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Abstract— We study a resource allocation problem for the
uplink of a virtualized massive multiple-input multiple-output
system, where the antennas at the base station are priced
and virtualized among the service providers (SPs). The mobile
network operator (MNO) who owns the infrastructure decides
the price per antenna, and a Stackelberg game is formulated for
the net profit maximization of the MNO, while the minimum
rate requirements of SPs are satisfied. To solve the bi-level
optimization problem of the MNO, we first derive the closed-form
best responses of the SPs with respect to the pricing strategies
of the MNO, such that the problem of the MNO can be
reduced to a single-level optimization. Then, via transformations
and approximations, we cast the MNO’s problem with integer
constraints into a signomial geometric program (SGP), and we
propose an iterative algorithm based on the successive convex
approximation (SCA) to solve the SGP. Simulation results show
that the proposed algorithm has performance close to the global
optimum. Moreover, the interactions between the MNO and SPs
in different scenarios are explored via simulations.

Index Terms— Resource allocation, massive MIMO,
Stackelberg games, convex approximation, antenna allocation.

I. INTRODUCTION
A. Motivation

V IRTUALIZATION of the physical resources of cellular
networks suggests a business model that can be bene-

ficial to both mobile network operators (MNOs) and service
providers (SPs) [1]. On the one hand, the MNO can make a
profit from leasing its underutilized network facilities to SPs
serving their subscribers. On the other hand, by renting the
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infrastructure from the MNO, SPs can provide customized
services to their subscribers without the need to build and
maintain their network facilities, saving a huge amount of
capital expenditures for the hardware.

The possibility of implementing a massive number of anten-
nas on a base station (BS) brings a tremendous improvement in
the capacity of a cellular network [2]. It has been shown in [3]
that massive multiple-input multiple-output (MIMO) systems
can reduce the transmission power and increase the spectral
efficiency by the factor of the number of antennas at the
BS. Moreover, due to the channel hardening effect in massive
MIMO systems, simple linear precoders can be employed at a
BS to support transmissions towards multiple users’ with good
performance [3].

However, using a large number of antennas at a BS comes
with non-trivial operating cost. The work in [4] shows that
over 50% of the power consumption of a typical BS in 2010 is
due to the power amplifiers, baseband processors, and RF
transceivers. The power consumption due to the above fac-
tors would be more significant in a massive MIMO system.
Then, in order to maximize the energy-efficiency of a mas-
sive MIMO system, the number of allocated antennas for
transmission/reception [5] or even the number of mounted
antennas [6] should be optimized. Similarly, the cost of power
consumption should be taken into consideration when an MNO
provides data services for making a profit.

In this work, we propose antenna and power allocation via
pricing in a virtualized massive MIMO network. The use of
pricing mechanism is particularly suitable for the situation
where the MNO has the ability to offer hardware facilities
as a service [7]. Specifically, the pricing is modeled by a
Stackelberg game, which could reflect interactions between
the MNO as the leader and the SPs as the followers. Similar
to [8] that different entities merges as one and purchase
energy from the electricity market, in the proposed model,
an MNO owns a BS with a large number of antennas and is
willing to lease the antennas to multiple SPs. Exploiting the
acquired resources from the MNO, each SP serves a group of
uplink users with certain guaranteed quality of service (QoS).
The available resources at the MNO are quantified by the
number of antennas [9]. The MNO decides the price per
antenna for each SP, and the MNO makes a profit from
charging the SPs based on the number of antennas the users
in each of the SPs would like to purchase. On the other hand,
the MNO needs to cover the cost of using the antennas and
the backhaul link, and therefore the MNO must determine
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the prices it charges each SP to ensure that the net profit is
maximized.

Applying Stackelberg game to model these interactions,
constrained by QoS requirements of SPs, the optimization
problem of the MNO (leader) would be a bi-level optimization,
which is inherently difficult to solve [10]. To tackle this issue,
we analytically derive the closed-form solutions of the follow-
ers as functions of the pricing strategies of the leader; then,
by replacing followers’ best responses in the leader’s game,
the problem is transformed into a single-level optimization
problem. Since the derived closed-form follower solutions
are of binary nature, we introduce auxiliary optimization
variables and present the leader’s problem in a more tractable
manner. However, the transformed leader’s problem is still
mixed-integer and also non-convex. To solve this problem,
we apply several transformations and approximations, such
that the leader’s problem is cast into a signomial geometric
program (SGP) with binary variables. We then propose an
algorithm that solves N continuous SGPs, where N is a linear
function of the size of the system. An iterative algorithm based
on the successive convex approximation (SCA) is applied to
solve each of the continuous SGPs. Simulation results show
that the proposed iterative algorithm returns the net profit of
the MNO which is very close to the optimal net profit found
by exhaustive search. Also, various scenarios are examined
revealing the profitable situations for the MNO.

B. Related Works

Network virtualization in wireless communications along
with software-defined networking (SDN) has been identi-
fied as a promising solution to accommodate the diverse
demand of wireless communications traffic by introducing
flexibility in service customization [11]. Moreover, network
function virtualization is argued to be an efficient tool to
optimize the resource provisioning in 5G networks where
multiple radio access technologies coexist [12]. In this type
of 5G networks, physical resources in various radio access
networks can be abstracted and virtualized based on which
system optimization and customized service provisioning can
be accomplished [13]. There are several works in the lit-
erature proposing resource allocation techniques in virtu-
alized wireless networks, leveraging the synergy between
SDN and multi-layer resource management. For example, [14]
and [15] focus on how to carry out vertical handover
across cellular network and WiFi access points for traffic
offloading and user experience improvement, respectively.
In [16], the physical-layer resources from different MNOs
are virtualized as achievable data rates and a rate alloca-
tion optimization problem is studied. Moreover, virtualization
for device-to-device communications has been considered
in [17]–[19], and virtualization of cellular networks with
full-duplex relays is considered in [20]. The combination
of content virtualization [21] and network virtualization is
considered in [22] and [23], where caching is enabled at the
base stations and the mobile terminals.

Wireless network virtualization not only provides an effi-
cient platform to optimize the system performance of today’s
highly heterogeneous networks but also makes diverse service

provisioning possible [24]. On the other hand, the available
service comes with a cost to the MNOs and the SPs, and
careful treatment on how to charge for the provided services
are needed to ensure the benefits of both parties. Most of
the above works in wireless virtualized networks address the
resource allocation problem by assuming that the price per unit
of resource paid by the service-subscribing users is fixed. Such
approaches are not able to capture the behavior of the service
subscribers under various pricing strategies and are therefore
not suitable for studying the resource allocation problems in
virtualized networks from the economy point of view.

To address this issue, Stackelberg game theoretic model
can be applied such that the entities who own wireless physi-
cal or computational resources can optimize their prices based
on the demand from the service subscribers. Such models
have been considered in cloud computing for computational
resource allocations [25], [26], in cognitive radio networks for
spectrum trading [27], and in full-duplex relay assisted cellular
networks for energy-efficient resource allocation [28]–[30].
In massive-MIMO enabled networks, hierarchical evolutionary
game and combinatorial auction have been adopted to address
the antenna allocation problem in [31] and [32], respectively.
However, the cost for operating a large number of antennas
is not considered in [31], [32]. Reference [33] investigates
antenna and subcarrier allocation for energy efficiency maxi-
mization in a virtualized massive-MIMO single-cell network,
but the interactions between SPs and MNOs from an economic
perspective is not studied.

In this work, we study the joint resource allocation and ser-
vice provisioning pricing problem in massive-MIMO enabled
wireless virtualized networks, where the antennas are priced
for the profit maximization of the MNO, and the cost of
operating the antennas are taken into account. We adopt a
Stackelberg game approach, which allows us to study the
behaviors of the data service subscribers in a virtualized
massive MIMO network and the optimal pricing strategy of
the MNO who provides the infrastructure. Through extensive
analyses, we characterize the behaviors of the users belonging
to different SPs under various pricing strategies. Based on
simulation studies, we identify the conflicts between the MNO
and the SPs, and we discuss the scenarios which are beneficial
to the MNO and the SPs.

C. Organization

The rest of this paper is organized as follows. Section II
presents the system model and formulates the Stackelberg
game for the resource allocation problem. Section III
derives the closed-form solutions of the followers in the
Stackelberg game and formulates the single-level leader prob-
lem. Section IV details the proposed algorithm for solving the
leader problem. Section V provides the numerical studies for
the iterative algorithm and the behaviors of the leader and the
followers in the Stackelberg game. Finally, Section VI draws
the conclusion.

II. SYSTEM MODEL

Consider a cellular network where an MNO owns a BS
which is equipped with M antennas. There are G SPs in
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the network; each SP provides uplink service to a group
of users by renting the hardware from the MNO. Denote
G � {1, 2, . . . , G} as the index set for the SPs, where SP
g serves Ng users whose indices are contained in the set
Ng � {1, 2, . . . , Ng}.

Let hn,g be the M -by-1 channel coefficient vector between
the BS and the n-th user in SP g. We model the channel
coefficient as hn,g =

√
dn,ggn,g, where dn,g is the large-scale

fading gain between the BS and the n-th user in SP g which
is assumed to be the same for all antennas, and gn,g denotes
the vector of small-scale fading coefficients. The elements in
gn,g are assumed to be mutually independent. Also, gn,g and
gn′,g are assumed to be independent for n �= n′.

Denote Mn,g as the number of antennas allocated to
the n-th user in SP g, and hn,g the corresponding
Mn,g-by-1 channel coefficients from the BS. Due to the vision
that massive-MIMO is a key enabler of the next generation
cellular network, we focus on the situation where the system
operates at the massive-MIMO region, where Mn,g ≥ Mmin

and Mmin is sufficiently large. Then, from the law of large
numbers, we have 1

Mn,g
h†

n,ghn′,g′ ≈ 0 for n′ �= n or g′ �= g.
Also, we have 1

Mn,g
h†

n,ghn,g ≈ dn,g. With perfect channel
state information, the achievable uplink data rate of the
n-th user in SP g using maximal-ratio combining (MRC) is [3]

Rn,g = ln(1 + Pn,gMn,gdn,g), (1)

where Pn,g is the transmission power of the user and the noise
power is normalized to one.1

The MNO charges SP g for the number of antennas allo-
cated to its users with a price of cg , such that cg is the charge
per-antenna for SP g. Consequently, the total charge of SP g
can be computed as cg

∑
ng∈Ng

Mn,g. Accordingly, the charge
incurred to SP g due to user n is cgMn,g. Denote θg as the
willingness to pay for SP g, where higher θg indicates that the
users of the SP g are willing to pay more for the same level
of services [35]. By adapting the widely used linear utility
model [32], [36], the utility of the n-th user in SP g is defined
as the difference between its gain from receiving the data
service and the induced cost, i.e.,

Un,g(Pn,g, Mn,g) � θgRn,g − wgPn,g − cgMn,g, (2)

where wg is a power weight on the transmission power
level, which is considered for power conservation. Note that
although the transmission power budget constraint for a user is
not explicitly defined, we show later that the utility definition
in (2) imposes a maximum transmission power for a user
implicitly.

Due to a finite number of antennas mounted at the BS,
the number of available antennas for allocation to any user is
limited as

Mn,g ≤ M, ∀n, ∀g. (3)

1As indicated in [34] that the rate expression for the downlink scenario
depends on the number of simultaneously served users. As a result, the game
theoretic analysis for the uplink, to be presented later, is significantly different
from the downlink. Therefore, we leave the downlink scenario as a future
work.

Furthermore, in order to avoid the situation in which a user is
forced to pay for the antennas while receiving no data service,
the following constraint on the number of allocated antennas
to the n-th user in SP g is imposed, i.e.,

Mn,g ≥ Mmin · �(Pn,g), (4)

where �(·) is the indicator function which is defined as
�(x) � 0 if x = 0 and �(x) � x if x >= 0. The physical
meaning of (4) is that a user has the option not to purchase
any antenna, if the user decides not to transmit any data.

At the MNO side, the cost induced to provide the uplink
services needs to be considered for net profit maximization.
Since the antennas at the BS can be used to process the
received signals from multiple users, the cost due to the
operation of antennas is proportional to the maximum number
of allocated antennas. Therefore, according to the power
consumption model in [6], we define the cost of the MNO as

f cost
MNO � q1 · max

n∈Ng,g∈G
{Mn,g} + q2 ·

∑

g∈G

∑

n∈Ng

Rn,g, (5)

where the first part of (5) quantifies the cost that comes
from the received signal processing at the BS, the second
part of (5) quantifies the cost that comes from demodulation,
channel decoding, and data transfer to the core network via the
backhaul, and q1 and q2 are the costs per antenna and per unit
of data rate, respectively. Define M̂ as an auxiliary variable
that serves as the upper bound on the number of allocated
antennas to the users. The cost function of the MNO can be
equivalently written as

f cost
MNO = q1M̂ + q2

∑

g∈G

∑

n∈Ng

Rn,g, M̂ ≥ Mn,g, ∀n, ∀g.(6)

For the sake of fairness and service customization of
the SPs, the MNO ensures that the total achieved uplink data
rate of SP g is no less than a positive value Rmin

g [33], i.e.,

∑

n∈Ng

Rn,g ≥ Rmin
g , g ∈ G. (7)

Since the MNO decides the price per antenna which affects
the net profit of itself and the utilities of the users, it is
convenient to use the Stackelberg game to model the profit
maximization and user utility maximization problem. In the
proposed Stackelberg game framework, the MNO is the leader,
and the SPs are the followers. The net profit maximization
problem for the leader and utility maximization problems for
the followers can be formulated as

Leader (MNO):

maximize
{cg|g∈G}

∑

g∈G

(
cg

∑

n∈Ng

Mn,g

)
− f cost

MNO, (8a)

subject to
∑

n∈Ng

Rn,g ≥ Rmin
g , ∀g ∈ G, (8b)

M̂ ≤ M, (8c)

Mn,g ≤ M̂, ∀n, ∀g, (8d)
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Follower g (SP g):

maximize
{Pn,g,Mn,g |n∈Ng}

∑

n∈Ng

Un,g, (9a)

subject to Pn,g ≥ 0, n ∈ Ng, (9b)

Mn,g ≥ Mmin · �(Pn,g), n ∈ Ng, (9c)

Mn,g ∈ Z
+, n ∈ Ng. (9d)

We can see that the leader’s problem is a bi-level opti-
mization problem because the leader’s problem formulation
depends on the output of the followers’ optimization problems.

The formulated Stackelberg game can be solved by first
finding the subgame perfect equilibria of the followers’ games,
i.e., the closed-form solutions to the follower games. Then,
the leader’s problem can be reduced to a single-level opti-
mization problem by substituting the followers’ solutions into
the leader’s problem. Next, we devote Section III to finding the
solutions of the follower games and Section IV-C to solving
the leader game in single-level form.

III. SUBGAME PERFECT EQUILIBRIA ANALYSIS AND THE

SINGLE-LEVEL LEADER’S PROBLEM FORMULATION

In this section, we analyze the subgame perfect equilibria
of the followers’ games and provide closed-form solutions of
the followers. In other words, we find the best responses of
the followers for a given strategy of the leader in terms of cg.
Then, we present the formulation of the leader optimization
problem in single-level form.

A. Closed-Form Solution of a Follower

The optimization problem (9) is a mixed integer program-
ming since Mn,g are restricted to integer values. To reduce
the complexity of solving the Stackelberg game, we relax the
constraint in (9d) such that Mn,g can take real positive values.2

To find the global maximum of this constrained problem,
we first study the properties of critical points (CPs) of Un,g and
then explore the global maximum within the feasible region.

1) Critical Points of Un,g: Setting the first order partial
derivatives of Un,g with respect to (w.r.t.) Pn,g and Mn,g to
zero, we have

∂Un,g

∂Pn,g
0 ⇒ Pn,g =

θg

wg
− 1

Mn,gdn,g
, (10)

∂Un,g

∂Mn,g
= 0 ⇒ Mn,g =

θg

cg
− 1

Pn,gdn,g
. (11)

To find the CPs of Un,g (when they exist), we search for the

intersection points of the curves ∂Un,g

∂Pn,g
= 0 and ∂Un,g

∂Mn,g
= 0.

The values of Pn,g at the CPs of Un,g can be found by
substituting (11) into (10), which results in

−cgP
2
n,g + θgPn,g − cgd

−1
n,g = 0, (12)

2The relaxation of Mn,g should not have much effect on the optimal
solution much, because the values of θg , wg , and cg can be relatively small
compared to the value of Mn,g . Notice that it is the ratios among θg , wg ,
and cg that affects the optimization problem. Moreover, the simulation results
in Fig. 2 supports our claim.

The solution of (12) can be found as

Pn,g =
θg ±√

αn,g

2wg
. (13)

when αn,g > 0, where

αn,g � θ2
g − cg d̂

−1
n,g, d̂n,g � dn,g

4wg
. (14)

Substituting (13) into (11), the two CPs of Un,g are

CP-1:
(

Pn,g =
θg + √

αn,g

2wg
, Mn,g =

θg + √
αn,g

2cg

)
,

CP-2:
(

Pn,g =
θg −√

αn,g

2wg
, Mn,g =

θg −√
αn,g

2cg

)
.

When αn,g = 0, the only CP is

CP-3:
(

Pn,g =
θg

2wg
, Mn,g =

θg

2cg

)
.

Moreover, when αn,g < 0, no CP exists for the function Un,g.
The next theorem shows the properties of CP-1 and CP-2 when
αn,g > 0.

Theorem 1: Given that αn,g > 0, CP-1 is a local maximum
and CP-2 is a saddle point, where Un,g(CP-1) ≥ Un,g(CP-2).

Proof: See Appendix A.
2) Best Responses of Followers: We now identify the global

maximum of Un,g, i.e., the best responses of the followers.
Since the existence of local optima affects the behavior
of Un,g , we divide the discussions into the following three
parts

a. No CP exists, i.e., αn,g < 0 or cg > θ2
g d̂n,g,

b. CP-3 exists, i.e., αn,g = 0 or cg = θ2
g d̂n,g , and

c. CP-1 and CP-2 exist, i.e., αn,g > 0 or cg < θ2
g d̂n,g.

Note that the existence of the CPs depends on the value of cg.
More specifically, CPs exist if the price of SP g is small
enough.

Before analyzing the optimal response of a user, we reveal
in the following lemma the optimal Pn,g that maximizes Un,g

when fixing Mn,g and vice versa. The lemma is important for
searching for the global maximum of Un,g in various scenarios
where CPs may or may not exist.

Lemma 1: Fixing Mn,g, the maximum of Un,g happens at
Pn,g = θg

wg
− 1

Mn,gdn,g
such that ∂Un,g

∂Pn,g
= 0. Also, when Pn,g is

fixed, the maximum of Un,g happens at Mn,g = θg

cg
− 1

Pn,gdn,g

such that ∂Un,g

∂Mn,g
= 0.

Proof: See Appendix B.
We now find the global maximum of Un,g when cg > θ2

g d̂n,g.
In this case, Un,g has no CP, which means that the curves
∂Un,g

∂Pn,g
= 0 and ∂Un,g

∂Mn,g
= 0 do not intersect with each other.

Let

ŵn,g � wg

Mmindn,g
(15)

be the normalized weight for the transmission power of
the n-th user in SP g. The next theorem shows the global
maximum of Un,g when cg > θ2

g d̂n,g.
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Theorem 2: When cg > θ2
g d̂n,g, the maximum of Un,g is

obtained at the boundary point

1) B-1: (Pn,g = 0, Mn,g = 0), when ŵn,g ≥ θg ,

2) B-2:
(
Pn,g = θg

wg
− 1

Mmindn,g
, Mn,g = Mmin

)
, when

ŵn,g < θg.

Proof: See Appendix C.
From Theorem 2, it would be advantageous for the leader
to set a large price when ŵn,g < θg since a user would
always purchase some antennas for a large cg and the payment
from the user would then be very large. However, such
advantage can be easily counteracted if SP g either increases
wg or decreases θg such that ŵn,g ≥ θg for all users in the SP.
In that case, no user from SP g will be willing to subscribe any
service, and the leader will not be able to take any advantage.
In the sequel, we assume that ŵn,g ≥ θg to avoid the leader
from taking the unfair advantage as described above.

Next, we state the global maximum of Un,g when cg =
θ2

g d̂n,g such that CP-3 exists.
Theorem 3: When cg = θ2

g d̂n,g and ŵn,g ≥ θg, the maxi-
mum of Un,g happens at B-1.

Proof: See Appendix D.
Theorem 3 together with Theorem 2 imply that the n-th user in
SP g will always prefer to transmit at zero power and purchase
no data service when cg ≥ θ2

g d̂n,g and ŵg ≥ θg.
Next, we discuss the feasibility condition of CP-1 and the

user’s best response when cg < θ2
g d̂n,g , where we know from

previous discussions that CP-1 exists when cg < θ2
g d̂n,g .

Theorem 4: When cg < θ2
g d̂n,g and ŵg ≥ θg , CP-1 is

feasible. Also, there exists a threshold price �n,g ∈ (0, θ2
g d̂n,g)

such that leftmargin=5mm

1) the n-th user in SP g plays CP-1 as the best response,
if cg < �n,g , and,

2) B-1 is the best response of the same user, if cg ∈
[�n,g, θ

2
g d̂n,g).

Moreover, the threshold price �n,g is the unique solution of

Un,g(CP-1) = θg log(2θg

θg + √
αn,g

cg d̂
−1
n,g

) − (θg+
√

αn,g) = 0,

(16)

and �n,g can be found by the bisection method.
Proof: See Appendix E.

Theorem 4 implies that when cg < θ2
g d̂n,g , the n-th user in SP

g might purchase more antennas than Mmin. This is because,
when cg < θ2

g d̂n,g , CP-1 can be the best response of the

n-th user in SP g. Since
θg+

√
αn,g

2cg
(the optimal Mn,g in CP-1)

is a decreasing function of cg and limcg→0+
θg+

√
αn,g

2cg
= +∞,

the n-th user in SP g would purchase many antennas if the
leader sets cg very small. Moreover, although the optimal
power at CP-1

θg+
√

αn,g

2wg
is a decreasing function of cg , the

n-th user in SP g always transmits at a positive power since
θg+

√
αn,g

2wg
>

θg

2wg
when cg < θ2

g d̂n,g . Thus, given that there is

sufficient number of antennas, the leader is able to satisfy a
high Rmin

g by reducing cg when CP-1 exists and is feasible.

Summarizing the results in Theorems 2, 3, and 4, we obtain
the best response of a user for any non-negative cg and any
positive wg as follows.

Corollary 1: For ŵg ≥ θg, the best response of the
n-th user in SP g is CP-1 when cg < �n,g and is B-1 when
cg ≥ �n,g. The threshold price �n,g is the unique solution
of (16).

Remark 1: Although no constraint has been imposed on the
maximum transmission power for each user, it is evident that
the maximum transmission power of the n-th user in SP g
is θg

wg
, which will happen only if Un,g is maximized at CP-1

and cg approaches zero. In other words, a suitable wg can be
chosen to ensure that the power budget of a user is respected.

Remark 2: The optimal Mn,g is always a decreasing func-
tion of cg . This can be explained by the fact that, when
cg ≤ θ2

g d̂n,g, M∗
n,g = θg+

√
αn,g

2cg
which is a decreasing function

of cg and always larger than Mmin. When cg > θ2d̂n,g,
M∗

n,g = 0. This means that the followers would purchase more
antennas if cg decreases.

Remark 3: For SP g, there exists an upper bound cmax
g and

a lower bound cmin
g on cg such that the leader’s problem is

feasible if cg ∈ [cmin
g , cmax

g ]. To see this, the rate constraint
in (8b) will be violated if cg is too large because no user in
SP g would purchase any antenna, and the antenna allocation
constraints in (8c) and (8d) will be violated if cg is too small
because limcg→0+

θg+
√

αn,g

2cg
= +∞, i.e., a user purchases a

large number of antennas for small cg. The values of cmax
g and

cmin
g can be found by bisection methods.

B. Single-Level Formulation of the Leader’s Game

In this section, we present the single-level formulation
of the leader problem based on the best responses of the
followers. From Corollary 1, the best response of a user is
of binary nature, i.e., either CP-1 or B-1. To be able to reflect
the possibilities of the best responses in the leader problem
formulation, we introduce binary auxiliary variables, i.e., ln,g,
as the indicators for the best response of the n-th user in SP
g such that

1) ln,g = 1 when CP-1 is the best response, and,
2) ln,g = 0 when B-1 is the best response.

Then, the optimal transmission power and the number of
allocated antennas of the n-th user in SP g can be written as

P best
n,g �

θg + √
αn,g

2wg
ln,g, (17)

M best
n,g �

θg + √
αn,g

2cg
ln,g. (18)

From Corollary 1, the value of ln,g depends on cg and �n,g.
The next lemma defines a set of constraints on ln,g which
reflects the necessary conditions on best responses.

Lemma 2: The following constraints

ln,g ≤ �n,gc
−1
g , (19a)

(ln,g + cg�
−1
n,g)

−1 ≤ 1, (19b)

ln,g ∈ {0, 1}, (19c)
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ensure that: ln,g = 1 when cg < �n,g; ln,g = 0 when
cg > �n,g; Either ln,g = 1 or ln,g = 0 when
cg = �n,g .

Proof: The lemma can be proved by checking feasible
ln,g and cg values.
With the new auxiliary variables (i.e., ln,g, P best

n,g , and M best
n,g )

and the new constraints (i.e., (19)), the leader problem (8) can
be transformed into

minimize
cg,Rn,g,ln,g,

P best
n,g,Mbest

n,g,M̂

∑

g∈G

∑

n∈Ng

(
q2 Rn,g − cgM

best
n,g

)
+ q1M̂, (20a)

subject to eRn,g = 1 + P best
n,g M best

n,g dn,g, ∀n, ∀g, (20b)

Rmin
g · (

∑

n∈Ng

Rn,g)−1 ≤ 1, g ∈ G, (20c)

M best
n,g ≤ M̂, ∀n, ∀g, (20d)

cg ∈ [cmin
g , cmax

g ], ∀g, (20e)

(8c), (17), (18), and (19),

where (20b) is the equivalent transformations of (1).
The problem in (20) falls into the category of mixed-integer

nonlinear program (MINLP) [37]. A general approach to
a MINLP is to use the branch-and-bound method whose
complexity in the worst case can be as high as exhaustive
search, i.e., the number of solved subproblems can be an
exponential function of the number of variables [38]. MINLPs
which are non-convex after the integer relaxation are even
more difficult to solve because the complexity of solving
any problem instances during the branching process can be
very high. Obtaining the optimal solution of (20) is then very
challenging because the problem is non-convex even after the
binary relaxation.

In the next section, we propose an algorithm to solve (20)
that searches through selected subproblems of (20). In this
approach, the number of solved subproblems is only a linear
function of the size of the system, and each subproblem con-
tains only continuous variables. We then propose an efficient
iterative algorithm that solves the non-convex subproblems
of (20). The performance of the algorithm is very close to
that obtained by the exhaustive search as demonstrated in the
simulation studies.

IV. PROPOSED ALGORITHM FOR THE LEADER’S GAME

We propose an algorithm for solving (20) with affordable
complexity. We first show that the optimal solution of (20) can
be found by solving

∏G
g=1 Ng subproblems of (20) without

binary variables. Then, we propose an algorithm that explores
in a reduced search space, such that at most

∑G
g=1 Ng −

G + 1 out of the
∏G

g=1 Ng subproblems of (20) are solved.
Subsequently, we propose an efficient iterative algorithm that
finds an optimal solution for each subproblem.

A. Binary Relaxations

The relationship among cg , ln,g, and �n,g in (19) suggests
that ln,g takes fixed values when cg belongs to certain ranges
defined by �n,g. The next lemma describes �n,g as a function
of dn,g , which facilitates the determination of ln,g values in
different ranges of cg.

Lemma 3: �n,g is an increasing function of dn,g .
Proof: See Appendix F.

With out loss of generality, assume that the user indices of
each SP are arranged such that di,g ≤ dj,g, ∀i < j ∈ Ng,
∀g where i, j ∈ Ng. From Lemma 3 and Theorem 4, we can
infer the best responses of all users in SP g when cg ∈
[�n′,g, �n′+1,g]. Specifically, ln,g = 1 for all n ∈ Ng such
that n ≥ n′ and ln,g = 0 for users with indices n < n′.

The above observation can be leveraged to remove the
binary variables. Suppose that �0,g � 0 ∀g. The following
constraint

Con(n′
g, g) : �n′

g,g ≤ cg ≤ �n′
g+1,g (21)

is equivalent to

ln,g =

{
0, ∀n < n′

g

1, ∀n ≥ n′
g

(22)

where n′
g ∈ {0}∪Ng \max{Ng}, A\B gives the elements in

A that are not in B, g ∈ G, and max{Ng} returns the largest
element in the set Ng . Consequently, by adding Con(n′

g, g) for
all SPs, we can remove the binary variables ln,g and obtain a
continuous subproblem of (20) as

minimize
cg,Rn,g,

P best
n,g,Mbest

n,g ,M̂

∑

g∈G

∑

n∈Ag(n′
g)

(
q2 Rn,g−cgM

best
n,g

)
+q1M̂,(23a)

subject to eRn,g =1+P best
n,g M best

n,g dn,g, ∀n∈Ag(n′
g), ∀g,

(23b)

P best
n,g =0, ∀n∈Ng\Ag(n′

g), ∀g∈G, (23c)

M best
n,g =0, ∀n∈Ng\Ag(n′

g), ∀g∈G, (23d)

Rmin
g ·(

∑

n∈Ag(n′
g)

Rn,g)−1≤1, ∀g∈G, (23e)

P best
n,g =

θg+√
αn,g

2wg
, ∀n∈Ag(n′

g), ∀g∈G,

(23f)

M best
n,g =

θg+√
αn,g

2cg
, ∀n∈Ag(n′

g), ∀g∈G,

(23g)

Con(n′
g, g): �n′

g,g≤cg≤�n′
g+1,g, ∀g∈G,

(23h)

(20e), (20d), and (8c),

where Ag(n′
g) � {n′

g + 1, n′
g + 2, . . . , Ng} for a given n′

g ∈
{0}∪Ng \max{Ng}. Note that Ag(n′

g) represents the active
user set of SP g when the constraint Con(n′

g, g) is added,
where an active user plays CP-1 as its best response and an
inactive user plays B-1 as its best response.

Note that there are Ng possible constraints of the kind
Con(n′

g, g) for SP g. Considering all combinations, we have in
total

∏G
g=1 Ng subproblems in the form of (23). To obtain the

optimal solution of (20), the exhaustive approach is to solve
all
∏G

g=1 Ng subproblems of (20). However, the complexity

of solving all
∏G

g=1 Ng subproblems becomes prohibitive
as a subproblem of (20) is non-convex and the number of
subproblems grows quickly with the number of users.
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Fig. 1. Illustration of the proposed search algorithm. In this example, there are two SPs, where each SP serves 3 users. The users of SP 1 are labeled as 1, 2,
and 3, and the users of SP 2 are labeled in a similar way. The pointers represent the constraints Con(n′

g , g) in (23), e.g., the two pointers on the far left
means that Con(2, 1) and Con(2, 2) are included in the initial instance of (23), i.e., P(0). Prices in the shaded areas are not feasible.

B. Search Algorithm With Linear Complexity

We now propose a search algorithm that drastically reduces
the number of subproblems of (20) needed to be solved. The
proposed search algorithm is motivated by the following obser-
vation: Suppose SP g purchases M ′ antennas, the cost induced
to the leader due to the operation of antennas will remain
fixed as long as no other SP purchases more than M ′. This
allows the leader to explore the possibility of increasing the
net profit by encouraging other SPs, who currently purchased
fewer antennas than M ′, to purchase more by decreasing the
price.

Inspired by the above observation, we propose a search
procedure where only

∑G
g=1 Ng −G+1 problems of the kind

in (23) need to be solved. We illustrate the proposed algorithm
in Fig. 1 for two SPs, where both SPs 1 serve 3 users. The
algorithm contains the following steps:

1) Starting with the highest feasible price ranges: We start
the pricing optimization by constraining the price of
each SP to the largest interval defined by the threshold
prices, where the interval contains price values that are
feasible. In this step, the number of antennas allocated
to each SP would be in the lowest range possible.
Example: In Fig. 1, c2 ≥ �3,2 is not feasible for satisfy-
ing the rate requirement of SP 2. Therefore, we start by
solving (23) with c1 ∈ [�2,1, �3,1] and c2 ∈ [�2,2, �3,2].
In other words, the constraints in (23h) are Con(2, 1)
and Con(2, 2) (see the first instance on the left of
Fig. 1). We denote this instance of (23h) as the initial
instance P(0).

2) Decreasing the price range for one SP: In this step,
we adjust the price range for one SP while fixing the
price ranges for the other SPs and solve the correspond-
ing sub-problem (23). In other words, the algorithm
explores the possibility to sell more antennas to an SP
for profit maximization by searching in a reduced range
of prices. We do so for each SP, where we start from the
SP that purchases the least number of antennas in P(0),
proceed to the next SP that purchases the second least
number of antennas in P(0), and stop at the SP that
purchases the most number of antennas in P(0).
Example Continued: Referring to Fig. 1, suppose after
solving P(0), SP 1 purchases more antennas than SP 2.

Then, we solve another two instances of (23) which we
denote respectively as P(1) and P(2). In P(1) and P(2),
the price range constraint for SP 2 in (23h) are respec-
tively Con(1, 2) and Con(0, 2), and the same constraint
for SP 1 is Con(2, 1).
Now, suppose the leader gains the largest net profit
in P(1). Then, we solve another two instances of (23)
which are P(3) and P(4), where the price range con-
straints for SP 1 in P(3) and P(4) are respectively
Con(1, 1) and Con(0, 1), and the price range of SP 2 is
Con(1, 2). Suppose P(3) maximizes the net profit of
leader among P(1), P(3), and P(4). Then, we return the
solution of P(3) as the output of the search algorithm.

To calculate the number of subproblems that the pro-
posed search algorithm needs to solve, observe that the
first step solves one subproblem. Then, in the second step,
for SP g, at most Ng − 1 subproblems are solved when
[cmin

g , cmax
g ] includes all threshold prices {�n,g|n ∈ Ng}.

Therefore, the total number of subproblems that needs to be
solved by the proposed search algorithm is upper-bounded by∑G

g=1 Ng − G + 1.
Next, we propose an iterative algorithm that efficiently

solves the non-convex problem (23).

C. An Iterative Algorithm for the Leader’s Subproblems

We now propose an iterative algorithm for solving a problem
instance in (23). We first show that (23) can be cast into an
SGP, where solving an SGP is NP-hard [39]. Then, we apply
the SCA method, where (23) is solved by solving a series
of GPs. Note that a GP can be transformed into a convex
problem which can be efficiently solved.

1) Preliminaries on Solving an SGP: Let x �
[x0, x1, . . . , xN ] be the variables to be optimized. An SGP
can be written in the following form

SGP : minimize
x

x0, (24a)

subject to
fk(x)
f ′

k(x)
≤ 1, k ∈ K1, (24b)

fk(x)
f ′

k(x)
= 1, k ∈ K2, (24c)



LIU et al.: ANTENNA ALLOCATION AND PRICING IN VIRTUALIZED MASSIVE MIMO NETWORKS 5227

where fk(x) �
∑

j γj,k

∏
i x

δi,j,k

i and f ′
k(x) �

∑
j γ′

j,k

∏
i x

δ′
i,j,k

i are posynomials, γj,k > 0, γ′
j,k > 0,

δi,j,k and δ′i,j,k are real numbers, and K1 and K2 are two
disjoint index sets.

Due to its NP-hardness, solving an SGP optimally in
general leads to high computational complexity. On the other
hand, it has been shown that SCA can be applied where
a Karush-Khun-Tucker (KKT) point of the SGP can be
obtained [40]. In the SCA, a GP approximation of the SGP is
obtained at the t-th iteration, where the GP approximation is
based on the solution of the GP in the last iteration x(t),
and the first GP approximation is performed based on an
initial point x(0). A solution to the SGP is then found by
solving a series of GPs, where a GP can be transformed into
a convex problem which can be solved efficiently by off-the-
shelf optimization toolboxes such as MOSEK.

To approximate the SGP in (24) at the t-th iteration using
a GP, a two-step transformation can be carried out. As the
first step, define {sk(t)|k ∈ K2} as the auxiliary variables,
the problem (24) can be equivalently transformed into

minimize
x,{sk|k∈K2}

x0(t) +
∑

k∈K2

μk(t)sk(t), (25a)

subject to
fk(x(t))
f ′

k(x(t))
≤ 1, k ∈ K1 ∪ K2, (25b)

sk(t)−1f ′
k(x(t))

fk(x(t))
≤ 1, k ∈ K2, (25c)

sk(t) ≥ 1, k ∈ K2, (25d)

when sk(t) = 1 for all k ∈ K2, where {μk(t)|k ∈ K2} are
chosen as positive and increasing functions of t such that sk(t)
is forced to take small values as t increases [40].

As a second step of the GP approximation, the denominators
of the constraints (25b) and (25c) are replaced by monomials
using the arithmetic-geometric mean approximation (AGMA),
such that (25b) and (25c) become upper bound constraints on
posynomials which can be admitted by a GP. Let f ′

k(x(t)) =∑
j f̃k,j(x(t)), where f̃k,j are monomials, the AGMA suggests

that

∑

j

f̃k,j(x(t)) ≥
∏

j

(
f̃k,j(x(t))

bk,j(t)

)bk,j(t)

, (26)

where bk,j(t) � f̃k,j(x(t−1))
f ′

k
(x(t−1)) and x(t − 1) is obtained from

the last iteration [40]. Then, the constraints in (25b) can be
approximated as

fk(x(t)) ·
∏

j

(
f̃k,j(x(t))

bk,j(t)

)−bk,j(t)

≤ 1, k ∈ K1 ∪ K2.

(27)

After the aforementioned transformations, a GP appro-
ximation of the original SGP is obtained at the t-th iteration.

The iterative algorithm for solving an SGP takes the following
steps
S-1 Set t = 0. Initialize x(t) and μk(t).
S-2 Set t = t + 1. Set μk(t) such that μk(t) ≥ μk(t − 1).

Find the GP approximation of the SGP based on (25)
and (26). Then, solve the resultant GP.

S-3 Repeat step 2 until some stopping criterion is met.
Return x(t) as the solution to the SGP.

The convergence of the SCA towards a KKT point is
established in [40], and we omit the corresponding discussion
here for simplicity.

2) Leader Sub-Problem as an SGP: The problem in (23)
takes a form which is similar to an SGP. We discuss some
transformations required to model the leader game as an SGP.

To cast the objective function of (23) into SGP, we first
add a sufficiently large constant E to (23a) such that (23a) is
guaranteed to be positive. Then, by introducing an auxiliary
variable z, (23a) becomes equivalent to the minimization of z
subject to the following constraint

∑

g∈G

∑

n∈Ag(n′
g)

(
q2 Rn,g − cgM

best
n,g

)
+ q1M̂ + E ≤ z

⇒
∑

g∈G
∑

n∈Ag(n′
g)(q2 Rn,g) + q1M̂ + E

∑
g∈G

∑
n′∈Ag(n′

g) cgM best
n,g + z

≤ 1, (28)

In addition, we approximate the term eRn,g in (20b) using a
truncated Taylor series as

eRn,g =
+∞∑

i=0

Ri
n,g

i!
≈

Q∑

i=0

Ri
n,g

i!
, (29)

where Q is a positive integer which is sufficiently large such
that the approximation is accurate. Then, the problem (23) can
be rewritten as the following SGP

minimize
cg,yn,g,P best

n,g,Mbest
n,g ,M̂,z

z, (30a)

subject to
Q∑

i=1

Ri
n,g

i! · P best
n,g M best

n,g dn,g
= 1,

n ∈ Ag(n′
g), g ∈ G,

(8c), (20d), (20e), and (28),

(23e) − (23h), (30b)

where (30b) is the transformation of (20b) after the approxi-
mation in (29).

3) GP Approximation of the Leader’s Problem: The con-
straints in (8c), (20e), (20d), and (23h) are readily admissible
to a GP, while all other constraints in (30) must be approxi-
mated before being admissible by a GP.

We now apply the two-step transformation introduced in
Section IV-C.1 to obtain the GP approximation of (30), where
the iteration index t is appended to all variables to indicate
there status at the t-th iteration of the SCA. Let {sj,g,n(t)|j ∈
{1, 2, 3}, n ∈ Ag(n′

g), g ∈ G} be the auxiliary variables and
let {μj,g,n(t)|j ∈ {1, 2, 3}, n ∈ Ag(n′

g), g ∈ G} be the
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corresponding weighting functions. Moreover, let

ϕj,g,n(t) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑Q
i=1

Ri
n,g(t)

i! · P best
n,g (t)M best

n,g (t)dn,g
, j = 1,

θ−1
g wgP best

n,g + θ−1
g d−1

n,gcgP
best
n,g

−1
, j = 2,

θ−1
g cgM

best
n,g + θ−1

g d−1
n,gwgM

best
n,g

−1
, j = 3,

(31)

such that the functions in {ϕj,g,n(t)|j ∈ {1, 2, 3}} represent
the left hand side of the constraints in (30b), (23f), and (23g).
At the t-th iteration, (30) can be transformed into

minimize
yn,g(t),P best

n,g(t),

Mbest
n,g(t),cg(t),M̂(t),

z(t),sj,g,n(t)

z(t) +
∑

g∈G

∑

n∈Ag(n′
g)

3∑

j=1

μj,g,n(t)sj,g,n(t),

(32a)

subject to (8c), (20d), (20e), (28), (23e), and (23h)

ϕj,g,n(t) ≤ 1, j ∈ {1, 2, 3},
n ∈ Ag(n′

g), g ∈ G, (32b)

s−1
j,g,n(t) · ϕ−1

j,g,n(t) ≤ 1, j ∈ {1, 2, 3},
n ∈ Ag(n′

g), g ∈ G, (32c)

sj,g,n(t) ≥ 1, j ∈ {1, 2, 3},
n ∈ Ag(n′

g), g ∈ G, (32d)

so that the equality constraints in (23f), (23g), and (30b)
are transformed into inequality constraints. Then, to obtain
the GP approximation of (32), AGMA is applied to the
denominators of the left hand sides of the constraints in (23e),
(28), and (32c). The details of the AGMA approximations are
omitted for simplicity.

4) Complexity: The interior-point method can be used to
solve a GP and it is widely used in off-the-shelf solvers such
as MOSEK. The interior-point method is an iterative algorithm
that gradually approaches the global optimal point of a convex
problem. One implementation of the interior-point method
is the barrier method [41], where the number of iterations
required can be found as O(log(κ)) where κ is the number of
inequality constraints in the convex problem. The formulation
in (32) contains at most κ = 6

∑G
g=1 Ng + G + 5 inequality

constraints. Therefore, the interior-point method can solve the
GP approximation of (32) in O(log(

∑G
g=1 Ng)) iterations.

We resort to simulation studies to demonstrate the number
of GPs solved using the SCA.

V. SIMULATION RESULTS

We evaluate the proposed algorithm in the following simu-
lation setup. Specifically, the BS is located at the origin of the
Cartesian coordinate and users are randomly distributed in the
coverage area of the BS. With path-loss exponent equal to 3.7,
dn,g = ι−3.7

n,g , where ιn,g ∈ [2, 5] denotes the normalized
distance between the BS and the n-th user in SP g. Mmin

is set to 20, and Rmin
g is set to 1 for all SPs. For an accurate

Fig. 2. Leader net profit and the payment from each SP when varying the
number of users in each SP, where G = 3 and the numbers of users in all
SPs are the same. wg = 0.5 for all SPs, θ1 = 0.3, θ2 = 0.35, and θ3 = 0.4.
M is set to 600. In the legends, “Ext.” denotes the results from the exhaustive
search, and “Prop.” denotes the results from the proposed algorithm.

Fig. 3. Number of used antennas at the BS, where the system parameters
of the figure are the same as those of Fig. 2.

approximation in (29), we set Q = 15. The simulation results
are averaged over 500 randomly generated topologies in terms
of user locations.

Fig. 2 compares the proposed algorithm against the exhaus-
tive search method, where G = 3. The exhaustive search
is done by identifying the feasible price regions [cmin

g , cmax
g ]

for each of the three SPs, taking 200 uniform samples from
each of the feasible price regions, and testing all combinations
of the price samples for the three SPs. q1 and q2 are both
set to 0.001’s. The results from Fig. 2 demonstrates that
the proposed algorithm is able to let the leader achieves a
net profit very close to the maximum possible net profit.
The same figures also reveal that the leader can make more
profit when the number of users in the SPs increases, because
the payment from an SP increases as the number of users
increases. Moreover, SP 3 pays the most among the three SPs,
because the willingness to pay of SP 3 is the highest.

Fig. 3 shows the number of allocated antennas at the BS
and the prices for each SP using the same system settings
as those in Fig. 2. Observe from Fig. 3 that the proposed
algorithm correctly reflects the trend of M̂ against the number
of users in each SP, and the proposed algorithm returns the
value M̂ that is very close to that returned by the exhaustive
search. An implication of the results from Fig. 3 is that
the leader finds it more profitable to sell more antennas to
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TABLE I

AVERAGE NUMBER OF ITERATIONS USED FOR THE SCA

the followers even if it means that the price per antenna
needs to be reduced, because there are more users to make
payment.

Table I shows the average number of iterations used for
the SCA algorithm described in S-1 to S-3 under the scenario
in Fig. 2. For the SCA, we initialize μj,g,n(0) = 0.01 for all
j, g, and n. We increase μj,g,n(t) by υ(t) at iteration t, where
υ(0) = 0.01 at the beginning of the SCA. We increase the step
size υ by 9 times (i.e., υ(t) = 10υ(t − 1)) if the maximum
decrease from sj,g,n(t−1) to sj,g,n(t) is less than one percent,
where the maximum is taken over all the indices of sj,g,n.
We stop the SCA if either the maximum of sj,g,n(t) is less than
1+10−10 or υ has been updated 20 times. By such a step-size
updating rule, we find out that the largest value of sj,g,n(t)
when the algorithm terminates is 1.0016, which suggests that
the algorithm terminates at a point that is very close to an KKT
point of the leader’s problem in (20). The results in Table I
shows that the number of iterations for the SCA increases as
the size of the system increases, but the increase on the number
of iterations of the SCA is quite marginal with respect to Ng.
This suggests that the complexity of the SCA does not increase
significantly regarding Ng.

When the number of SPs, i.e., G, in the system increases,
we can see from Fig. 4a that the net profit of the leader
increases as the number of SPs increases. The reason can be
explained in two-fold. On one hand, the increase of SPs allows
the leader to receive more payment. On the other hand, because
antennas can be reused by users from different SPs, the cost
in terms of antennas can be “shared” by the SPs. Therefore,
as depicted in Fig. 4b, the leader is able to encourage the
followers to purchase more antennas when the number of SPs
increases.

We now examine the effect of power weight wg . Fig. 4c
shows that the net profit of the leader decreases as wg

increases. From the best response analysis of the followers,
we can see that the users reduce their transmission power
when wg increases. This can force the leader to allocate more
antennas, as seen in Fig. 4d, for the purpose of satisfying the
QoS constraints of the SPs but not for increasing the net profit.

Fig. 5 show how service customization regarding QoS
requirement alters the decision of the leader, where we set
Rmin

1 = Rmin
2 = Rmin

3 . Also, we examine the obtained service
of each SP regarding the total achieved rate of the users
in each SP when the distance distributions of the SPs are
different. Specifically, the user distance distribution of SP 1
remains unchanged, while ιn,g ∈ [2.6, 2.8] for SP 2 and
ιn,g ∈ [3.4, 3.6] for SP 3.

We can see from Fig. 5c that as Rmin
g increases, the leader

needs to reduce the price per antenna so that more antennas
are purchased by the SPs. On the other hand, Fig. 5b shows

Fig. 4. Leader net profit and the number of used antennas at the BS for
different number of SPs and different weighting factors as obtained using
the proposed algorithm. For Fig. 4a and Fig. 4b, Ng = 4, wg = 0.6, and
θg = 0.4 for all SPs. q1 = q2 = 0.005. For Fig. 4c and Fig. 4d, Ng = 4,
θg = 0.4, q1 = q2 = 0.005, and all SPs use the same wg . M is set to 600.

that SP 3 achieves the same rate as Rmin
3 when Rmin

3 = 7. This
indicates that the leader struggles to meet the QoS requirement
of SP 3 when Rmin

3 becomes large, and for that the leader
needs to reduce c3 and may harvest less profit from SP 3.
Due to the fact that the users of SP 2 have good channel
gains, it is relatively easy for the leader to satisfy the QoS
requirement of SP 2. As a result, the leader has more choices
on setting c2. The leader then exploits this convenience by
setting c2 such that SP 2 purchases roughly the same amount
of antennas as SP 1 does, where the number of antennas sold
to SP 2 are much larger than the amount needed for achieving
Rmin

2 (see Fig. 5b). By doing so, the leader harvests the most
payment from SP 2 among all SPs. Although the achieved
rate of SP 1 is larger than Rmin

1 , it is harder for the leader to
harvest profit from SP 1 as demonstrated in Fig. 5d, because
the distance distribution of the users in SP 1 has large variance
and the leader’s profit can be low when it is hard to ensure
the QoS requirement of SP 1, i.e., when most of the users of
SP 1 happen to be located far away from the BS.

Summarizing the above results, we find out that the MNO
can make profit if it serves more SPs with more users who are
more willing to pay for the service, and the profit of the MNO
will drop if the users are more conservative on spending their
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Fig. 5. Average allocated antennas per user, average achieved rate of each
SP, price, and payment of each SP for different Rmin

g as obtained using the
proposed algorithm, where Rmin

1 = Rmin
2 = Rmin

3 . w1 = w2 = w3 = 0.5,
and θ1 = θ2 = θ3 = 0.4.

transmission power. Also, the leader can receive more payment
if an SPs serves users that are located closer to the BS.

VI. CONCLUSION

We have studied a virtualized massive MIMO network
which provides uplink services to multiple SPs. We have
formulated the service provisioning and resource allocation
problem as a Stackelberg game, where we have derived the
closed-form expressions of the uplink users’ best responses
w.r.t. the price issued by the MNO. Based on the closed-form
solutions of the users and some transformations, we have
formulated the leader problem as an discrete SGP with binary
variables. Due to the NP-hardness of solving the binary SGP
optimally, we have developed an algorithm that solves a linear
number (w.r.t. to the size of the system) of continuous SGPs,
and we have implemented an iterative algorithm for solving
each of the continuous SGPs that converges to a KKT point.
Simulation results have demonstrated the close-to-optimal per-
formance of the proposed algorithm. Also, various simulation
scenarios have been studied to demonstrate the interactions
between MNO and the SPs, revealing the profitable situations
for the MNO.

The current work considers the pricing of antennas only dur-
ing the service provision by the MNO. Given that the antennas
are just one type of the resources that an MNO possesses, more
comprehensive studies on pricing other resources, e.g., fre-
quency spectrum, can be considered in future extensions.

Moreover, a competitive scenario among the SPs that
mimics the real market can be another important future
direction.

APPENDIX A
PROOF OF THEOREM 1

The second order partial derivatives of Un,g w.r.t. Pn,g and
Mn,g can be found as

∂2Un,g

∂P 2
n,g

= − θgM
2
n,gd

2
n,g

(1 + Pn,gMn,gdn,g)2
,

∂2Un,g

∂M2
n,g

= − θgP
2
n,gd

2
n,g

(1 + Pn,gMn,gdn,g)2
,

∂2Un,g

∂Pn,g∂Mn,g
=

∂2Un,g

∂Mn,g∂Pn,g

θgdn,g

(1 + Pn,gMn,gdn,g)2
. (33)

From (33), we have

Φ(Pn,g, Mn,g) � ∂2Un,g

∂P 2
n,g

∂2Un,g

∂M2
n,g

− (
∂2Un,g

∂Pn,g∂Mn,g
)2

=
θ2

gP
2
n,gM

2
n,gd

2
n,g − 1

(1 + Pn,gMn,gdn,g)4
d2

n,g. (34)

For the critical point CP-1, one can easily check that
∂2 Un,g

∂P 2
n,g

(CP-1) < 0 and Φ(CP-1) > 0, which suggest

that CP-1 is a local maximum [42]. Also, for the critical
point CP-2, one can find that Φ(CP-2) < 0, which suggests
that CP-2 is a saddle point [42].

To verify if Un,g(CP-1) ≥ Un,g(CP-2), we examine the
following expression

Un,g(CP-1) − Un,g(CP-2) = θg ln(
θg + √

αn,g

θg −√
αn,g

) − 2
√

αn,g.

(35)

The derivative of (35) w.r.t. αn,g can be found as
√

αn,g

θ2
g − αn,g

which is positive when αn,g ∈ [0, θg]. Notice that the inter-
val [0, θg] includes all possible values that αn,g can take.
Thus, (35) is minimized when αn,g → 0. Consequently,
Un,g(CP-1) ≥ Un,g(CP-2) is true because

lim
αn,g→0+

{
θg ln(

θg + √
αn,g

θg −√
αn,g

) − 2
√

αn,g

}
= 0. (36)
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When Mn,g is fixed and Pn,g is the only variable of Un,g,
the critical point Pn,g = θg

wg
− 1

Mn,gdn,g
is the global maximum

because ∂2 Un,g

∂P 2
n,g

< 0 (see (33)). Similarly, when Pn,g is fixed,

the critical point Mn,g = θg

cg
− 1

Pn,gdn,g
is the global maximum

because ∂2 Un,g

∂M2
n,g

< 0 (see (33)).
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APPENDIX C
PROOF OF THEOREM 2

Suppose N0 is a feasible point on the curve ∂Un,g

∂Mn,g
= 0,

we search for the global maximum from N0. Let fP (N0) and
fM (N0) represent the transmission power of the n-th user in
SP g and the number of antennas allocated to the same user at
point N0, respectively. From Lemma 1 and basic geometry (see
Fig. 6a), if we fix Mn,g to fM (N0), then Un,g increases if we
decrease Pn,g from fP (N0) until we reach either ∂Un,g

∂Pn,g
= 0

or Pn,g = 0, where we must stop decreasing Pn,g beyond
Pn,g = 0 because of the feasibility issue. Denote the stopping
point as N1.

To further improve Un,g, due to similar reasons, we can
fix Pn,g and decrease Mn,g. We can have the following three
different cases

1) fP (N1) > 0 and fM (N1) > Mmin: We can improve
Un,g by decreasing Mn,g until we hit either ∂Un,g

∂Mn,g
= 0

or Mn,g = Mmin, which ever happens first. Denote the
stopping point as N2. Because fP (N2) > 0, we can
decrease Pn,g from the point N2 to further improve Un,g.

2) fP (N1) > 0 and fM (N1) = Mmin: We cannot improve
Un,g by further decreasing Pn,g because N1 lies on
the curve ∂Un,g

∂Pn,g
= 0. Also, we cannot improve Un,g

by further decreasing Mn,g because of feasibility issue.
Note that in this case, fP (N1) = θg

wg
− 1

Mmindn,g
, and

fP (N1) > 0 implies that wg

Mmindn,g
< θg . The search

stops; call the stopping point as B-2.
3) fP (N1) = 0 and fM (N1) ≥ Mmin: We can improve Un,g

by decreasing Mn,g from fM (N1) to 0. The search is
stopped; let us call the stopping point as B-1.

We now show that the above procedure always converges
when being carried out iteratively. Let Ni be the point that
is found in the i-th iteration. Then, for any positive integer i,
we have fP (N2i) ≤ fP (N2i−1) = fP (N2i−2), fM (N2i) =
fM (N2i−1) ≤ fM (N2i−2), and Un,g(Ni) ≥ Un,g(Ni−1),
where fP (N2i) = max{0, 1

wg
− 1

fM (N2i−1)·dn,g
} and

fM (N2i) = max{Mmin · �(fP (N2i−2)), 1
cg

− 1
fP (N2i−2)·dn,g

}.
Also, following the aforementioned iterative procedure, for any
positive integer i, we have

fP (Ni) ≥ 0, fM (Ni) ≥ Mmin · �(fP (Ni)),

fP (Ni) ≥ 1
wg

− 1
fM (Ni) · dn,g

,

fM (Ni) ≥ 1
cg

− 1
fP (Ni) · dn,g

. (37)

Because both fP (Ni) and fM (Ni) are decreasing functions
of i, by repeating the above steps, we will reach the boundary
of the region defined by (37) such that neither fP (Ni) nor
fM (Ni) can be further reduced.

It can be concluded that either of the stopping points,
i.e., B-1 or B-2, is indeed the global maximum when αn,g < 0
because

1) The choice of N0 on the curve ∂Un,g

∂Pn,g
= 0 is an arbitrary

feasible point, and,

Fig. 6. Illustration of the search for the global maximum of Un,g , where
feasible regions of Un,g are shaded. (a) The case when αn,g < 0 and
ŵg > θg . The proof of Theorem 2 shows that Un,g(N0) ≤ Un,g(N1) ≤
Un,g(N2) ≤ . . . ≤ Un,g(N9) ≤ Un,g(0, 0). Note that the line from
(0,0) to N9 is also feasible. (b) the case when αn,g = 0 and ŵg > θg .
A1 and A2 respectively label the feasible regions Mn,g ∈ [Mmin,

θg

2cg
] and

Mn,g >
θg

2cg
.

2) Suppose we start with any feasible arbitrary point N′,
then from Lemma 1, Un,g(N0) ≥ Un,g(N′), where
fM (N0) = fM (N′) and N0 is on the curve ∂Un,g

∂Pn,g
= 0.

APPENDIX D
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Given that cg = θ2
g d̂n,g and ŵn,g ≥ θg , we have

θg

2cg
=

2wg

θgdn,g
=

2ŵgMmin

θg
≥ 2Mmin > Mmin. (38)

We now search for the global maximum using the similar
approach in Appendix C. If we randomly select a feasible
point in the region Mn,g <

θg

2cg
and repeat the procedure in

the proof of Theorem 2, we find out that the point B-1 results
in the largest Un,g (see Fig. 6b). On the other hand, if we
randomly select a feasible point in the region Mn,g ≥ θg

2cg
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Fig. 7. Illustration of the search for the global maximum of Un,g , where
αn,g < 0 and ŵg > θg . The shaded area is the feasible region of Un,g .

and repeat the procedure in the proof of Theorem 2, it can be
concluded that CP-3 results in the largest Un,g. We must then
compare B-1 and CP-3 in order to find the global maximum.
To this end, we have

Un,g(CP-3) − Un,g(B-1) = θg log(1 + θ2
g

cgd̂−1
g

) − θg

= θg log(2) − θg < 0, (39)

which indicates that B-1 is the global optimal point.

APPENDIX E
PROOF OF THEOREM 4

For the feasibility of CP-1, since
1+

√
αn,g

2wg
≥ 0 when cg <

θ2
g d̂n,g, we only need to show that

θg + √
αn,g

2cg
≥ Mmin ⇔ √

αn,g ≥ 2cgMmin − θg. (40)

To this end, first, the conditions cg < θ2
g d̂n,g and ŵg > θg

implies that cg <
θ2

g

4 wgd−1
n,g

and θgMmin

2wgd−1
n,g

< 1
2 , respectively.

These two conditions then suggest that

2cgMmin − θg < θg ·
(

θgMmin

2wgd
−1
n,g

− 1
)

< 0. (41)

Then, (40) is true given (41), which suggests that CP-1 is
feasible.

We now search for the global optimal point of Un,g. Starting
from an arbitrary feasible point, we would stop at either CP-1
or B-1 if we use the same searching approach as the one in
Appendix B (Fig. 7 shows the graph that facilitates the search
when CP-2 is feasible). To find out the global optimal point,
we investigate the following difference, i.e.,

Un,g(CP-1) − Un,g(B-1)
= Un,g(CP-1)

= θg log(2θg

θg + √
αn,g

cg d̂
−1
n,g

) − (θg +
√

αn,g). (42)

The first derivative of Un,g(CP-1) w.r.t. cg can be found as

∂Un,g(CP-1)
∂cg

= −2θgd̂n,g
√

αn,g + 2θ2
g d̂n,g − cg

2cgd̂n,g(
√
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The feasibility of CP-1 suggests that αn,g = θ2
g −

cgd̂
−1
n,g ≥ 0, which implies that 2θ2

g d̂n,g − cg > 0.

Therefore, ∂Un,g(CP-1)
∂cg

< 0, meaning that Un,g(CP-1) is
a decreasing function of cg . Due to the monotonicity of
Un,g(CP-1) and because cg ∈ (0, θ2

g d̂n,g), we check the
value of Un,g(CP-1) when cg approaches zero and when cg

approaches θ2
g d̂n,g . Some algebraic manipulations reveal that

limcg→0+ Un,g(CP-1) = +∞ and limcg→θ2
gd̂n,g

Un,g(CP-1) =

θg(log(2) − 1) < 0 when cg approaches θ2
g d̂n,g .

The monotonicity of Un,g(CP-1) and the boundary values
of Un,g(CP-1) for cg ∈ (0, θ2

g d̂n,g) suggests that there exists a
unique point �n,g ∈ (0, θ2

g d̂n,g) such that Un,g(CP-1) ≥ 0 for
cg ∈ (0, �n,g) and Un,g(CP-1) < 0 for cg ∈ (�n,g, θ

2
g d̂n,g).

Moreover, the uniqueness of �n,g suggests that we can find its
value by applying the bisection methods within the interval
cg ∈ (0, θ2

g d̂n,g).
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The derivative of Un,g w.r.t. d̂n,g can be found as

∂Un,g(CP-1)

∂d̂n,g

=
2θg

√
d̂n,g·

√
θ2

g d̂n,g−cg+2θ2
gd̂n,g−cg

2
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)
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(44)

which is greater than zero when cg<θ2
g d̂n,g, i.e., when

CP-1 exists. This means that Un,g(CP-1) is an increasing
function of d̂n,g. Therefore, �n,g is also an increasing function
of d̂n,g because Un,g(CP-1)=0 when cg=�n,g and Un,g(CP-1)
is an increasing function of d̂n,g. The lemma is proved by
realizing that d̂n,g=

dn,g

4wg
.
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