9,129 research outputs found

    Ultimate approximations in nonmonotonic knowledge representation systems

    Full text link
    We study fixpoints of operators on lattices. To this end we introduce the notion of an approximation of an operator. We order approximations by means of a precision ordering. We show that each lattice operator O has a unique most precise or ultimate approximation. We demonstrate that fixpoints of this ultimate approximation provide useful insights into fixpoints of the operator O. We apply our theory to logic programming and introduce the ultimate Kripke-Kleene, well-founded and stable semantics. We show that the ultimate Kripke-Kleene and well-founded semantics are more precise then their standard counterparts We argue that ultimate semantics for logic programming have attractive epistemological properties and that, while in general they are computationally more complex than the standard semantics, for many classes of theories, their complexity is no worse.Comment: This paper was published in Principles of Knowledge Representation and Reasoning, Proceedings of the Eighth International Conference (KR2002

    Knowledge Compilation of Logic Programs Using Approximation Fixpoint Theory

    Full text link
    To appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 2015 Recent advances in knowledge compilation introduced techniques to compile \emph{positive} logic programs into propositional logic, essentially exploiting the constructive nature of the least fixpoint computation. This approach has several advantages over existing approaches: it maintains logical equivalence, does not require (expensive) loop-breaking preprocessing or the introduction of auxiliary variables, and significantly outperforms existing algorithms. Unfortunately, this technique is limited to \emph{negation-free} programs. In this paper, we show how to extend it to general logic programs under the well-founded semantics. We develop our work in approximation fixpoint theory, an algebraical framework that unifies semantics of different logics. As such, our algebraical results are also applicable to autoepistemic logic, default logic and abstract dialectical frameworks

    Well-Founded Semantics for Extended Datalog and Ontological Reasoning

    Get PDF
    The DatalogĀ± family of expressive extensions of Datalog has recently been introduced as a new paradigm for query answering over ontologies, which captures and extends several common description logics. It extends plain Datalog by features such as existentially quantified rule heads and, at the same time, restricts the rule syntax so as to achieve decidability and tractability. In this paper, we continue the research on DatalogĀ±. More precisely, we generalize the well-founded semantics (WFS), as the standard semantics for nonmonotonic normal programs in the database context, to DatalogĀ± programs with negation under the unique name assumption (UNA). We prove that for guarded DatalogĀ± with negation under the standard WFS, answering normal Boolean conjunctive queries is decidable, and we provide precise complexity results for this problem, namely, in particular, completeness for PTIME (resp., 2-EXPTIME) in the data (resp., combined) complexity

    Epistemic Foundation of Stable Model Semantics

    Full text link
    Stable model semantics has become a very popular approach for the management of negation in logic programming. This approach relies mainly on the closed world assumption to complete the available knowledge and its formulation has its basis in the so-called Gelfond-Lifschitz transformation. The primary goal of this work is to present an alternative and epistemic-based characterization of stable model semantics, to the Gelfond-Lifschitz transformation. In particular, we show that stable model semantics can be defined entirely as an extension of the Kripke-Kleene semantics. Indeed, we show that the closed world assumption can be seen as an additional source of `falsehood' to be added cumulatively to the Kripke-Kleene semantics. Our approach is purely algebraic and can abstract from the particular formalism of choice as it is based on monotone operators (under the knowledge order) over bilattices only.Comment: 41 pages. To appear in Theory and Practice of Logic Programming (TPLP

    Relating Weight Constraint and Aggregate Programs: Semantics and Representation

    Full text link
    Weight constraint and aggregate programs are among the most widely used logic programs with constraints. In this paper, we relate the semantics of these two classes of programs, namely the stable model semantics for weight constraint programs and the answer set semantics based on conditional satisfaction for aggregate programs. Both classes of programs are instances of logic programs with constraints, and in particular, the answer set semantics for aggregate programs can be applied to weight constraint programs. We show that the two semantics are closely related. First, we show that for a broad class of weight constraint programs, called strongly satisfiable programs, the two semantics coincide. When they disagree, a stable model admitted by the stable model semantics may be circularly justified. We show that the gap between the two semantics can be closed by transforming a weight constraint program to a strongly satisfiable one, so that no circular models may be generated under the current implementation of the stable model semantics. We further demonstrate the close relationship between the two semantics by formulating a transformation from weight constraint programs to logic programs with nested expressions which preserves the answer set semantics. Our study on the semantics leads to an investigation of a methodological issue, namely the possibility of compact representation of aggregate programs by weight constraint programs. We show that almost all standard aggregates can be encoded by weight constraints compactly. This makes it possible to compute the answer sets of aggregate programs using the ASP solvers for weight constraint programs. This approach is compared experimentally with the ones where aggregates are handled more explicitly, which show that the weight constraint encoding of aggregates enables a competitive approach to answer set computation for aggregate programs.Comment: To appear in Theory and Practice of Logic Programming (TPLP), 2011. 30 page

    Equality-friendly well-founded semantics and applications to description logics

    Get PDF
    We tackle the problem of deļ¬ning a well-founded semantics (WFS) for Datalog rules with existentially quantiļ¬ed variables in their heads and nega- tions in their bodies. In particular, we provide a WFS for the recent DatalogĀ± family of ontology languages, which covers several important description logics (DLs). To do so, we generalize DatalogĀ± by non-stratiļ¬ed nonmonotonic nega- tion in rule bodies, and we deļ¬ne a WFS for this generalization via guarded ļ¬xed point logic. We refer to this approach as equality-friendly WFS, since it has the advantage that it does not make the unique name assumption (UNA); this brings it close to OWL and its proļ¬les as well as typical DLs, which also do not make the UNA. We prove that for guarded DatalogĀ± with negation under the equality- friendly WFS, conjunctive query answering is decidable, and we provide precise complexity results for this problem. From these results, we obtain precise deļ¬- nitions of the standard WFS extensions of EL and of members of the DL-Lite family, as well as corresponding complexity results for query answering
    • ā€¦
    corecore