3 research outputs found

    Image operator learning coupled with CNN classification and its application to staff line removal

    Full text link
    Many image transformations can be modeled by image operators that are characterized by pixel-wise local functions defined on a finite support window. In image operator learning, these functions are estimated from training data using machine learning techniques. Input size is usually a critical issue when using learning algorithms, and it limits the size of practicable windows. We propose the use of convolutional neural networks (CNNs) to overcome this limitation. The problem of removing staff-lines in music score images is chosen to evaluate the effects of window and convolutional mask sizes on the learned image operator performance. Results show that the CNN based solution outperforms previous ones obtained using conventional learning algorithms or heuristic algorithms, indicating the potential of CNNs as base classifiers in image operator learning. The implementations will be made available on the TRIOSlib project site.Comment: To appear in ICDAR 201

    Deep Neural Networks for Document Processing of Music Score Images

    Get PDF
    [EN] There is an increasing interest in the automatic digitization of medieval music documents. Despite efforts in this field, the detection of the different layers of information on these documents still poses difficulties. The use of Deep Neural Networks techniques has reported outstanding results in many areas related to computer vision. Consequently, in this paper, we study the so-called Convolutional Neural Networks (CNN) for performing the automatic document processing of music score images. This process is focused on layering the image into its constituent parts (namely, background, staff lines, music notes, and text) by training a classifier with examples of these parts. A comprehensive experimentation in terms of the configuration of the networks was carried out, which illustrates interesting results as regards to both the efficiency and effectiveness of these models. In addition, a cross-manuscript adaptation experiment was presented in which the networks are evaluated on a different manuscript from the one they were trained. The results suggest that the CNN is capable of adapting its knowledge, and so starting from a pre-trained CNN reduces (or eliminates) the need for new labeled data.This work was supported by the Social Sciences and Humanities Research Council of Canada, and Universidad de Alicante through grant GRE-16-04.Calvo-Zaragoza, J.; Castellanos, F.; Vigliensoni, G.; Fujinaga, I. (2018). Deep Neural Networks for Document Processing of Music Score Images. Applied Sciences. 8(5). https://doi.org/10.3390/app8050654S85Bainbridge, D., & Bell, T. (2001). Computers and the Humanities, 35(2), 95-121. doi:10.1023/a:1002485918032Byrd, D., & Simonsen, J. G. (2015). Towards a Standard Testbed for Optical Music Recognition: Definitions, Metrics, and Page Images. Journal of New Music Research, 44(3), 169-195. doi:10.1080/09298215.2015.1045424LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539Rebelo, A., Fujinaga, I., Paszkiewicz, F., Marcal, A. R. S., Guedes, C., & Cardoso, J. S. (2012). Optical music recognition: state-of-the-art and open issues. International Journal of Multimedia Information Retrieval, 1(3), 173-190. doi:10.1007/s13735-012-0004-6Louloudis, G., Gatos, B., Pratikakis, I., & Halatsis, C. (2008). Text line detection in handwritten documents. Pattern Recognition, 41(12), 3758-3772. doi:10.1016/j.patcog.2008.05.011Montagner, I. S., Hirata, N. S. T., & Hirata, R. (2017). Staff removal using image operator learning. Pattern Recognition, 63, 310-320. doi:10.1016/j.patcog.2016.10.002Calvo-Zaragoza, J., Micó, L., & Oncina, J. (2016). Music staff removal with supervised pixel classification. International Journal on Document Analysis and Recognition (IJDAR), 19(3), 211-219. doi:10.1007/s10032-016-0266-2Calvo-Zaragoza, J., Pertusa, A., & Oncina, J. (2017). Staff-line detection and removal using a convolutional neural network. Machine Vision and Applications, 28(5-6), 665-674. doi:10.1007/s00138-017-0844-4Shelhamer, E., Long, J., & Darrell, T. (2017). Fully Convolutional Networks for Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 640-651. doi:10.1109/tpami.2016.2572683Kato, Z. (2011). Markov Random Fields in Image Segmentation. Foundations and Trends® in Signal Processing, 5(1-2), 1-155. doi:10.1561/2000000035Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. doi:10.1109/5.72679
    corecore