of DfT and to avoid the delay introduced by the DfT structure if it is required. The available features in the proposed design for customising the detector make it attractive for a detailed DBT of RSFQ circuits. The control of internal nodes has also been illustrated using TPI. The test structures that were designed and implemented to determine the occurrence of defects in the processes can also be used to locate the position for the insertion of the above mentioned DfT structures

    Design for prognostics and security in field programmable gate arrays (FPGAs).

    Get PDF
    There is an evolutionary progression of Field Programmable Gate Arrays (FPGAs) toward more complex and high power density architectures such as Systems-on- Chip (SoC) and Adaptive Compute Acceleration Platforms (ACAP). Primarily, this is attributable to the continual transistor miniaturisation and more innovative and efficient IC manufacturing processes. Concurrently, degradation mechanism of Bias Temperature Instability (BTI) has become more pronounced with respect to its ageing impact. It could weaken the reliability of VLSI devices, FPGAs in particular due to their run-time reconfigurability. At the same time, vulnerability of FPGAs to device-level attacks in the increasing cyber and hardware threat environment is also quadrupling as the susceptible reliability realm opens door for the rogue elements to intervene. Insertion of highly stealthy and malicious circuitry, called hardware Trojans, in FPGAs is one of such malicious interventions. On the one hand where such attacks/interventions adversely affect the security ambit of these devices, they also undermine their reliability substantially. Hitherto, the security and reliability are treated as two separate entities impacting the FPGA health. This has resulted in fragmented solutions that do not reflect the true state of the FPGA operational and functional readiness, thereby making them even more prone to hardware attacks. The recent episodes of Spectre and Meltdown vulnerabilities are some of the key examples. This research addresses these concerns by adopting an integrated approach and investigating the FPGA security and reliability as two inter-dependent entities with an additional dimension of health estimation/ prognostics. The design and implementation of a small footprint frequency and threshold voltage-shift detection sensor, a novel hardware Trojan, and an online transistor dynamic scaling circuitry present a viable FPGA security scheme that helps build a strong microarchitectural level defence against unscrupulous hardware attacks. Augmented with an efficient Kernel-based learning technique for FPGA health estimation/prognostics, the optimal integrated solution proves to be more dependable and trustworthy than the prevalent disjointed approach.Samie, Mohammad (Associate)PhD in Transport System

    Journal of Telecommunications and Information Technology, 2005, nr 1

    Get PDF

    Topical Workshop on Electronics for Particle Physics

    Get PDF
    The purpose of the workshop was to present results and original concepts for electronics research and development relevant to particle physics experiments as well as accelerator and beam instrumentation at future facilities; to review the status of electronics for the LHC experiments; to identify and encourage common efforts for the development of electronics; and to promote information exchange and collaboration in the relevant engineering and physics communities

    Belle II Technical Design Report

    Full text link
    The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.Comment: Edited by: Z. Dole\v{z}al and S. Un
    corecore