
Strathprints Institutional Repository

Kupke, Clemens and Gottlob, Georg and Lukasiewicz, Thomas and Hernich, Andre (2013) Well-
Founded Semantics for Extended Datalog and Ontological Reasoning. [Proceedings Paper]

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/16429517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Well-Founded Semantics for Extended Datalog and
Ontological Reasoning

André Hernich1, Clemens Kupke2, Thomas Lukasiewicz3, and Georg Gottlob3

1 UC Santa Cruz, USA & Humboldt-Universität zu Berlin, Germany
hernich@informatik.hu-berlin.de

2 University of Strathclyde, Glasgow, Scotland, UK
clemens.kupke@strath.ac.uk

3 University of Oxford, UK
firstname.lastname@cs.ox.ac.uk

Abstract. The Datalog± family of expressive extensions of Datalog has recently been
introduced as a new paradigm for query answering over ontologies, which captures and
extends several common description logics. It extends plain Datalog by features such
as existentially quantified rule heads and, at the same time, restricts the rule syntax
so as to achieve decidability and tractability. In this paper, we continue the research
on Datalog±. More precisely, we generalize the well-founded semantics (WFS), as
the standard semantics for nonmonotonic normal programs in the database context, to
Datalog± programs with negation under the unique name assumption (UNA). We prove
that for guarded Datalog± with negation under the standard WFS, answering normal
Boolean conjunctive queries is decidable, and we provide precise complexity results for
this problem, namely, in particular, completeness for PTIME (resp., 2-EXPTIME) in
the data (resp., combined) complexity.

1 Introduction

The recent Datalog± family of ontology languages [1] extends plain Datalog by the possibil-
ity of existential quantification in rule heads and other features, and simultaneously restricts
the rule syntax to achieve decidability and tractability. The following example illustrates how
ontological knowledge (encoded in a description logic (DL)) can be expressed in Datalog±.

Example 1. (Literature) The knowledge that every conference paper is an article and that ev-
ery scientist is the author of at least one paper is expressible by the two axioms Conference-
Paper v Article and Scientist v ∃isAuthorOf in the TBox, respectively, while the knowl-
edge that John is a scientist is expressible by the axiom Scientist(john) in the ABox. In
Datalog±, the former are encoded as the rules ConferencePaper(X) → Article(X) and
Scientist(X) → ∃Y isAuthorOf(X,Y), respectively, and the latter is encoded by an iden-
tical fact in the database. A simple Boolean conjunctive query (BCQ) asking whether John
authors a paper is ∃X isAuthorOf(john, X).

The Datalog± languages bridge an apparent gap in expressive power between database
query languages and DLs as ontology languages, extending the well-known Datalog lan-
guage in order to embed DLs. They also allow for transferring important concepts and proof
techniques from database theory to DLs. For example, it was so far not clear how to enrich
tractable DLs by the feature of nonmonotonic negation. By the results of [1], DLs can be
enriched by stratified negation via mappings from DLs to Datalog± with stratified negation,
which is defined and studied in that paper.

Given that stratified negation is quite limited, it is natural to ask whether the richer and
more expressive well-founded negation could be defined for Datalog±. The well-founded se-
mantics (WFS) for normal (logic) programs [2] is one of the most widely used semantics for
nonmonotonic normal programs. Due to its computational properties (differently from the
stable model semantics), it is the standard semantics for such programs for database applica-
tions. It is thus especially under a data-oriented perspective of great importance for (dealing
with very large amounts of data on) the Web (see [3] for a recent survey of Web-related appli-
cations of Datalog±). Having many nice features, the WFS is defined for all normal programs
(i.e., logic programs with the possibility of negation in rule bodies), has a polynomial data
tractability, approximates the answer set semantics, and coincides with the canonical model
in case of stratified normal programs.

In [4], we focus on the important problem of defining a WFS for (unrestricted) normal
Datalog±, i.e., Datalog with existentially quantified variables in rule heads and negations in
rule bodies. But our research there is guided by the goal of defining a WFS for normal Data-
log± that is close to OWL and its profiles as well as typical DLs, which all have in common
that they do not make the unique name assumption (UNA). Thus, the new semantics in [4],
called the equality-friendly WFS (EFWFS), also does not make the UNA.

The WFS for normal Datalog± without the UNA, however, actually generalizes neither
Datalog± nor standard normal (logic) programs, which make the UNA, in contrast. The UNA
is also rather common in logic programming and databases in general, as well as in some im-
portant DLs, such as the DL-Lite family of tractable description logics [5,6]. I.e., the results in
this paper (which are technically very different from those in [4]) also allow us to interpret ex-
tensions of the DL-Lite-family with nonmonotonic negation using the standard well-founded
semantics. The following example demonstrates this for DL-LiteR,u,not from [4].

Example 2. Consider the DL-LiteR,u,not-ontology T :

Person,Employed, not∃JobSeekerID v ∃EmployeeID,

Person, notEmployed,not∃EmployeeID v ∃JobSeekerID,

∃EmployeeID− u not∃JobSeekerID− v ValidID.

The first rule expresses that an employed person who is not registered as a job seeker has an
employee’s ID, the second rule states that a person who is not employed, and does not have an
employee’s ID is registered as a job seeker, and the final rule expresses that IDs are only valid,
if they are not an employee’s and a job seeker’s ID simultaneously. As pointed out in [4], it
is not difficult to translate this ontology T into a corresponding guarded normal Datalog±

program PT . We then have the choice of defining the semantics of PT as either the equality-
friendly WFS of PT as in [4] or as the standard WFS of PT . The latter is possible thanks
to the decidability and complexity results in this paper, and we argue that the WFS is in fact
the desirable option here: If we add the set of facts {Person(a), Person(b), Employed(a)}, it
is easy to see that the standard WFS derives both EmployeeID(a, f(a)) and JobSeekerID(b,
g(b)) and, because f(a) 6= g(b), also ValidID(f(a)). Here, f(a) and g(b) denote null values
that have been generated using Skolem function. In the equality-friendly WFS, however, we
do not know whether or not f(a) 6= g(b), and we thus cannot derive that f(a) is a valid ID.

Another serious drawback of the equality-friendly WFS is that answering atomic queries
is co-NP-hard in the data complexity, and thus does not have the same nice computational
properties as in the standard WFS for normal logics programs, namely, a polynomial data
complexity. The development of a WFS for normal Datalog± under the UNA (with hope-
fully lower data complexity than the WFS without the UNA) is thus still an important open
problem, which we therefore tackle in the present paper.

The central question of this paper is whether the results for guarded positive Datalog±

from [1] can be extended to guarded normal Datalog± under the WFS and UNA, that is,
whether there exists a finite part of a chase for normal tuple-generating dependencies (normal
TGDs) that can be used to evaluate normal BCQs (NBCQs), which has only constant depth
in the data complexity. This then implies that NBCQs to guarded normal Datalog± programs
can be evaluated in polynomial time in the data complexity. As we will see in this paper,
the answer to this central question turns out to be positive. But finding this answer is rather
involved technically. Roughly speaking, this is due to the fact that compared to stratified
Datalog± with negation [1], we now have to make sure that (i) also the derivation of negative
atoms in each iteration step, which is done via greatest unfounded sets, can be done on a finite
part of an infinite chase, and that (ii) we only need a finite part of the now infinite iteration
for the computation of the well-founded model via its fixpoint operator (rather than a finite
iteration along the finitely many different levels of a stratification).

As the main contributions of this paper, we thus obtain that answering NBCQs to guarded
normal Datalog± under the WFS and UNA is decidable and can be done in polynomial time
in the data complexity. Furthermore, we show that it is in 2-EXPTIME in the combined
complexity in general and in EXPTIME in the combined complexity in the case where the
arities of all predicates are bounded by a constant. Hardness for these complexity classes
follows from the fact that already answering BCQs to the more restricted guarded Datalog±

without negation is hard for them. Note that an extended version of this paper is accepted for
publication in: Proceedings PODS-2013 [9].

2 Preliminaries
2.1 Databases and Queries

We assume (i) an infinite universe of (data) constants ∆ (which constitute the “normal”
domain of a database), (ii) an infinite set of (labeled) nulls ∆N (used as “fresh” Skolem
terms, which are placeholders for unknown values, and can thus be seen as variables), and
(iii) an infinite set of variables V (used in queries and dependencies). Different constants
represent different values (unique name assumption), while different nulls may represent the
same value. We assume a lexicographic order on∆∪∆N , with every symbol in∆N following
all symbols in ∆. We denote by X sequences of variables X1, . . . , Xk with k > 0.

We assume a relational schema R, which is a finite set of relation names (or predicate
symbols, or simply predicates). A term t is a constant, null, or variable. An atomic formula
(or atom) a has the form P (t1, ..., tn), where P is an n-ary predicate, and t1, ..., tn are terms.
We denote by pred(a) and dom(a) its predicate and the set of all its arguments, respectively.
The latter two notations are naturally extended to sets of atoms and conjunctions of atoms.
A conjunction of atoms is often identified with the set of all its atoms.

A database (instance) D for a relational schema R is a (possibly infinite) set of atoms
with predicates from R and arguments from ∆. A conjunctive query (CQ) over R has the
form Q(X) = ∃YΦ(X,Y), where Φ(X,Y) is a conjunction of atoms with the variables
X and Y, and eventually constants, but without nulls. Note that Φ(X,Y) may also contain
equalities but no inequalities. A Boolean CQ (BCQ) over R is a CQ of the form Q(). We
often write a BCQ as the set of all its atoms, having constants and variables as arguments, and
omitting the quantifiers. Answers to CQs and BCQs are defined via homomorphisms, which
are mappings µ : ∆∪∆N ∪ V → ∆∪∆N ∪ V such that (i) c ∈ ∆ implies µ(c) = c, (ii) c ∈
∆N implies µ(c) ∈ ∆ ∪ ∆N , and (iii) µ is naturally extended to atoms, sets of atoms, and
conjunctions of atoms. The set of all answers to a CQ Q(X)=∃YΦ(X,Y) over a database
D, denoted Q(D), is the set of all tuples t over ∆ for which there exists a homomorphism

µ : X∪Y→∆ ∪∆N such that µ(Φ(X,Y))⊆D and µ(X)= t. The answer to a BCQ Q()
over a database D is Yes, denoted D |=Q, iff Q(D) 6= ∅.

2.2 Normal Logic Programs

We now briefly recall standard normal logic programs. Let Ξ be a first-order vocabulary with
nonempty finite sets of constant, function, and predicate symbols. Let V be a set of variables.
A term is either a variable from V , a constant symbol from Ξ , or of the form f(t1, . . . , tn),
where f is a function symbol of arity n> 0 from Ξ , and t1, . . . , tn are terms. An atom has
the form p(t1, . . . , tn), where p is a predicate symbol of arity n> 0 from Ξ , and t1, . . . , tn
are terms. A literal l is an atom p or a negated atom ¬p. A (normal) rule r is of the form

β1, . . . , βn,¬βn+1, . . . ,¬βn+m → α, (1)

where α, β1, . . . , βn+m are atoms and m,n > 0. We call the atom α the head of r, denoted
H(r), while the conjunction β1, . . . , βn, ¬βn+1, . . . ,¬βn+m is called its body. We define
B(r) = B+(r) ∪ B−(r), where B+(r)= {β1, . . . , βn} and B−(r)= {βn+1, . . . , βn+m}.
A rule of the form (1) with m=n=0 is also called a fact. A normal program P is a finite
set of normal rules (1). We say P is positive iff m=0 for all normal rules (1) in P . For
normal programs P , we denote by P+ the positive program obtained from P by removing
all negative literals from the rule bodies.

The Herbrand universe of a normal program P , denoted HU P , is the set of all terms
constructed from constant and function symbols appearing in P . If there is no such constant
symbol, then we take an arbitrary constant symbol from Ξ . As usual, terms, atoms, literals,
rules, programs, etc. are ground iff they do not contain any variables. The Herbrand base of
a normal program P , denoted HBP , is the set of all ground atoms that can be constructed
from the predicate symbols appearing in P and the ground terms in HU P . A ground instance
of a rule r∈P is obtained from r by uniformly replacing every variable in r by a ground
term from HU P . We denote by ground(P) the set of all ground instances of rules in P . For
literals `= a (resp., `=¬a), we use ¬.` to denote ¬a (resp., a), and for sets of literals S, we
define ¬.S= {¬.` | `∈S}, S+ = {a∈S | a is an atom}, and S−= {¬a | ¬a∈S}. We denote
by LitP =HBP ∪¬.HBP the set of all ground literals with predicate symbols from P and
ground terms from HU P . A set of ground literals S⊆LitP is consistent iff S ∩ ¬.S= ∅.
A (three-valued) interpretation w.r.t. P is any consistent set of ground literals I ⊆LitP .

2.3 Normal BCQs
We add negation to BCQs as follows. A normal Boolean conjunctive query (NBCQ) Q is an
existentially closed conjunction of atoms and negated atoms

∃X p1(X) ∧ · · · ∧ pm(X) ∧ ¬pm+1(X) ∧ · · · ∧ ¬pm+n(X),

wherem> 1, n> 0, and the variables of the pi’s are among X. We denote byQ+ (resp.,Q−)
the set of all positive (resp., negative (“¬”-free)) atoms of Q. In the sequel, w.l.o.g., BCQs
contain no constants. An NBCQ Q is satisfied in an interpretation I ⊆ LitP if there is a
homomorphism µ such that µ(a) ∈ I and ¬µ(b) ∈ I for all a ∈ Q+ and b ∈ Q−. Answers
to an NBCQ over a database are then defined as in the case of BCQs.

2.4 Normal TGDs

Given a relational schema R, a tuple-generating dependency (TGD) is a first-order formula
of the form ∀X∀YΦ(X,Y)→ ∃ZΨ(X,Z), where Φ(X,Y) and Ψ(X,Z) are conjunctions

of atoms over R (all these atoms without nulls). Note that TGDs can be reduced to TGDs
with only single atoms in their heads. Normal TGDs are informally TGDs that may also
contain (default-)negated atoms in their bodies. Given a relational schemaR, a normal TGD
(NTGD) σ has the form ∀X∀Y Φ(X,Y) → ∃ZΨ(X, Z), where Φ(X,Y) is a conjunction
of atoms and negated atoms overR, and Ψ(X,Z) is a conjunction of atoms overR (all these
atoms without nulls). It is also abbreviated as Φ(X,Y) → ∃Z Ψ(X,Z). As in the case of
standard TGDs, w.l.o.g., Ψ(X,Z) is a singleton atom. We denote by head(σ) the atom in the
head of σ, and by body+(σ) and body−(σ) the sets of all positive and negative (“¬”-free)
atoms in the body of σ, respectively.

As for the semantics, a normal TGD σ is satisfied in a database D for R iff, whenever
there exists a homomorphism h for all the variables and constants in the body of σ that maps
(i) all atoms of body+(σ) to atoms of D and (ii) no atom of body−(σ) to atoms of D (i.e.,
atoms not inD are false), then there exists an extension h′ of h that maps all atoms of head(σ)
to atoms of D.

A normal TGD σ is guarded iff it contains a positive atom in its body, denoted guard(σ),
that contains all universally quantified variables of σ. W.l.o.g., to simplify such σ in formal
proofs, constants occur only in the guards of σ (as all the other atoms with constants can
be abbreviated by fresh atoms without constants, which can be defined via guarded TGDs).
A guarded (normal) Datalog± program is a finite set of guarded (N)TGDs.

Given an NTGD σ=Φ(X,Y)→∃ZΨ(X,Z), the functional transformation of σ, de-
noted σf , is the normal rule Φ(X, Y) → Ψ(X, fσ(X,Y)), where fσ is a vector of function
symbols fσ,Z for σ, one for every variable Z in Z. Given a set Σ of NTGDs, the functional
transformation of Σ, denoted Σf , is obtained from Σ by replacing each TGD σ in Σ by σf .
Note that the functional transformation of a guarded Datalog± program is a positive program.

2.5 Guarded Chase Forests

Let Σ be a guarded Datalog± program (without negation) over a relational schema R, let D
be a database forR, and let P := D ∪Σf .

The guarded chase forest F(P) of P is the union of the following forests Fi(P): We start
with a forest F0(P) that contains, for each fact a in P , a unique node labeled a; there are
no other nodes and no edges. Now let i ≥ 0. The forest Fi+1(P) is obtained from Fi(P) by
adding new nodes and edges as follows. Let A be the set of all labels of nodes of Fi(P). For
each node v in Fi(P) and each rule r ∈ ground(P) such that guard(r) is the label of v and
B(r)⊆A, there is a child w of v with label H(r), and the edge from v to w is labeled with r.

Given a graphG, we denote by V (G) the set of nodes ofG. We often write v ∈ G instead
of v ∈ V (G). The label of a node v in F(P) is denoted by label(v). We extend this notation
to sets V ⊆ V (F(P)) by letting label(V) :=

⋃
v∈V label(v), and to subforests F by letting

label(F) := label(V (F)). The derivation level of a node v in F(P), denoted levelP (v), is
the smallest integer i ≥ 0 such that v ∈ Fi(P). Observe that levelP (v) is in general different
from the depth of v in F(P). We define the derivation level of an atom a in F(P), denoted
by levelP (a), as the minimum of levelP (v) over all nodes v in F(P) with label a, or as∞ if
no such node exists.

2.6 Well-Founded Semantics for Normal Logic Programs

The well-founded semantics [2] is the most widely used semantics for nonmonotonic logic
programs, and it is especially under a data-oriented perspective of great importance for the
Web. The well-founded semantics of normal programs P has many different equivalent def-
initions [2,7]. We recall here the one based on unfounded sets, via the operators UP , TP ,

and WP . A set U ⊆HBP is an unfounded set of P relative to I ⊆LitP iff for every a∈U
and every r∈ ground(P) with H(r)= a, either
(i) ¬b∈ I ∪¬.U for some atom b∈B+(r), or
(ii) b∈ I for some atom b∈B−(r).

There is the greatest unfounded set of P w.r.t. I , denoted UP (I). Intuitively, if I is compatible
with P , then all atoms inUP (I) can be safely switched to false and the resulting interpretation
is still compatible with P . The greatest unfounded set of a partial interpretation I intuitively
collects all those atoms that cannot become true when extending I with further information.

We are now ready to define the two operators TP and WP on consistent I ⊆LitP by
putting TP (I)= {H(r) | r∈ ground(P), B+(r)∪¬.B−(r)⊆ I} and WP (I) = TP (I) ∪
¬.UP (I). The operator WP is monotonic, and thus has a least fixpoint, denoted lfp(WP),
which is the well-founded semantics of P , denoted WFS (P) (a three-valued interpretation
completable to a two-valued model of P). A ground atom a∈HBP is well-founded (resp.,
unfounded) relative to P , if a (resp., ¬a) is in lfp(WP). Intuitively, starting with I = ∅, rules
are applied to obtain new positive and negated facts (via TP (I) and ¬.UP (I), respectively).
This process is repeated until no longer possible. A literal `∈LitP is a consequence of P
under the well-founded semantics iff `∈WFS (P).

3 Well-Founded Semantics for Guarded Normal Datalog±

The well-founded semantics for a guarded normal Datalog± program Σ relative to a given
database D under the UNA is defined using the well-founded semantics of the logic program
obtained from taking the union of the functional transformation of Σ and D.

Definition 3. Let R be a relational schema, and Σ be a guarded normal Datalog± pro-
gram. The well-founded model of a database D under Σ, denoted WFS(D,Σ), is defined
as WFS(D ∪ Σf). An NBCQ Q is satisfied over D under Σ w.r.t. the well-founded seman-
tics if WFS(D,Σ) |= Q.

Example 4. Let Σ be a guarded normal Datalog± program such that Σf has the form:

R(X,Y, Z)→ R(X,Z, f(X,Y, Z)), R(X,Y, Z) ∧ P (X,Y) ∧ ¬Q(Z)→ P (X,Z),

R(X,Y, Z) ∧ ¬P (X,Y)→ Q(Z), R(X,Y, Z) ∧ ¬P (X,Z)→ S(X),

P (X,Y) ∧ ¬S(X)→ T (X),

and letD= {R(0, 0, 1), P (0, 0)}. It is easy to see that WFS(D,Σ) includes the atom R(0, 1,
f(0, 0, 1)), as we can apply the first rule in Σf to derive this atom from the atoms in D.
Furthermore, WFS(D,Σ) includes P (0, 1). To see this slightly less obvious fact, note that
there is no rule that can derive an atom of the formR(∗, ∗, 1), where the ∗’s could be arbitrary
constants or nulls. This is due to the fact that any Skolem term of the form f(t1, t2, t3) is by
default assumed to be different from 1. Therefore, the only rule instance that could possibly
derive Q(1) is R(0, 0, 1) ∧ ¬P (0, 0) → Q(1), but as P (0, 0) ∈ D ⊆ WFS(D,Σ), we can
conclude that ¬Q(1) is in WFS(D,Σ). Now P (0, 1) ∈ WFS(D,Σ) can be derived using a
suitable instance of the second rule.

When proving decidability of query answering relative to a Datalog±-program, one faces
the problem that query answering has to be performed relative to an infinite model that is
obtained as a result of the chase algorithm. Nevertheless, as demonstrated in [1], decidability
for guarded (positive) Datalog± can be achieved by showing that the guarded chase forest
has the following neat “locality” property: for any node v in the guarded chase forest, the tree

generated from v is determined (up to isomorphism) by the type of the atom a by which v is
labelled. Here, the type of an atom is a pair consisting of a itself together with the collection of
atoms b that occur in the chase such that dom(b) ⊆ dom(a). As there are only finitely many
non-isomorphic types relative to a given relational schema R, the locality property ensures
that any query that can be matched to atoms in the chase can be matched to atoms of bounded
depth. In the remainder of this section we demonstrate that a similar locality property holds
for guarded normal Datalog± programs.

Characterization via Forward Proofs. To be able to prove the above-mentioned locality
property, we first introduce the notion of a forward proof of an atom. These forward proofs
are subforests of the guarded chase forest of the positive part of a guarded normal Datalog±

program that witness the fact that an atom is potentially contained in the well-founded se-
mantics (an atom without forward proof is certainly false). Forward proofs are instrumental
for proving the locality property as they provide a useful link between the guarded chase
forest of the positive part of the program on the one hand and the well-founded semantics
of the program on the other hand. The characterization of the well-founded semantics for
guarded normal Datalog± based on the concept of forward proofs that we are going to use is
essentially the one from [8].

Let Σ be a guarded normal Datalog± program over R, D be a database for R, and
P := D ∪Σf . Let F+(P) be the forest obtained from F(P+) by replacing each edge label,
which is a rule r+ ∈ ground(P+), by the rule r ∈ ground(P) such that r+ is obtained from r
by dropping all negative literals (for simplicity, we assume that r is unique). LetN(F) be the
set of all b ∈ HBP such that b ∈ B−(r) for a rule r that occurs as the label of an edge in F .

The following is a minor modification of the notion of forward proof in [8].

Definition 5. A forward proof of an atom a∈HBP from P with negative hypotheses (or just
forward proof of a from P) is a finite subforest π of F+(P) such that:

1. There is a distinguished node in π labeled a, called goal node of π.
2. For every node v ∈ π that has a parent w in F+(P), we have w ∈ π.
3. If r is the label of an edge from a node v to a node w in π, then for every b ∈ B+(r)

there is a node u ∈ π with levelP (u) < levelP (w) and label(u) = b.

The elements in ¬.N(π) are the negative hypotheses of π.

Example 6. The program P+ for P = D ∪Σ with D and Σ chosen as in Example 4 is:

R(0, 0, 1), P (0, 0), R(X,Y, Z)→ R(X,Z, f(X,Y, Z)),

R(X,Y, Z) ∧ P (X,Y)→ P (X,Z), R(X,Y, Z)→ Q(Z),

R(X,Y, Z)→ S(X), P (X,Y)→ T (X).

R(0,0,1) P(0,0)

R(0,1,a)

R(0,a,b)

R(0,b,c)

P(0,1)

P(0,a)

P(0,b)

Q(1)

Q(a)

Q(b)

S(0)

S(0)

S(0)

T(0)

T(0)

T(0)

T(0)

The forestF+(P) up to depth three is shown on the right, where
a, b, and c are defined as f(0, 0, 1), f(0, 1, a), and f(0, a, b),
respectively. Edge labels are omitted, but they can easily be
recovered from the information in Figure 6. For example, the
edge from R(0, 0, 1) to R(0, 1, a) is labeled by R(0, 0, 1) →
R(0, 1, f(0, 0, 1)), and the edge from R(0, 1, a) to P (0, a) is
labeled by R(0, 1, a)∧P (0, 1)∧¬Q(a)→P (0, a). If F is the
subtree containing R(0, 0, 1), P (0, 1), and T (0) (the child of
P (0, 1)), then N(F)= {Q(1), S(0)}. So, N(F) contains all
the atoms whose negation is required to fire all the rules in F .

There is exactly one inclusion-minimal forward proof of R(0, b, c) from P , namely the
subtree π of F+(P) induced by the nodes labeled R(0, 0, 1), R(0, 1, a), R(0, a, b), and
R(0, b, c). Note that N(π) = ∅.

The atom P (0, a) has exactly one inclusion-minimal forward proof from P : the subforest
π′ induced by the nodes labeled R(0, 0, 1), R(0, 1, a), P (0, 0), P (0, 1), and P (0, a). Here,
N(π′)= {Q(1), Q(a)}. But note that there are infinitely many inclusion-minimal forward
proofs of S(0) from P , each corresponding to a node in F+(P) labeled with S(0).

We need the following operator from [8] (where this operator is denoted by wf, and it is
defined in terms of minimal forward proofs as in [8]).

Definition 7 (ŴP). We define an operator ŴP on P(LitP) as follows. For every I ⊆ LitP
and every a ∈ HBP :

– a ∈ ŴP (I) if there is a forward proof π of a from P with ¬.N(π) ⊆ I , and
– ¬a ∈ ŴP (I) if for all forward proofs of a from P there is a b∈N(π) with b∈ I .

It is not hard to see that ŴP is monotone, and therefore has a least fixpoint. Recall that this
least fixpoint is defined as the union of the fixpoint stages Ŵ 0

P , Ŵ
1
P , . . . , where ŴP,0 := ∅,

ŴP,α := ŴP (ŴP,α−1) if α is a successor ordinal, and ŴP,α :=
⋃
β<α ŴP,β if α is a limit

ordinal. Now:

Theorem 8 ([8]). WFS(P) is the least fixpoint of ŴP : WFS(P) =
⋃
α ŴP,α.

Example 9. Let us revisit Example 6. Define t0 := 0, t1 := 1, and ti+2 := f(0, ti, ti+1).
Then, we have ŴP,1 = {R(0, ti, ti+1) | i ≥ 0} ∪ {P (0, 0)} ∪ {¬a | a ∈ HBP , a /∈
label(F+(P))}. It is not hard to see that for every integer i ≥ 1, ŴP,2i = ŴP,1∪{P (0, tj) |
0 ≤ j < i} ∪ {¬Q(tj) | 0 ≤ j ≤ i} and ŴP,2i+1 = ŴP,1 ∪ {P (0, tj) | 0 ≤ j ≤
i} ∪ {¬Q(tj) | 0 ≤ j ≤ i}. Therefore,

ŴP,ω+2 = ŴP,1 ∪ {P (0, tj) | j ≥ 0} ∪ {¬Q(tj) | j ≥ 0} ∪ {¬S(0), T (0)},

and ŴP,ω+3 = ŴP,ω+2, hence WFS(P) = ŴP,ω+2.
This demonstrates that the computation of the least fixpoint of ŴP does in general not

terminate after ω-many steps. The same is true if we compute WFS(P) as least fixpoint of
WP : spelling out the definitions, one can check that Wω

P (∅) = ŴP,ω .

Locality. After having introduced the characterization of the well-founded semantics in
terms of forward proofs, we are now ready to prove the locality property of the well-founded
semantics that we discussed at the beginning of this section.

Throughout this section, we fix a finite set Σ of guarded NTGDs over a relational sche-
maR, and a database D forR. Let P := D ∪Σf .

The (P -)type of an atom a ∈ HBP is the pair typeP (a) := (a, S), where S consists of all
literals ` ∈ WFS(P) with dom(`) ⊆ dom(a). If we speak of a P -type without mentioning
the atom, we mean a P -type of some atom.

Let I, I ′⊆LitP and X ⊆ dom(I)∪ dom(I ′). An X-isomorphism from I to I ′ is a bi-
jective mapping f from dom(I) to dom(I ′) such that f(I)= I ′, and for all x∈X , (1) x ∈
dom(I) if and only if x∈ dom(I ′), and (2) if x∈ dom(I), then f(x)=x. If there is an X-
isomorphism from I to I ′, then I and I ′ are X-isomorphic, denoted I ∼=X I ′. Given two P -
types (a, S) and (a′, S′), an X-isomorphism from (a, S) to (a′, S′) is an X-isomorphism f

from {a} to {a′}with f(S) = S′. As for sets of literals, (a, S) and (a′, S′) areX-isomorphic,
denoted (a, S) ∼=X (a′, S′), if there is an X-isomorphism from (a, S) to (a′, S′).

Let F∗(P) be the subforest of F+(P) induced by all the nodes in F+(P) that are goal
nodes of forward proofs π from P with ¬.N(π) ⊆ WFS(P). Note that F∗(P) contains ex-
actly the nodes that correspond to the atoms in WFS(P). The following lemma demonstrates
that the truth of any atom below some node v ∈ F∗(P) depends only on the type of label(v),
the labels of the tree T generated by v, and all negative literals whose arguments occur in the
labels of T .

Lemma 10. Let v ∈ F∗(P) with typeP (label(v)) = (a, S), let T be the subtree of F+(P)
rooted at v, and let I be the set of all literals ` ∈ LitP such that either ` ∈ S, or ` is
positive and occurs in T , or ` is negative and dom(`) ⊆ dom(label(T)). Then, for all atoms
b ∈ label(T), we have:

1. If there is a forward proof π of b from P with ¬.N(π) ⊆ X ⊆WFS(P), then there exists
a forward proof π′ of b from S+ ∪Σf with ¬.N(π′) ⊆ X ∩ I and with the property that
label(π′) ⊆ S ∪ label(T).

2. If there exists a forward proof π′ of b from S+∪Σf , then π′ can be extended to a forward
proof π of b from P with ¬.N(π) \ ¬.N(π′) ⊆WFS(P).

We are now able to formulate and prove the locality property of the well-founded seman-
tics that is crucial for our decidability result.

Lemma 11. Let v1, v2 ∈ F∗(P) be two nodes with the types typeP (label(vi)) = (ai, Si)
for i∈{1, 2}. Let Ti be the subtree of F+(P) rooted at vi, and let Ii be the set of all literals
` ∈ LitP such that either ` ∈ Si, or ` is positive and occurs in Ti, or ` is negative and
dom(`) ⊆ dom(label(Ti)). If f is an X-isomorphism from typeP (a1) to typeP (a2), then
there is an X-isomorphism from WFS(P) ∩ I1 to WFS(P) ∩ I2 that extends f .

The locality property from the previous lemma is the key for obtaining the following
bound on the possible matches of a normal Boolean conjunctive query. Its proof is a general-
ization of the proof of Lemma 4 in [1].

Proposition 12. LetR be a relational schemaR, and δ := 2 · |R| · (2w)w ·2|R|·(2w)w , where
w is the maximum arity of a predicate inR. LetD be a database forR,Σ be a set of guarded
NTGDs over R, and Q be an NBCQ over R with n literals. If WFS(D ∪ Σf) |= Q, then
there is a homomorphism µ of Q into WFS(D ∪Σf) such that:

1. For all a ∈ Q+, µ(a) has depth at most n · δ in F∗(P).
2. For all a ∈ Q−, µ(a) does not occur in F+(P), or µ(a) has depth ≤ n · δ in F+(P).

4 Evaluating NBCQs under the Well-Founded Semantics

This section presents our complexity bounds for evaluating NBCQs in well-founded models
under guarded normal Datalog± programs. We start by describing the most important build-
ing block—an alternating algorithm, called WCHECK, that decides whether a ground atom
belongs to the well-founded model of a database under a guarded normal Datalog± program.
Due to space limitations, we only give a high-level overview of WCHECK, explaining the
underlying ideas as well as the problems that we need to tackle. For a detailed description
and proofs, we refer the reader to [9].

WCHECK’s goal is to decide whether a ground atom belongs to the well-founded model
of some database under a guarded normal Datalog± program. More precisely, its input con-
sists of a database D, a guarded normal Datalog± program Σ, and a ground atom a, and its
task is to decide whether a ∈WFS(P), where P = D ∪Σf .

For the case that Σ is positive (i.e., Σ contains only NTGDs without negated atoms in
their bodies), the task of deciding whether a belongs to WFS(P) is well-understood [10,1].
Indeed, results in [1] imply that, in this case, a is in WFS(P) if a belongs to a finite “ini-
tial segment” of WFS(P) that is obtained by iteratively applying the WP -operator to the
empty interpretation for a finite number of times, where the number of iterations depends
only on Σ. In other words, it suffices to check whether a occurs in this initial segment of
WFS(P). However, as soon as Σ contains NTGDs with negated atoms in their bodies, this
approach no longer works. Consider D and Σ from Example 4. Example 9 shows that the
ground atom T (0) occurs in WFS(P), but “enters” WFS(P) only after an infinite number of
iterations of the WP -operator.

Although the method for checking membership of ground atoms in well-founded models
over positive guarded normal Datalog± programs described above does not generalize to
arbitrary guarded normal Datalog± programs, it turns out that a different one, namely the
ACHECK algorithm in [10], can be generalized. This is exactly what WCHECK does.

WCHECK is based on the idea that, if a ground atom a belongs to the well-founded model
W of a database D and a guarded normal Datalog± program Σ, then the forest F+(D∪Σf)
contains a path from some root node to a node labeled a such that all “side literals” (i.e., non-
guard atoms and negated atoms in the bodies of rules applied along the path) belong to W
(this is actually true also for non-ground atoms). For example, in the case of D and Σ from
Example 4, the atom T (0) belongs to W , and indeed F+(D ∪Σf) contains a path from the
root R(0, 0, 1) to T (0) whose side literals P (0, 1), ¬Q(f(0, 0, 1)), and ¬S(0) belong to W .
The idea is quite similar to ACHECK’s central idea. The only difference is that in the case of
ACHECK, Σ is a positive guarded normal Datalog± program, W is the result of the chase
of D and Σ, and side literals are replaced by “side atoms” [10]. It is straightforward to verify
from the definition of the well-founded model that a path as described above is a sufficient
and necessary condition for a to belong to W .

To decide whether a path from the root of F+(D ∪ Σf) to a with the desired prop-
erties exists, WCHECK successively guesses atoms a0, a1, a2, . . . , where a0 is the label
of a root of F+(D ∪ Σf), and each ai+1 is the label of a child of (the node labeled) ai.
The idea here is to guess a path from a0 to a. Of course, we also need to verify that all
the side literals on such a path belong to W . Therefore, along with each ai, WCHECK
guesses a set Si of literals in W all of whose arguments appear in ai and which agree
with Si−1 on the literals whose arguments appear in ai−1, and an ordering �i of the lit-
erals in Si (more precisely, a total preorder that is a linear order on the atoms). The idea
is that Si contains (at least) all the side literals of rules applied on the path from ai to a
that contain only arguments from ai (this is enforced by checking that the rule generating
ai+1 has all its side-literals in Si), and �i is the order of deriving the atoms in Si. For
example, if D and Σ are as in Example 4, a is the atom T (0), and WCHECK guesses
a0 = R(0, 0, 1), a1 = R(0, 1, f(0, 0, 1)), a2 = P (0, f(0, 0, 1)), and a3 = T (0), then
good choices for the sets Si would be S0 = {P (0, 1),¬S(0)}, S1 = S0 ∪ {¬Q(f(0, 0, 1))},
S2 = {¬Q(f(0, 0, 1)),¬S(0)}, and S3 = {¬S(0)}

What remains is to check that all the literals in Si belong to W . To this end, WCHECK
launches subcomputations, one for each literal in an Si. The subcomputations for positive
literals b ∈ Si, where i is assumed to be minimal, are similar to the main computation de-
scribed above. For i > 0 (for 0, it is basically the same as above), the basic idea is to find a

path from ai to b such that all side literals along the path belong to W (where literals in Si−1
and literals in Si that are�i-smaller than b may be assumed to belong to W). This is justified
because b is in Si \ Si−1, and as such it contains at least one element that was created in ai
and must therefore occur in the subtree rooted at ai. The case of negative literals ¬b ∈ Si is
not so clear. The main idea is to check that every path from ai to a node labeled b contains
either a positive side literal c with ¬c ∈ W , or a negative side literal ¬c with c ∈ W (where
literals in Si−1 and literals in Si that are smaller or equal to ¬b with respect to �i may be
assumed to belong toW). In our example above, WCHECK would find out that the only path
(and thus all paths) from a1 = R(0, 1, f(0, 0, 1)) to Q(f(0, 0, 1)) in F+(D ∪ Σf) contains
the side literal ¬P (0, 1), and since it knows that P (0, 1) ∈ W (since it belongs to S0), it
would conclude that ¬Q(f(0, 0, 1)) ∈ S1 belongs to W . It is not obvious, though, that this
test is enough to establish that ¬b belongs to W . Its proof requires the machinery and results
from the locality part of Section 3.

The above-sketched WCHECK algorithm can be implemented in such a way that it
uses space at most |D||R|·2O(w)

, where R is the schema and w is the maximum arity of a
predicate in R. It can furthermore be shown that WCHECK correctly decides whether a ∈
WFS(D,Σ). This yields the upper bounds of the following theorem; the lower bounds follow
from the corresponding lower bounds for answering BCQs under guarded Datalog± [10].

Theorem 13. Given a database D for a schemaR, a guarded normal Datalog± program Σ
overR, and a ground atom a overR, deciding a ∈WFS(D,Σ) is:

– 2-EXPTIME-complete in general.
– EXPTIME-complete in case the maximum arity w of a predicate inR is bounded.
– in PTIME in case both |R| and w are bounded; there are cases where the problem is

PTIME-complete.

The complexity bounds for deciding membership of ground atoms can be extended to
deciding membership of arbitrary literals. For positive literals a, the idea is to guess a path
to a, using WCHECK to verify the literals along the path. For negative literals ¬a, we have
to check that every path to a contains a side-literal whose complement belongs to the well-
founded model; WCHECK is again used to verify literals along to the path.

These complexity bounds and Proposition 12 form the key for proving our main result,
Theorem 14, on answering NBCQs in well-founded models under guarded normal Datalog±.

Theorem 14. Given a database D for a schemaR, a guarded normal Datalog± program Σ
overR, and an NBCQ Q overR, the problem of deciding WFS(D,Σ) |= Q is:

1. 2-EXPTIME-complete in general.
2. EXPTIME-complete in case w is bounded.
3. in PTIME in case |R|, the maximum arity w of a predicate symbol inR, and the number

of literals in Q are bounded; there are cases where the problem is PTIME-complete.

5 Conclusion
We have introduced the standard well-founded semantics (WFS) for normal Datalog± pro-
grams under the unique name assumption (UNA). We have shown that for guarded normal
Datalog± under the standard WFS, answering normal Boolean conjunctive queries is de-
cidable. Furthermore, we have shown that this problem is complete for PTIME in the data
complexity, and that it is complete for 2-EXPTIME in the combined complexity in general
and complete for EXPTIME in the combined complexity in the case where the arities of all
predicates are bounded by a constant. A topic of future research is to explore how to add
negative constraints and equality-generating dependencies (EGDs), similarly to [1].

Acknowledgments. This work was supported by the EPSRC grant EP/H051511/1 “ExODA:
Integrating Description Logics and Database Technologies for Expressive Ontology-Based
Data Access”, by the European Research Council under the EU’s 7th Framework Programme
(FP7/2007-2013/ERC) grant 246858 — “DIADEM”, and by a Yahoo! Research Fellowship.
Georg Gottlob is a James Martin Senior Fellow, and also gratefully acknowledges a Royal
Society Wolfson Research Merit Award. The work was carried out in the context of the James
Martin Institute for the Future of Computing. André Hernich was supported by a fellowship
within the Postdoc-Programme of the German Academic Exchange Service (DAAD).

References

1. Calì, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for tractable query
answering over ontologies. J. Web Sem. 14 (2012) 57–83

2. van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs.
J. ACM 38(3) (1991) 620–650

3. Calì, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/–: A family of logical
knowledge representation and query languages for new applications. In: Proceedings LICS-2010,
IEEE Computer Society (2010) 228–242

4. Gottlob, G., Hernich, A., Kupke, C., Lukasiewicz, T.: Equality-friendly well-founded semantics
and applications to description logics. In: Proceedings AAAI-2012, AAAI Press (2012) 757–764

5. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and
efficient query answering in description logics: The DL-Lite family. J. Autom. Reasoning 39(3)
(2007) 385–429

6. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to
ontologies. J. Data Semantics 10 (2008) 133–173

7. Baral, C., Subrahmanian, V.S.: Dualities between alternative semantics for logic programming and
nonmonotonic reasoning. J. Autom. Reasoning 10(3) (1993) 399–420

8. Schlipf, J.S.: The expressive powers of the logic programming semantics. J. Comput. Syst. Sci.
51(1) (1995) 64–86

9. Hernich, A., Kupke, C., Lukasiewicz, T., Gottlob, G.: Well-founded semantics for extended Datalog
and ontological reasoning. In: Proceedings PODS-2013, ACM Press (2013) In press.

10. Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under expressive
relational constraints. In: Proceedings KR-2008, AAAI Press (2008) 70–80 Revised version:
http://www.dbai.tuwien.ac.at/staff/gottlob/CGK.pdf.

11. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)

