
Container-based Load Balancing for Energy Efficiency

in Software-defined Edge Computing Environment

Amritpal Singha, Gagangeet Singh Aujlab,∗, Rasmeet Singh Balia

aComputer Science & Engineering Department, Chandigarh University, Mohali, India
bDepartment of Computer Science, Durham University, Durham, United Kingdom

Abstract

The workload generated by the Internet of Things (IoT)-based infrastructure
is often handled by the cloud data centers (DCs). However, in recent time, an
exponential increase in the deployment of the IoT-based infrastructure has
escalated the workload on the DCs. So, these DCs are not fully capable to
meet the strict demand of IoT devices in regard to the lower latency as well
as high data rate while provisioning IoT workloads. Therefore, to reinforce
the latency-sensitive workloads, an intersection layer known as edge comput-
ing has successfully balanced the entire service provisioning landscape. In
this IoT-edge-cloud ecosystem, large number of interactions and data trans-
missions among different layer can increase the load on underlying network
infrastructure. So, software-defined edge computing has emerged as a vi-
able solution to resolve these latency-sensitive workload issues. Additionally,
energy consumption has been witnessed as a major challenge in resource-
constrained edge systems. The existing solutions are not fully compatible in
Software-defined Edge ecosystem for handling IoT workloads with an optimal
trade-off between energy-efficiency and latency. Hence, this article proposes
a lightweight and energy-efficient Container-as-a-Service (CaaS) approach
based on the software-define edge computing to provision the workloads gen-
erated from the latency-sensitive IoT applications. A Stackelberg game is
formulated for a two-period resource allocation between end-user/IoT devices
and Edge devices considering the service level agreement. Furthermore, an

∗Corresponding Author
Email addresses: amritpal_bcet@yahoo.co.in (Amritpal Singh),

gagi_aujla82@yahoo.com (Gagangeet Singh Aujla), rasmeetsbali@gmail.com
(Rasmeet Singh Bali)

Preprint submitted to Sustainable Computing: Informatics and SystemsNovember 7, 2021

energy-efficient ensemble foe container allocation, consolidation and migra-
tion is also designed for load balancing in software-defined edge computing
environment. The proposed approach is validated through a simulated envi-
ronment with respect to CPU serve time, network serve time, overall delay,
and lastly energy consumption. The results obtained show the superiority of
the proposed approach in comparison to the existing variants.

Keywords: Container-as-a-Service, Edge computing, Stackelberg game,
Software defined networking, Resource optimization.

1. Introduction

During the novel coronavirus or COVID-19 global pandemic, the delivery
of online services to every household has been a major concern for every ser-
vice provider. Most of the top service providers (Amazon, Google, eBay, etc)
located across the globe rely on the Cloud computing paradigm for service
provisioning [1]. However, in the current situation, the Cloud computing
sector has been one of the most affected technologies as they are respon-
sible for handling this situation of the enhanced workload with the huge
dependence of the end-user domain. Cloud computing provides flexible and
on-demand delivery of services and computation infrastructure (servers, stor-
age, networking and software) to the end-users. Their services are hosted over
geo-located cloud data centres (DCs) where ICT resources (servers, storage
devices such as disks, communication networks), redundant or backup power
supplies, environmental controls (e.g. air conditioning, fire suppression) and
security devices are deployed to provide round the clock service through the
world. Cloud ecosystem utilises virtualization technologies to schedule differ-
ent types of workloads (e.g. scientific workflows, multi-tier web applications,
IoT workloads) on the minimal number of servers to ensure the better utilized
of resources. But, different workloads may have different resource utilization
footprints and may further differ in their temporal variations. Although,
cloud computing tries to provide round the clock resource footprints to the
end-users to handle their workload from past decades, however, it has to
witness the problem of sustainability and scalability in such COVID-like sce-
narios. Moreover, the Internet of Things (IoT) revolution has already added
to the cloud workload from the past decade [2, 3].

The global escalation for cloud resources results in two major challenges,
1) a drastic increase in energy consumption, and 2) degradation in the re-

2

sponse time/latency for the desired online services for latency-sensitive ap-
plications and IoT systems. The first challenge concerns the growing demand
for electricity and related carbon emissions that are caused by the expansion
of massive DCs. Looking into the facts, in the year 2000, DCs consumed 70
billion kWh of energy, that further increased to 330 billion kWh by 2007 [4]
and it was projected to touch 1000 billion kWh till 2020 [4]. But, the cur-
rent pandemic scenario can take these projections to a further higher level.
This drastic increase in energy consumption ultimately leads to the overall
expenditure of the DCs and end up in harmful carbon emissions. Therefore,
it is the biggest responsibility of global service providers to design and utilize
energy-efficient approaches and solutions [5, 6, 7]. The second challenge re-
lates to the advancements in IoT workloads and mission-critical applications
that require lower latency and higher data rate. These stringent requirements
if not fulfilled may end up in mission failure or unsatisfactory performances
in IoT-based applications and systems (smart homes, smart grid, etc).

Edge Computing [8] has come up as a promising paradigm that can com-
plement the cloud to provide resources or process IoT workloads closer to
the location of the data source. This provides an add-on layer to process the
data on local servers rather than forwarding it to the remote cloud, thereby
improving the quality of service (QoS). Like the majority of cloud providers
often create a geo-distributed multi-cloud environment across different coun-
tries [9], similarly, there can be a local multi-edge environment connected
via the software-defined network (SDN) for service provisioning in a lim-
ited landscape [10, 11]. This provides an alternate solution for the cloud
providers to schedule their delay-intensive workloads locally and computa-
tionally heavy workload at the remote data centres. However, there may be
one another challenges in the local software-defined edge computing ecosys-
tem that relates to the mobility of the end-users (like vehicles or drones in
a smart city). This challenge may need more percentage of service or data
migrations happening across different edge nodes (or servers) located across
a geographic layout (like smart cities). These increased migrations can lead
to service breakage, increased energy consumption, and degraded response
time. Moreover, it may take additional resources, energy and delay to re-
configure and re-establish the lost like to restart the services. To resolve
these challenges, Container-based virtualization, a lightweight approach can
minimise the additional energy consumption and delay due to dynamic mi-
grations happening across software-defined edge computing ecosystem [12]
[13] [14]. The major research questions that arise from the above discussion

3

are listed below.

• How to execute an IoT or mission-critical workloads across
multiple edge servers via SDN?

• How to minimize the service breakage due to mobility and
control the service link re-establishment consequences using
container-based virtualisation?

• How to optimize the consumption and balance the load among
multiple edge servers while avoiding SLA violations?

1.1. Contributions

To answer the above-mentioned research questions, in this paper, we
present a container-based load balancing approach for energy-efficiency in
the software-defined edge computing environment. The key building blocks
of the proposed approach are as follow:

• A multi-layered system model for software-defined edge computing is
proposed for handling diverse IoT workloads in an energy-efficient man-
ner. To achieve this, a multi-objective driven task scheduling scheme
based on energy, delay, and service level of agreement (SLA) is designed.

• A multi-leader multi-follower Stakelberg game is formulated for energy-
aware resource allocation is designed for scheduling IoT workload at the
edge layer.

• An energy-efficient ensemble for container allocation, consolidation,
and migration is proposed for horizontal load balancing scheme using
container-based virtualization is designed.

2. Related work

Various existing works have addressed the above challenges related to the
related to network latency and energy consumption for workload using the
cloud computing landscape. For example, Berl et al. [15] discussed different
energy efficient approaches used for the cloud infrastructure. The techniques
and methods for resource allocation highlighted by Dabbagh et al. in [16]

4

relates to the reduction of the energy consumption by considering the virtu-
alization platform. A thermal-aware task allocation approach for multi-core
systems was proposed by Sheikh et al. [17] to manage the computing re-
sources for multi-core systems. Another approach for task allocation using
cooperative game model using Nash bargaining concept was introduced by
the Khan et al. [18] for computational grids to optimize the energy con-
sumption. However, the increased energy consumption and higher latency
are still biggest challenges in the cloud computing environment. A discussion
on scheduling and allocation approaches on single, multi-core and distributed
systems for reducing the energy and power consumption were highlighted by
Sheikh et al. [19]. To resolve the energy consumption challenges, some of the
authors utilized edge computing to compliment the workloads of the Cloud.
For example, Zhao et al. [20] proposed an efficient scheduling scheme for
cloud resources to satisfy the QoS for Analytics as a Service (AaaS) along-
side minimizing the energy consumption of DCs. A context-aware approach
was proposed by Dar et al. [21] to categorize the data and device according
to their confidentiality level to minimize the energy consumption at different
levels. Alqahtani et al. [22] proposed a greedy heuristic approach to assign
the computing resources at the edge level in order to process the tasks with
minimal energy consumption. An efficient resource allocation and resource
adjustment for services by integrating Markov decision process approach at
edge level was proposed by Deng et al. [23] to sustain the service-level-
agreement index for end users. Another approach considering edge com-
puting platform proposed by the Liao et al. [24] utilized machine learning
combined with Lyapunov optimization, and matching theory selection frame-
work. This work considered a trade off between reliability of service, energy
consumption, and backlog awareness. A complete mapping scheme was pro-
posed between jobs to virtual machines and virtual machines to physical
machines according to the behaviour of the incoming jobs by Mishra et al.
[25] with a key focus to optimize the energy consumption. Another approach
using two-tier virtual machine platform was proposed by the Chen et al. [26]
to resolve the issue of mapping of controller and virtual machine and mini-
mize the energy consumption during processing the workload. However, none
of the above approaches utilized the container-based virtualization. In this
direction, a multi-index task classification and scheduling approach was in-
troduced by Kumar et al. [27] based on container-as-a-service for cloud data
centers. The proposed scheme forwarded the incoming task to the data cen-
ters with desired resources based on the underlying priority of the workloads.

5

The mobility of the end devices can impact the SLA and QoS agreed to
the end users by the service provider. Therefore, an intelligent and adap-
tive platform is required to handle the workload of the movable end devices.
In this regard, an SDN-enabled energy management approach was intro-
duced by Aujla et al. [28] to control the consumption of energy at various
data centers to process the allocated jobs. Authors associated the renewable
energy resources with the data centers to control the energy consumption
during processing the jobs and reduce carbon emissions. They integrated
the energy-efficient flow scheduling algorithm with SDN-enabled network to
control the traffic flow in the network. The results proved the effectiveness of
the scheme when compared with standard approaches. A MapReduce-based
task scheduling approach was proposed by Kaur et al. [29] to reduce the en-
ergy consumption during processing of the tasks. During peak hours, UPSs
contribute to provide the energy to the DCs to process the tasks. The eval-
uated results validated the proposed scheme in terms of DCs sustainability.
However, the above mentioned approaches focus on edge computing platform
and have entire focus on cloud data centers. Hence, it becomes very relevant
to analyse the impact of container-based virtualization on the distributed
edge nodes using a SDN-based network architecture. A recent work [30] con-
siders an energy-efficient approach in the egde-cloud environment to resolve
some of the highlighted challenges. A comparison of the existing proposals
related to cloud resources is shown in Table 2.

3. System Model

The proposed system model comprises the different layers in a software-
defined edge computing environment to handle IoT workloads and end-user
requests. The proposed system model is depicted in the Fig. 1. The multi-
layered system model is discussed as below:

• User layer: This layer comprises of the different end-user device
(static devices: laptops, and dynamic devices: car, cell phones) and
IoT sensors (or devices) located at geo-distributed positions. At this
layer, the i users (Vi) demand for m type of n resources (memory,
bandwidth, storage space, processing power) for data processing and
analysis. The bottom layer is also known as the workload generating
layer and it uses the underlying network infrastructure to transfer the
data to the next layer for further action.

6

Table 1: Comparisons of the existing works

Author 1 2 3 4 5 6 7
Berl et al. [15] X × × server × × X

Dabbang et al. [16] X × X virtual machine × × X
Sheikh et al. [17] X × X server × × ×
Khan et al. [18] X X × server × × X
Sheikh et al. [19] X × X server × × ×
Zhao et al. [20] X × X server × × X

Alqahtani et al. [22] X × × server × X X
Deng et al. [23] X × × servers × X X
Liao et al. [24] X × × server × X X

Mishra et al. [25] X × × virtual machine × × ×
Chen et al. [26] X × × virtual machine × × ×

Kumar et al. [27] X × X container × × X
Aujla et al. [28] X × X server X X X
Aujla et al. [31] X X × server × × X

Proposed X X X container X X X

• 1: Energy efficiency, 2: Game theory, 3: Load balancing, 4: Type of
resource, 5: SDN, 6: Edge computing 7: SLA violation.

• Edge layer: This layer comprises of j edge servers (or devices) (Sj)
that are deployed at geo-distributed locations to provide the computing
and storage resources for handling (processing or analysing) the end-
user (Vi) or IoT workloads. The User layer forwarded the workload re-
quirements (Rreq

i) from the connected devices/users that are converted
into a job (Ji) that is executed using sufficient edge resources.

• Data plane layer: This layer includes the forwarding infrastructure
(like, switches, hub, etc) that are used to forward the incoming work-
load to the destination for further processing. These forwarding devices
follow the flow rules installed by the controller to forward the incoming
data traffic to the next hop to reach its ultimate destination.

• Controller layer: At this layer, a logically centralized controller is de-
ployed to build the flow rules and policies for the flow tables installed
at the forwarding devices. The controller works as per the OpenFlow

7

Figure 1: Software-defined edge computing model for service provisioning

protocol to build (rebuild) the flow policies to provide the desired la-
tency in the network. The IoT workload is forwarded to the selected
port as per the flow table entries directed by the controller. Moreover,
a bid manager is also located at this layer to manage the resources
available at the edge servers centrally. The resource demand of each

8

user or IoT workload is forwarded to the resource request queue (RRQ)
for processing. The bid manager selects the bidding request from RRQ
and maps it to the available resources at the edge layer. If the available
resource are more than the resources requested, then they are allocated
and the associated container is initialized to process the workload. In
this model, Vi users request for various type of resources (Rreq

i) from the
service provider for executing job (Ji). The availability of the resources
(Rava

k→j) is checked by the bid manager as follows.

Rava
k→j = Rtot

k→j − Rasg
k→j (1)

where, Rtot
k→j represents the total resources at the edge servers and

Rasg
k→j are resources currently assigned to the end-users. If the required

amount of resources are available, then the bid manager uses the pro-
posed Stackelberg game presented in the subsequent sections to select
the optimal resource list and forward the matched list to the service
provider for resource allocation.

• Application layer: This layer comprises of various end-user or IoT
applications that provide the feedback to the controller to modify the
rules or policies dynamically.

4. Preliminaries and Problem Formulation

The problem formulation is based on three metrics, i.e., delay, energy,
and SLA. The detailed explanation about these metrics are given as below.

4.1. Delay

The total delay in the software-defined edge ecosystem comprises of com-
putation delay (Tres

Ji), migration delay (Tmig
Ji), network delay (Tnet

Ji) and

caching delay (Tcac
Ji) [32]. The overall delay for executing ith job is given

as below.
TJi = Tres

Ji + Tmig
Ji + Tnet

Ji + Tcac
Ji (2)

Now, Tres
Ji refers to the totakl response time witnessed while executing the

job and it is defined as below [32].

Tres
Ji =

1

%j × ηj −Θi(t)
+

1

%j
+ (Tnet

Ji)(ηj(t)) (3)

9

Table 2: Notation Table

Notation Description
A Available resources at edge and cloud layer
B Price list offered by the follower to the leader
E Energy consumption
F Demand and fulfillment list of followers and leaders
L List of demand resources by follower
N Combinatorial structure of all resources
P Followers resources demand
S List of all Followers
cpu CPU computation power
mem Memory of the server
bw Bandwidth of the network
i End users index
j Server’s index
k Container’s index
th Threshold value of resources
Pr Price of resources
P lp Loss price of the bid
C Cost of resources
C Container
Hhl Historical lowest bid price
Hhh Historical highest bd price
Dhd Historical demand fulfillment ratio
In Normal Information for standard Follower
U Utility function
S Server
J Job/Tasks
V Connected devices at User end

where, %j is the computation speed of the jth server, ηj are the total number
of servers used to process the task, Θi is the queue of the ready tasks, and
Tnet

Ji is the delay in the network.
The network delay (Tnet

Ji) is calculated by adding propagation, serializa-

10

tion, queuing, processing and jitter delay as given below [32].

Tnet
Ji =

(dsw1,sw2 × ψf,sw1(t)× ψf,sw2(t)× asw1,sw2

Tmed(t)

)prop
+
(∑

z∈sw

∑
j∈p

Pz,j(t)

Bz,j ×∆z,j(t)

)ser
(4)

+
(∑

z∈sw

∑
j∈p

|Θ(t)|
Bz,j ×∆z,j(t)

)que
+
(∑

z∈sw

Tz
pr(t)×

∑
f

(tendf − tstrf)× ψf,z(t)
)pro

(5)

where, dsw1,sw2 is the measured distance between switches, ψf,sw1(t) and
ψf,sw2(t) are the decision variable for flow considering the switches, asw1,sw2

used to check the adjancy between switches, Tmed is the used medium propa-
gation delay, Pz,j(t) is the size of the packet at time (t), Bz,j is the considered
bandwidth at zth switch, Θz,j is the switch occupancy ratio, Θ(t) is the ready
queue at time t, Tz

pr denotes the processing delay, tendf is the finish time of f
flow and tstrf is the starting time of f flow.

The delay to migrate the job from k1 container to k2 container as well
as Text

Ji delay, i.e., delay to migrate the ith job from j1 node to j2 node are
defined as below [33].

Tmig
Ji = Tint

Ji + Text
Ji (6)

The internal migration relates to the time taken to migrate the job from one
containers to other on same edge node. It is given as below.

Tint
(Ji,j,k1→k2)

= Tsen
Ji,j,k1 + Trec

Ji,j,k2 (7)

The external migration refers to the time taken to migrate the job from one
edge node to another edge node. It is mentioned as below.

Text
(Ji,j1→j2,k)

= Tsen
Ji,j1,k + Trec

Ji,j2,k (8)

where, Tnet
Ji is the delay incurred to transmit the job from user (Vi) to the

node, Tnet
Ji is the delay incurred to transmit the ith job from j1 to j2.

The caching delay Tcac
Ji in the network is calculated by leaving time (tlea)

from the edge and the new entry time (tent) on the new edge and is given as
below [32]:

Tcac
Ji = tent − tlea (9)

11

4.2. Energy Consumption

The entire life cycle of service provisioning involves a huge amount of
energy consumption associated with different utilized resources and processes
during the execution of Ji at Sk→j edge node. There are different levels at
which energy is consumed, i.e., computing (Ecom

ijk), network (Enet
ijk), migration

of services (Emig
ijk) and data caching (Ecac

ijk) for ith user with kth container of

jth server at edge node. The total energy consumed (Etot
ijk) during service

provisioning is defined below.

Etot
ijk = Ecom

ijk + Enet
ijk + Emig

ijk + Ecac
ijk (10)

Now, Ecom
ijk is based on the summation of energy consumption of idle server

(Eidle
j) and maximum energy consumption (Emax

j). It is defined as below [32].

Ecom
ijk = Eidle

j + (Emax
j − Eidle

j)Uk
j (11)

In the above equation, the utilization of jth server with kth running con-
tainer (Uk) is calculated on the basis of the resources consumed (Rk∈j) at
time t and the maximum available resources (Rmax

k∈j). Here, Uk is computed
as given below [32].

Uk
j =

(
Rk∈j(t)

Rmax
k∈j

)
× 100 (12)

The network infrastructure is the another major energy consumption and
it is based on two components, i.e., fixed (Efix

j) and dynamic (Edyn
j). The

fixed component relates to the part like fan, chassis, etc and the dynamic
components comprises of the active ports and links. The total network-based
energy consumption (Enet

ijk) in the edge ecosystem is given as below [33].

Enet
ijk = Efix

j + Edyn
j (13)

Now, to meet the changing SLA requirements, often service migration
happens in the edge environment. There can be two types of migrations,
i.e., internal (between containers of same server) from container k1 → k2 or
external (between different servers) from j1 → j2. The total energy consumed
for the migration of services is defined as below [33].

Emig
ijk = Eint

k1→k2
+ Eext

j1→j2
(14)

12

The energy consumed for internal migration is at both ends, i.e., sender end
(Esen

k1
) and receiver (Erec

k2
) and is given as follows

Eint
k1→k2

= Esen
k1

+ Erec
k2

(15)

The energy consumed for external migration also occurs at sender (Esen
j1

)
and receiver ends (Erec

j2
), respectively. The energy consumed due to external

migration is given as below

Eext
j1→j2

= Esen
j1

+ Erec
j2

(16)

If there is a miss in the flow table, Packet In request is forwarded to the
controller for generation of new entry and same is updated in all the available
flow tables and in the cache of the network. So, there is energy consumption
at sender side and receiver side while updating the entries in all the caches
in the network. The cache energy consumption (Ecac

ijk) is given in Eq. 17 [32].

Ecac
i(j1→j2)k

= Esen
j1

+ Erec
j2

(17)

4.3. SLA Violation

The service providers are bounded for the availability of the services to
the end-users (Vi) with respect to the desired SLA commitments. The SLA
(ℵk→j

i) considering ith job assigned on kth container of jth server at time t is
calculated as below [33].

ℵk→j
i =

∑
i

∑
j

∑
k

(
Rreq

i (t)− Rall
ijk(t)

Rreq
i (t)

)
(18)

If in a case, the SLA commitments are not met by the service provider,
then they have to bear a penalty to compensate the end-users. The penalty
associated with the SLA violations (Pℵjk) is calculated considering the cost

Υℵj of each violation and the duration of time (tℵj) the violation occurred on
jth server as defined below [33] .

Pℵjk =
∑
j

(Υℵj t
ℵ
j) (19)

4.4. Problem formulation

The above mentioned models are considered for the proposed scheme and
two type of mapping variables are defined as below.

13

4.4.1. Job resource mapping variable

A decision flag (αi,j,k) is used to map the job with the allocated resources
at edge node is represented as follows.

αijk =

{
1 : If Ji is mapped to kth container of jth server

0 : Otherwise

4.4.2. Server to container mapping variable

A decision flag (βjk) is used to address the mapping of the kth container
with jth edge server is represented as follows.

βjk =

{
1 : If kth container is mapped to jth edge server

0 : Otherwise

4.5. List of Objective functions

The proposed scheme consider the following multiple objectives that should
be satisfactorily achieved.

1. Minimal Energy Consumption : The first objective function F1(αijk, βjk)
is considered for minimal energy consumption to maintain the QoS and
SLA. The function is given as below.

F1(αijk, βjk) = min
∑
i∈I

∑
j∈J

∑
k∈K

(
Etot

ijk

)
× αijk × βjk (20)

2. Minimal Delay : The second objective function F2(αijk, βjk) is con-
sidered for minimal delay during the transmission of data from one
layer to other. The function is given as below.

F2(αijk, βjk) = min
∑
i∈I

∑
j∈J

∑
k∈K

(
TJi

)
× αijk × βjk (21)

3. Maximal commitment towards SLA: The third objective is to
provide continuous services to the users to maintain the SLA. The
objective function is F3(αijk, βjk) is given as below.

F3(αijk, βjk) = max
∑
i∈I

∑
j∈J

∑
k∈K

(
PenSLA

jk

)
× αijk × βjk (22)

14

4.6. List of constraints

In concern to the above mentioned objectives, the list of constraints are
mentioned below.

H1 :
∑
i=I

∑
j=J

∑
k=K

Rpro × Rall
ijk ≤ Pul

H2 :
∑
i=I

∑
j=J

∑
k=K

Rmem × Rall
ijk ≤Mul

H3 :αijk ∈ 0, 1;∀i, j, k
H4 :βjk ∈ 0, 1; ∀j, k
H5 :Bn > 0;∀n
H6 :On > 0;∀n

5. Stakelberg Game-based Proposed Workload Allocation Scheme

The aim of the proposed scheme is to provide an energy-efficient solution
for handling IoT workflows in a software-defined edge computing environ-
ment. To maintain scalability and minimal overhead, container-based virtu-
alization is configured at edge servers. Also, a mobility scenario is considered
where the services are migrated from one server to another. The proposed
scheme works on the basis of multi-leader multi-follower Stakelberg game [31]
for the allocation of resources to the incoming IoT workloads.The prelimi-
naries related to the Stakelberg game are provided as below.

5.1. Game formulation

A multi-leader and multiple-follower stackelberg game is used to allocate
the resources to the end users. Here, the end users (multi-leaders) demand
for the resources from the edge servers (multi-followers). The bid manager
communicate with the controller to fetch the cost of each edge server and
maps the same with the list of the demanded resources for each incoming
workload. The stackelberg game operates in non-cooperative manner be-
tween different multiple followers [31]. Initially, the leaders start the game
and forward the list of required resources to the bid manager and track the
actions of the followers. The followers analyse the required resources and re-
vert to the leaders with the best offers. The leader-follower play their moves
and finally achieve an equilibrium state with both having best possible utility

15

from where they can not back out.
The utility function used by the leaders and followers to calculate the

benefits (price, cost or revenue) are defined as below.

• Utility function of leaders: The end users pay the price (Pi) from
the generated revenue (Ri) to avail the resources from the edge servers.
Their utility function is defined as below.

U l
i = Ri − Pi (23)

If the calculated value of U l
i is greater in comparison to the value cal-

culated in previous requests, the value is finalized for bidding.

• Utility function of followers: The revenue (Rk
j) of jth edge node

with kth container depends upon the bid price of the follower (Pi) and
is given as below.

Rj =
∑
i

Pi (24)

There cost (Cf
j) part comprises of may additional expenditure like

maintenance cost (Cmnt
j), SLA violation cost (Csla

j), migration cost

(Cmig
j) and energy utilization price (P utl

j) [31]. The total cost at the
follower side is defined as below.

Cf
j = Cmnt

j + Csla
j + Cmig

j + P utl
j (25)

Now, acceptance or rejection at the follower end relies in the hands of
the Bid Manager based on the utility function of the followers. Based
on the costs and revenue, the utility function (U f

j) of an edge node is
given as below.

U f
j = Rf

j − C
f
j (26)

After calculating the value of U f
j , the bid manager accept the request,

that provides profit to the followers.

5.1.1. Resource allocation Scheme using Stackelberg Game

The limited resources at edge servers are allocated using the two-period
Stackelberg game considering leaders and followers. Both the parties try to
maximise utilities, 1) leaders in the form of more resources in the limited cost,

16

and 2) the followers in the form of cost for the usage of the resources by the
leaders. The basis preliminaries related to the proposed resource allocation
approach are defined as follows.

N = (P,B,L,A,F) (27)

where, P is the total cost (S) that leaders (edge servers) demand for re-
sources, i.e., P = {p1, p2, .., ps}, B = {b1, b2, ..., bs} denotes the price at which
the resources are offered by the S followers. The price of the resources de-
manded by S leaders includes, ∀bi, bi = (scpui , sbwi , s

mem
i), a list of cost bid

by the leader for CPU, required bandwidth and memory. L = {l1, l2, ..., ls}
is the resource demand list by S leaders, ∀li, li = {ucpui , ubwi , u

mem
i } is the

demand list of CPU, required bandwidth and memory by S leaders. Now,

A = {vcpu
k
j

i , v
bwk

j

i v
memk

j

i } is the list of available resources at jth server’s kth

container (jk). F = {f cpu, f bw, fmem} is the list that stores the requirement
and fulfillment relationship between the leaders and followers.

If f < l, the demand list of the leaders is greater than the available re-
sources with the followers, then the request is rejected and if f ≥ l, then
the demand can be fulfilled. In this case, the bid manager computed the
utility function (U f) to calculate the cost of all the available edge nodes and
thereafter the node with maximum utility that do not deviate from its bid
is selected for resource allocation. Bid manager computes the utility for fol-
lowers and tries to achieve an equilibrium state based on the mathematical
proof presented in our previous work [31].

The edge server allocates the resources to the leader if and only if the
revenue of the leader is more than the price of the resources at edge nodes.
As per the leader, the procedure for resource allocation is defined as follows.

Pj = max

j=s∑
j=1

scpuj + sbwj + smem
j (28)

To allocate the resources and to maximize the Pj/Rj value, considered

rate of ucpui ≤ vcpu
k
j , ubwi ≤ vbw

k
j , umem

i ≤ vmemk
j must be profitable.

Now, with perspective to the followers, to provide the resources to the
leaders, the loss (P lp

j) value must be minimal. +-

P lp
j = min

i=s∑
i=1

(scpui − scpu′) + (sbwi − sbw′) + (smem
i − smem

′) (29)

17

where, s′ is the lowest bid price offered by the leader for the resources.
The demand of the resources by the leaders varies with the behavior of

the application. To manage the resources efficiently, Stackelberg game model
is used to gain the maximum profit for follower and leader.

Figure 2: Stackelberg game: User as Leader (UaL)

• User as Leader (UaL): At UaL layer, the end users (Leaders) for-
ward the list of required resources to the Resource Demand List (RDL)
database with the user-id of the leader. According to the demand of the
resources, top leaders are considered as Premium Leaders as shown in
Fig. 2. The bid manager (BM) has the list of all the available resources
at edge nodes stored with index as Available Resources list (AR). The
BM check the rank of leader from User Rank List (URL) to set the
priority of the requested resources of the leader to maintain the QoS.

• Edge as Follower (EaF): At this layer, the followers receive the de-
manded price of the resources from the BM from AR to initialize the
bargaining process. The premium list forwarded by the Leader’s Layer

18

is stored in Ranked List of Leaders (URL). Therefore, it is the respon-
sibility of the Bid manager to provide the resources to the premium
leaders on priority. To ensure resource availability to the premium
leaders, an information control strategy is used to allow the premium
leaders to bid with the minimum price for the resources. The bid man-
ager maintain the demand fulfillment ratio of the leaders in Historical
Database for further references. The followers prioritize the Premium
leaders for bidding to allocate the resources with the minimum cost
through the Bidding Manager as shown in Fig. 3.

In Historical Database following information is provided to the pre-

Figure 3: Stackelberg game: Edge as Follower (EaF)

mium leaders,
If = (Hhl,Hhh,Dhd) (30)

where, Hhl, is the historical lowest bid price, Hhh is the historical high-
est bid price and Dhd is the requirement fulfillment ratio of the follower.
For normal leaders, a standard information is provided as follows.

In = (Hhl,Hhh) (31)

19

where, Hhl and Hhh is the normal information for other leaders for
bidding for the resources.

• Bidding Layer: At this layer, the BM collects the bidding information
from follower Layer for available resources and bidding rate for availing
resources from leaders Layer by using Eq. [30,31]. The winner of the
bid is selected and (Sk

j ,Ti, bi) is forwarded to the follower layer for
further reference.

5.2. Container Consolidation and Migration Scheme

Now, the most changeable aspect of the proposed scheme is to minimise
the energy consumption based on the load balancing approach using an en-
semble of container allocation, consolidation and migration of the active tasks
among different containers (Ck) running at different edge nodes (Sj). The
proposed approach tries to distribute the workload on minimum number of
containers as to meet the energy constraint. The container consolidation
scheme is used to optimize the energy consumption among different Ckj ser-
vice nodes. The work flow of the proposed scheme is shown in Fig. 4.
The various entities related to the container consolidation scheme are de-
scribed in the following steps.

• Load Calculator (LC): In this phase, the load of the different con-
tainers is calculated by the LC and as per considered threshold values
(tH) for the Ck of Sth

j server, the containers are added to various defined
lists (where a is the maximum and b is the minimum ideal threshold
value).

• Overloaded list (OL): If tH > a, then the particular Ck is forwarded
to OL.

• Underloaded List (UL): If tH < a, then the Ck is forwarded to UL.

• Optimal List (OpL): If b < tH < a, then forwarded to OpL.

• Idle List (IL): The Ck who are deactivated from UL, are shifted to
the IL.

• Container Migrated List (CML): The host with tH > a are added
into CML, to migrate the load to the other containers to make it ideal
one.

20

Figure 4: Flowchart of container consolidation scheme

• Destination Container List (DCL): If there is need to migrate the
load from OL to UL containers, then this list is mapped with the CML
to make it ideal.

In container consolidation scheme, the main focus is to save energy consumed
for processing the workload. The overloaded containers consume more energy
as compare to ideal containers. So, the workload hanled by the overloaded
containers is migrated to the CUL

k container, s.t., the required resources must
be available at CUL

k container. So, all container like COL
k are migrated to CPL

k

till its threshold values reaches ideal point. In the next cycle, the load of CUL
k

containers is again verified. If the services of kth container is shifted to k+nth

container, then, make sure destination k + nth container load is not greater
than ideal threshold value. If source kth container services is nill, then add
into Idle List (IL). In the end, update the Rava

k∈j of each list (OL,UL, IL).

21

The Algorithm I describes the working of the proposed ensemble container
management scheme.

Algorithm 1 Container Consolidation Scheme

Input: Sj,Ck,Rreq

Output: Destination (Sk
j)

1: for (j=1;j≤ J;j++) do
2: for (k=1;k≤ K;k++) do
3: Compute Uk using Eq. 21
4: if (Uk

j > UtH
a) then

5: ADD C(k∈j) → OL & CML
6: else if Uk

j < UtH
b) then

7: ADD C(k∈j) → UL & DCL
8: Shift control → CML
9: Mapping of Rreq : (CML ⇐⇒ DCL)

10: if true then
11: Migrate CMLres

k → DCLk

12: else
13: Activate Cnew

(k∈j) → IL
14: end if
15: else
16: ADD C(k∈j) → PL
17: end if
18: Update Rava

k∈j → (UL,OL, IL)
19: end for
20: end for

6. Results and Evaluation

To validate the proposed scheme, the experimentation is performed us-
ing the CloudSimSDN simulator [34]. The proposed scenario produce more
prudent results on SDN enabled network as compare to existing approach.
The detailed explanations on simulation settings and obtained results are
provided in the subsequent sections.

6.1. Testbed configuration

In the proposed scheme, a tree topology is developed with four hosts
and the required switches. One switch act as a core switch, that is further

22

connected with the two child edge switches. The link configuration of the
proposed scheme is shown in Table 3. Using stackelberg game model for

Table 3: Link Configuration

Link Bandwidth

Core ⇐⇒ Edge Servers 0.1 Mbps

Edge Servers ⇐⇒ Hosts 0.1 Mbps

optimal resource allocation, the price is assigned to each host (Follower) as
well as to the VMs (Leaders). The price of each VMs is fixed at 1 and
this price is negotiable between the leaders and the followers. The price (P)
varies according to the requested resources and topology, i.e., (P ∈ (1, 2)).
The size of workload and cloudlets in the proposed scheme varies with the
defined topology. In total, three scenario’s are considered for the validation
of the proposed scheme in contrast to the existing approaches. The results
are simulated using three type of workload size considering 50 tasks, 57 tasks
and 70 tasks with static arrival time and different packet sizes. In the defined
scenario’s, each host forward different size of the packet data to the other
host for processing. The arrival time of all the task is also assumed to be
same in the proposed configuration file. The allocation of the VMs is based
on the final auction between the leaders and followers.

6.2. Results validation

In Fig. 5(a), the CPU serve time to process the allocated workload using
the proposed scheme is computed on different size of workload to verify the
efficiency of the proposed scheme. The lower value of the energy consumption
using the proposed scheme is due to the optimal selection of resources using
stackelberg game.

In Fig. 5(b), the network serve time obtained using the proposed scheme
is analyzed for the defined scenarios. The network serve time of the proposed
scheme dominate the serve time of the standard approach due to the support
of the underlying SDN architecture used for connecting the geo-distributed
edge servers to the proposed approach. The comparison of average total
serve time of different workloads is shown in Fig. 5(c). The time consumed

23

Figure 5: a) CPU task serve time b) Network serve time c) Average total serve time d)
Average CPU serve time per workload

to serve the task depends on the size of the packet when transmit from one
host to another. The CPU serve time depends upon the size of workload as-
signed to the Ck→j for processing. The average CPU serve time per workload
assigned is shown in Fig. 5(d). The processing time of CPU in proposed
scheme is better in contrast to the existing variant. The size of the workload
directly affects the network time, however the resource allocation policy can
reduce the transmission delay in the network as shown in Fig. 6(a). The edge
devices define the specifications of the allocated C to process the allocated
task. The requested cost of the leader depends upon the type of available
resources and network traffic. The final resource allocation depends upon
the agreement bidding cost between the follower and the leader and accord-
ingly the resources are assigned to the follower. The average CPU serve time

24

Figure 6: a) Average network serve time per workload b) Average CPU serve time per
cloudlet c) Average network serve time per transmission d) Overall total serve time

considering different workloads per edge is shown in Fig. 6(b). During the
workload transmission, initially, an input from the V is forwarded to the data
plane, then to edge layer, and finally the workload is shifted to the allocated
resources for processing. Therefore, a number of transmissions take place to
process the allocated task and the average network serve time per transmis-
sion is reflected in Fig. 6(c). The total serve time including transmission
time, network serve time, CPU server time incurred for handling the work-
loads is shown in Fig.6(d). Different scenario’s are considered for comparison
with the existing schemes to justify the proposed scheme.

Energy is one of the major operational cost for processing the allocated
tasks from various users. Energy is consumed by the V for collecting the
workload and forward the same to the upper layer for further processing.

25

Figure 7: a) Host energy consumption b) Switch energy consumption

Figure 8: Total energy consumption

The consumption of energy depends upon the behavior of the collected work-
load and category of V . The energy consumption by the various hosts for

26

transmission of workload is shown in Fig.7(a). The energy consumption used
to process the workloads is compared with the existing approach and high-
lighted in Fig.7(b). The energy consumption in proposed scheme is lesser as
compared to the existing variant. The allocated resources by the Stackelberg
game are feasible to process the assigned workload and the rate of migra-
tion between nodes is minimal as compare to the existing approach and the
same is highlighted in Fig.7(b). The total energy consumption including host
and switch is shown in Fig.8). It can be noticed that the energy consump-
tion using the proposed scheme reduces with any change in the size of the
workload.

7. Conclusion

In this paper, an energy-efficient resource allocation scheme complimented
by an ensemble container selection, consolidation and migration approach is
proposed to improvise the QoS in distributed edge computing environment.
The IoT workloads are allocated the edge resources for execution of differ-
ent tasks and analysis. For this purpose, multiple containers are configured
on the edge servers to accomplish the request of various users, which in
turn reduce overall energy consumption and the latency in the network. The
management of the resource distribution mechanism is performed by a multi-
leader multi-follower Stackelberg game. The game-based approach is used to
resolve the resource pricing problem between the user and edge resource
provider. SDN-based architecture is also used to improvise the edge com-
puting through flexible flow policies to manages the network intelligently
by configuring a centralized controller. The experimental results supports
the proposed energy-efficient resource allocation and optimization technique.
The results are obtained in the form of CPU serve time, network serve time,
overall delay,and lastly energy consumption. The obtained results clearly de-
pict that they align superior with respect to considered standard approach.

References

[1] J. Wang, Y. Yang, T. Wang, R. S. Sherratt, J. Zhang, Big data service
architecture: A survey, Journal of Internet Technology 21 (2020) 393–
405.

[2] H. Arasteh, V. Hosseinnezhad, V. Loia, A. Tommasetti, O. Troisi,
M. Shafie-khah, P. Siano, Iot-based smart cities: a survey, in: 2016

27

IEEE 16th International Conference on Environment and Electrical En-
gineering (EEEIC), IEEE, 2016, pp. 1–6.

[3] B. Yin, X. Wei, Communication-efficient data aggregation tree construc-
tion for complex queries in iot applications, IEEE Internet of Things
Journal 6 (2018) 3352–3363.

[4] T. Mastelic, I. Brandic, Recent trends in energy-efficient cloud comput-
ing, IEEE Cloud Computing 2 (2015) 40–47.

[5] C. Ju, Y. Gao, A. K. Sangaiah, G.-j. Kim, et al., A pso based energy
efficient coverage control algorithm for wireless sensor networks, Com-
puters, Materials & Continua 56 (2018) 433–446.

[6] Q. Tang, K. Yang, P. Li, J. Zhang, Y. Luo, B. Xiong, An energy efficient
mcds construction algorithm for wireless sensor networks, EURASIP
Journal on Wireless Communications and Networking 2012 (2012) 83.

[7] M. Long, X. Xiao, Outage performance of double-relay cooperative
transmission network with energy harvesting, Physical Communication
29 (2018) 261–267.

[8] W. Li, Z. Chen, X. Gao, W. Liu, J. Wang, Multimodel framework for
indoor localization under mobile edge computing environment, IEEE
Internet of Things Journal 6 (2018) 4844–4853.

[9] Y. Luo, K. Yang, Q. Tang, J. Zhang, P. Li, S. Qiu, An optimal data
service providing framework in cloud radio access network, EURASIP
Journal on Wireless Communications and Networking 2016 (2016) 1–11.

[10] R. M. A. Ujjan, Z. Pervez, K. Dahal, A. K. Bashir, R. Mumtaz,
J. González, Towards sflow and adaptive polling sampling for deep
learning based ddos detection in sdn, Future Generation Computer Sys-
tems 111 (2020) 763–779.

[11] B. Xiong, K. Yang, J. Zhao, W. Li, K. Li, Performance evaluation
of openflow-based software-defined networks based on queueing model,
Computer Networks 102 (2016) 172–185.

[12] C. Iwendi, P. K. R. Maddikunta, T. R. Gadekallu, K. Lakshmanna,
A. K. Bashir, M. J. Piran, A metaheuristic optimization approach for

28

energy efficiency in the iot networks, Software: Practice and Experience
(2020).

[13] Q. Ijaz, E.-B. Bourennane, A. K. Bashir, H. Asghar, Revisiting the high-
performance reconfigurable computing for future datacenters, Future
Internet 12 (2020) 64.

[14] N. M. F. Qureshi, I. F. Siddiqui, A. Abbas, A. K. Bashir, K. Choi,
J. Kim, D. R. Shin, Dynamic container-based resource management
framework of spark ecosystem, in: 2019 21st International Conference
on Advanced Communication Technology (ICACT), IEEE, 2019, pp.
522–526.

[15] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De Meer, M. Q.
Dang, K. Pentikousis, Energy-efficient cloud computing, The computer
journal 53 (2010) 1045–1051.

[16] M. Dabbagh, B. Hamdaoui, M. Guizani, A. Rayes, Toward energy-
efficient cloud computing: Prediction, consolidation, and overcommit-
ment, IEEE network 29 (2015) 56–61.

[17] H. F. Sheikh, I. Ahmad, Z. Wang, S. Ranka, An overview and classifi-
cation of thermal-aware scheduling techniques for multi-core processing
systems, Sustainable Computing: Informatics and Systems 2 (2012)
151–169.

[18] S. U. Khan, I. Ahmad, A cooperative game theoretical technique for
joint optimization of energy consumption and response time in compu-
tational grids, IEEE Transactions on Parallel and Distributed Systems
20 (2008) 346–360.

[19] H. F. Sheikh, H. Tan, I. Ahmad, S. Ranka, P. Bv, Energy-and
performance-aware scheduling of tasks on parallel and distributed sys-
tems, ACM Journal on Emerging Technologies in Computing Systems
(JETC) 8 (2012) 1–37.

[20] Y. Zhao, R. N. Calheiros, G. Gange, K. Ramamohanarao, R. Buyya,
Sla-based resource scheduling for big data analytics as a service in cloud
computing environments, in: 2015 44th International Conference on
Parallel Processing, IEEE, 2015, pp. 510–519.

29

[21] Z. Dar, A. Ahmad, F. A. Khan, F. Zeshan, R. Iqbal, H. H. R. Sher-
azi, A. K. Bashir, A context-aware encryption protocol suite for edge
computing-based iot devices, The Journal of Supercomputing (2019)
1–20.

[22] A. Alqahtani, D. N. Jha, P. Patel, E. Solaiman, R. Ranjan, Sla-aware
approach for iot workflow activities placement based on collaboration
between cloud and edge, in: 1st Workshop on Cyber-Physical Social
Systems (CPSS) 2019, Newcastle University, 2019.

[23] S. Deng, Z. Xiang, P. Zhao, J. Taheri, H. Gao, J. Yin, A. Y. Zomaya,
Dynamical resource allocation in edge for trustable internet-of-things
systems: A reinforcement learning method, IEEE Transactions on In-
dustrial Informatics 16 (2020) 6103–6113.

[24] H. Liao, Z. Zhou, X. Zhao, L. Zhang, S. Mumtaz, A. Jolfaei, S. H.
Ahmed, A. K. Bashir, Learning-based context-aware resource allocation
for edge-computing-empowered industrial iot, IEEE Internet of Things
Journal 7 (2019) 4260–4277.

[25] S. K. Mishra, D. Puthal, B. Sahoo, P. P. Jayaraman, S. Jun, A. Y.
Zomaya, R. Ranjan, Energy-efficient vm-placement in cloud data center,
Sustainable computing: informatics and systems 20 (2018) 48–55.

[26] Y. Chen, X. Chen, W. Liu, Y. Zhou, A. Y. Zomaya, R. Ranjan, S. Hu,
Stochastic scheduling for variation-aware virtual machine placement in a
cloud computing cps, Future Generation Computer Systems 105 (2020)
779–788.

[27] N. Kumar, G. S. Aujla, S. Garg, K. Kaur, R. Ranjan, S. K. Garg,
Renewable energy-based multi-indexed job classification and container
management scheme for sustainability of cloud data centers, IEEE
Transactions on Industrial Informatics 15 (2018) 2947–2957.

[28] G. S. Aujla, N. Kumar, Sdn-based energy management scheme for sus-
tainability of data centers: An analysis on renewable energy sources
and electric vehicles participation, Journal of Parallel and Distributed
Computing 117 (2018) 228–245.

30

[29] K. Kaur, S. Garg, N. Kumar, G. S. Aujla, K.-K. R. Choo, M. S. Obaidat,
An adaptive grid frequency support mechanism for energy management
in cloud data centers, IEEE Systems Journal (2019).

[30] G. S. Aujla, N. Kumar, A. Y. Zomaya, R. Ranjan, Optimal decision
making for big data processing at edge-cloud environment: An sdn per-
spective, IEEE Transactions on Industrial Informatics 14 (2017) 778–
789.

[31] G. S. Aujla, M. Singh, N. Kumar, A. Zomaya, Stackelberg game for
energy-aware resource allocation to sustain data centers using res, IEEE
Transactions on Cloud Computing (2017).

[32] G. S. Aujla, N. Kumar, Mensus: An efficient scheme for energy man-
agement with sustainability of cloud data centers in edge–cloud environ-
ment, Future Generation Computer Systems 86 (2018) 1279–1300.

[33] G. S. Aujla, A. Singh, M. Singh, S. Sharma, N. Kumar, K.-K. R. Choo,
Blocked: Blockchain-based secure data processing framework in edge en-
visioned v2x environment, IEEE Transactions on Vehicular Technology
(2020).

[34] J. Son, A. V. Dastjerdi, R. N. Calheiros, X. Ji, Y. Yoon, R. Buyya,
Cloudsimsdn: Modeling and simulation of software-defined cloud data
centers, in: 2015 15th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, 2015, pp. 475–484.

31

