269 research outputs found

    Antenna allocation and pricing in virtualized massive MIMO networks via Stackelberg game

    Get PDF
    We study a resource allocation problem for the uplink of a virtualized massive multiple-input multiple-output (MIMO) system, where the antennas at the base station are priced and virtualized among the service providers (SPs). The mobile network operator (MNO) who owns the infrastructure decides the price per antenna, and a Stackelberg game is formulated for the net profit maximization of the MNO, while minimum rate requirements of SPs are satisfied. To solve the bi-level optimization problem of the MNO, we first derive the closed-form best responses of the SPs with respect to the pricing strategies of the MNO, such that the problem of the MNO can be reduced to a single-level optimization. Then, via transformations and approximations, we cast the MNO’s problem with integer constraints into a signomial geometric program (SGP), and we propose an iterative algorithm based on the successive convex approximation (SCA) to solve the SGP. Simulation results show that the proposed algorithm has performance close to the global optimum. Moreover, the interactions between the MNO and SPs in different scenarios are explored via simulations

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    A Survey of Network Requirements for Enabling Effective Cyber Deception

    Full text link
    In the evolving landscape of cybersecurity, the utilization of cyber deception has gained prominence as a proactive defense strategy against sophisticated attacks. This paper presents a comprehensive survey that investigates the crucial network requirements essential for the successful implementation of effective cyber deception techniques. With a focus on diverse network architectures and topologies, we delve into the intricate relationship between network characteristics and the deployment of deception mechanisms. This survey provides an in-depth analysis of prevailing cyber deception frameworks, highlighting their strengths and limitations in meeting the requirements for optimal efficacy. By synthesizing insights from both theoretical and practical perspectives, we contribute to a comprehensive understanding of the network prerequisites crucial for enabling robust and adaptable cyber deception strategies

    Resource Virtualization for Customized Delay-Bounded QoS Provisioning in Uplink VMIMO-SC-FDMA Systems

    Get PDF
    Wireless Network Virtualization (WNV), which decouples the physical supply process and the service provisioning process, can abstract, isolate and share the physical infrastructure network equipment. This paper studies the resource virtualization in virtual multiple-input multiple-output singlecarrier frequency-division-multiple-access (VMIMO-SC-FDMA) uplink systems, where resources are abstracted to hide the complex details of the fading channel and the link rates are virtualized using the statistical method. Furthermore, the virtual link rates are scheduled and instantiated to different slices with customized delay-bounded quality of service (QoS) provisioning. In this scheme, physical mobile network operator (PMNO) is in charge of the network resource at the physical layer while virtual mobile network operators (VMNOs) are responsible for the traffic admission and the slice management at the MAC layer. Furthermore, we build up the resource virtualization problem as a cross-layer Stackelberg game, which has the interactive dual processes based on the QoS exponent: top-to-down sub-game of leaders at the MAC layer and down-to-top sub-game of follower at the physical layer. Using the newly designed functions for PMNO and VMNOs, we develop an effective dynamic algorithm with iterative dual update to meet the optimization targets of PMNO and VMNOs. Simulation results verify the superiority and stability of delay-bounded QoS guaranteed wireless resource virtualization algorithm developed in this paper in terms of convergence, access rate, and delay-outage probability

    Container-based load balancing for energy efficiency in software-defined edge computing environment

    Get PDF
    The workload generated by the Internet of Things (IoT)-based infrastructure is often handled by the cloud data centers (DCs). However, in recent time, an exponential increase in the deployment of the IoT-based infrastructure has escalated the workload on the DCs. So, these DCs are not fully capable to meet the strict demand of IoT devices in regard to the lower latency as well as high data rate while provisioning IoT workloads. Therefore, to reinforce the latency-sensitive workloads, an intersection layer known as edge computing has successfully balanced the entire service provisioning landscape. In this IoT-edge-cloud ecosystem, large number of interactions and data transmissions among different layer can increase the load on underlying network infrastructure. So, software-defined edge computing has emerged as a viable solution to resolve these latency-sensitive workload issues. Additionally, energy consumption has been witnessed as a major challenge in resource-constrained edge systems. The existing solutions are not fully compatible in Software-defined Edge ecosystem for handling IoT workloads with an optimal trade-off between energy-efficiency and latency. Hence, this article proposes a lightweight and energy-efficient container-as-a-service (CaaS) approach based on the software-define edge computing to provision the workloads generated from the latency-sensitive IoT applications. A Stackelberg game is formulated for a two-period resource allocation between end-user/IoT devices and Edge devices considering the service level agreement. Furthermore, an energy-efficient ensemble for container allocation, consolidation and migration is also designed for load balancing in software-defined edge computing environment. The proposed approach is validated through a simulated environment with respect to CPU serve time, network serve time, overall delay, lastly energy consumption. The results obtained show the superiority of the proposed in comparison to the existing variants
    corecore