1,004 research outputs found

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of â„“2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    Regularized System Identification

    Get PDF
    This open access book provides a comprehensive treatment of recent developments in kernel-based identification that are of interest to anyone engaged in learning dynamic systems from data. The reader is led step by step into understanding of a novel paradigm that leverages the power of machine learning without losing sight of the system-theoretical principles of black-box identification. The authors’ reformulation of the identification problem in the light of regularization theory not only offers new insight on classical questions, but paves the way to new and powerful algorithms for a variety of linear and nonlinear problems. Regression methods such as regularization networks and support vector machines are the basis of techniques that extend the function-estimation problem to the estimation of dynamic models. Many examples, also from real-world applications, illustrate the comparative advantages of the new nonparametric approach with respect to classic parametric prediction error methods. The challenges it addresses lie at the intersection of several disciplines so Regularized System Identification will be of interest to a variety of researchers and practitioners in the areas of control systems, machine learning, statistics, and data science. This is an open access book

    Sparse reduced-rank regression for imaging genetics studies: models and applications

    Get PDF
    We present a novel statistical technique; the sparse reduced rank regression (sRRR) model which is a strategy for multivariate modelling of high-dimensional imaging responses and genetic predictors. By adopting penalisation techniques, the model is able to enforce sparsity in the regression coefficients, identifying subsets of genetic markers that best explain the variability observed in subsets of the phenotypes. To properly exploit the rich structure present in each of the imaging and genetics domains, we additionally propose the use of several structured penalties within the sRRR model. Using simulation procedures that accurately reflect realistic imaging genetics data, we present detailed evaluations of the sRRR method in comparison with the more traditional univariate linear modelling approach. In all settings considered, we show that sRRR possesses better power to detect the deleterious genetic variants. Moreover, using a simple genetic model, we demonstrate the potential benefits, in terms of statistical power, of carrying out voxel-wise searches as opposed to extracting averages over regions of interest in the brain. Since this entails the use of phenotypic vectors of enormous dimensionality, we suggest the use of a sparse classification model as a de-noising step, prior to the imaging genetics study. Finally, we present the application of a data re-sampling technique within the sRRR model for model selection. Using this approach we are able to rank the genetic markers in order of importance of association to the phenotypes, and similarly rank the phenotypes in order of importance to the genetic markers. In the very end, we illustrate the application perspective of the proposed statistical models in three real imaging genetics datasets and highlight some potential associations

    Graphical Models for Multivariate Time-Series

    Get PDF
    Gaussian graphical models have received much attention in the last years, due to their flexibility and expression power. In particular, lots of interests have been devoted to graphical models for temporal data, or dynamical graphical models, to understand the relation of variables evolving in time. While powerful in modelling complex systems, such models suffer from computational issues both in terms of convergence rates and memory requirements, and may fail to detect temporal patterns in case the information on the system is partial. This thesis comprises two main contributions in the context of dynamical graphical models, tackling these two aspects: the need of reliable and fast optimisation methods and an increasing modelling power, which are able to retrieve the model in practical applications. The first contribution consists in a forward-backward splitting (FBS) procedure for Gaussian graphical modelling of multivariate time-series which relies on recent theoretical studies ensuring global convergence under mild assumptions. Indeed, such FBS-based implementation achieves, with fast convergence rates, optimal results with respect to ground truth and standard methods for dynamical network inference. The second main contribution focuses on the problem of latent factors, that influence the system while hidden or unobservable. This thesis proposes the novel latent variable time-varying graphical lasso method, which is able to take into account both temporal dynamics in the data and latent factors influencing the system. This is fundamental for the practical use of graphical models, where the information on the data is partial. Indeed, extensive validation of the method on both synthetic and real applications shows the effectiveness of considering latent factors to deal with incomplete information
    • …
    corecore