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If Nature abhors the void,
the mind abhors what is meaningless.

— Arthur Koestler, The Ghost in the Machine
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Abstract

Gaussian graphical models have received much attention in the last years, due
to their �exibility and expression power. In particular, lots of interests have
been devoted to graphical models for temporal data, or dynamical graphical
models, to understand the relation of variables evolving in time. While power-
ful in modelling complex systems, such models su�er from computational
issues both in terms of convergence rates and memory requirements, and may
fail to detect temporal patterns in case the information on the system is partial.
This thesis comprises two main contributions in the context of dynamical
graphical models, tackling these two aspects: the need of reliable and fast
optimisation methods and an increasing modelling power, which are able to
retrieve the model in practical applications. The �rst contribution consists in a
forward-backward splitting (FBS) procedure for Gaussian graphical modelling
of multivariate time-series which relies on recent theoretical studies ensuring
global convergence under mild assumptions. Indeed, such FBS-based imple-
mentation achieves, with fast convergence rates, optimal results with respect
to ground truth and standard methods for dynamical network inference. The
second main contribution focuses on the problem of latent factors, that in�u-
ence the system while hidden or unobservable. This thesis proposes the novel
latent variable time-varying graphical lasso method, which is able to take into
account both temporal dynamics in the data and latent factors in�uencing
the system. This is fundamental for the practical use of graphical models,
where the information on the data is partial. Indeed, extensive validation of
the method on both synthetic and real applications shows the e�ectiveness of
considering latent factors to deal with incomplete information.
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Introduction

Recent developments in data storage and computing techniques led to a
massive amount of measurements in a wide set of applicative areas, such
as �nance, sociology and genomics. A problem which arises in data analysis is
that most of the variables which describe one sample may interact in di�erent
ways, exhibiting a wide range of peculiar variability patterns across samples.
Throughout this thesis, I will refer to such kind of data, which comprise samples
described by an high number of variables, as high-dimensional.
High-dimensional data are di�cult to describe in a parsimonious model.

Indeed, searching for complex patterns in the data may o�er insights on the be-
haviour of variables in diverse contexts, such as di�erent biological conditions
in biomedical studies. Often, the interest is to understand interaction patterns
of such variables included in a system. Interactions are usually modelled as a
network (or graph), i.e., a set of variables (nodes) connected with each other
based on a particular type of relation (links). The graphical modelling of the
variables o�ers a compact and e�cient representation which helps to identify
the variability patterns in the data.

However, dealing with high-dimensional data implies several drawbacks. A
fundamental limitation is that high-dimensional data require a large amount of
samples to reliably capture the variance of the variables. Indeed, especially in
(but not limited to) biological systems, variables may be hundreds of thousands,
while samples describing them are just a few (this is usually referred to as
a d � n scenario, with d dimensions and n samples). An e�cient strategy
relies on restricting the complexity of the resulting model, which improves
the robustness to noise while increasing the interpretability of the results,
providing insights on the underlying processes of the system. This notion is
often referred to as sparsity, a main concept throughout this thesis introduced
in details in Section �.�.
Also, when the dimensionality d increases, the intuition of locality does

not hold any more. Hence, machine learning methods for pattern discovery
that rely on Euclidean distances are not directly applicable. This is a known
problem commonly referred to as the curse of dimensionality (Friedman, Hastie,
and Tibshirani, ����).
Indeed, starting from a set of high-dimensional data, the goal of pattern

discovery is to �nd amodel which is complex enough to capture data variability
while still being interpretable, which helps the model validation where the
ground truth is not known, and robust to noise, in contrast to the restricted
number of samples available in practical contexts, possibly exploiting prior
knowledge on the underlying processes to e�ciently direct the inference of
the model.
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Motivation

This thesis focuses on the structure learning problem of high-dimensional
and temporal data, under the presence of hidden conditioning factors. During
the last years the problem of uncovering an underlying structure, e.g., an
interaction graph between variables, has received much attention, particularly
for the availability of an always increasing number of samples.

Common approaches rely on pairwise similaritymeasures between variables,
such as mutual information scores. This leads to pairwise network inference
methods (Chapter �) that rely on local similarities, hence lacking a solid way
to assess the global inferred network. For example, a leading strategy is to
limit the number of links between variables based on an arbitrary threshold,
to avoid an over-representation of the network.
Instead, probabilistic graphical models represent a theoretically grounded

framework for network inference, which aim to describe high-dimensional data
under a parsimonious model. In this case the underlying graph describes the
conditional independence among a set of random variables, which are assumed
to follow a joint probability distribution. Such graphical representation has
numerous advantages in lots of machine learning areas. For example, the graph
indicates the joint relevance of groups of features, which can be exploited
to improve a predictive model (Hernández-Lobato, Hernández-Lobato, and
Suárez, ����).
A lot of interest, recently, has been also devoted to longitudinal data, for

example in the context of neuronal activity or volatility analysis. Such ap-
plications involve a developing system over time, which can be visualised by
an ever changing structure of the underlying network between the variables
that describes the system. The modelling of multivariate time-series as the
evolution of a dynamical system may be bene�cial to understand underlying
processes which generate the system.

A further challenge in data analysis is that data are usually subject to latent
(i.e., hidden or unmeasurable) factors which in�uence the majority of the
system while not being part of the system itself. This may be caused by missing
or incomplete information on the data under analysis, a relevant assumption
for the analysis of real systems.
This thesis tackles the graphical modelling problem of multivariate time-

series, focusing on threemain aspects: (i) the evolving dynamics of multivariate
time-series and their relations, (ii) the presence of global hidden factors, and
(iii) the use of appropriate optimisation methods able to e�ciently deal with
the inference of complex models.

Contribution

This thesis revolves around two main contributions, related to the context
of graphical modelling of time-series data. The �rst core contribution con-
sists in two e�cient algorithms based on the forward-backward splitting for
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the time-varying graphical lasso model, a method for the inference of mul-
tiple networks in time. This is motivated by the need of e�cient algorithms
that can deal with complex models, while at the same time being able to
describe high-dimensional data. Such algorithms rely on recent advances of
the forward-backward splitting, representing the starting point of this con-
tribution, which outperforms, for common use cases, standard optimisation
methods for graphical inference under complex temporal models.
The second core contribution consists in the latent variable time-varying

graphical lasso, a novel method for the network inference of time-series data
subject to latent (i.e., hidden or unmeasurable) factors. Such machine learning
method for multivariate time-series data answers to the problem of describing
an evolving system subject to the presence of global hidden factors, which
in�uence the system without being explicitly measured.
All contributions are extensively validated on synthetic data, testing their

e�ciency and performance. Also, numerous applications widely illustrate the
relevance of the latent variable time-varying graphical lasso on real data, to
show the practical use and advantage of considering latent factors during the
inference of a dynamical model with both biological and �nancial data.

Notation

Unless otherwise speci�ed, real-valued variables are denoted with lower case
letters (such as x ). Uni-dimensional vectors are denoted by boldface lower case
letters (such as x). Matrices (i.e., vectors with � dimensions) are denoted by
non-bold upper case letters (such as X ). Tensors (i.e., vectors with more than �
dimensions) are denoted by boldface upper case letters (such as X ). Vectors,
matrix or tensor entries are denoted by subscript (such as xi , j or xi j — whether
clear from the context, the comma can be omitted).

A special notation may be used to highlight the single variables. An element
of R |Γ | is denoted by

x = xΓ = (x1, . . . , x |Γ | ) = (xi )i ∈Γ .

Similarly, an element of R |Γ |× |Γ | (a square matrix) is denoted by

X = XΓ = (xi j )i , j ∈Γ .

The trace of a matrix is indicated by tr(X ). Sd indicates the cone of sym-
metric d × d matrices, so that Sd ⊂ Rd×d . Sd

+ denotes the cone of symmetric
d × d positive semi-de�nite matrices, and similarly Sd

++ the cone of square
symmetric d ×d positive-de�nite matrices. Furthermore, for every square sym-
metric matrixX ∈ Sd ,X � 0 means thatX is positive de�nite (or, equivalently,
X ∈ Sd

++), and X � 0 means that X is positive semi-de�nite (or, equivalently,
X ∈ Sd

+ ).
H denotes a generic Euclidean space, and by �·, ·� its scalar product. �·�

is the standard �2-norm. When the argument of the norm is a matrix (or a
tensor), i.e., �X �, the norm is the Frobenius norm (often indicated with �·�F ).
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Outline

This thesis comprises four main parts.
Part � contains the background on network inference (Chapter �), the state

of the art on graphical models (Chapter �), which serves as the basis of the
core of the work developed in this thesis, and methods to infer and select a
machine learning model (Chapter �).

Part �� includes the main contributions of this thesis, that are the advances
on the graphical models for temporal data, namely the time-varying graphical
lasso under forward-backward splitting (Chapter �) and the latent variable
time-varying graphical lasso (Chapter �).
Part ��� contains the applications on real data of the graphical models

for time-series analysis, in particular considering breast cancer evolution
(Chapter �), haematopoietic stem cells (Chapter �) and epilepsy (Chapter �).

Lastly, Part �� includes additional mathematical details on graph theory
and linear algebra operations that have been used throughout this thesis
(Appendix �), and a side project developed in parallel during the work of this
thesis (Appendix �).
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Part I

Background

This part contains a wide description on the context in which this thesis is
posed. Chapter � presents two general approaches to the graphical inference
problem, with an overview on popular state-of-the-art methods for network
inference. Chapter � focuses on methods for graphical modelling, which serves
as the basis for the main contributions of this thesis. Chapter � introduces
widely used methods for model optimisation, selection and validation, ex-
ploited throughout this thesis.
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1 Network Inference

The problem of network inference arises in lots of applications, where the
underlying graph structure of variables is not known. In such cases, the interest
is to estimate their relations from samples. This task has drawn a lot of attention
for example in �nance, for volatility analysis, and in computational biology,
where the network inference has a crucial role in understanding howmolecular
interaction works. Indeed, networks pervade all aspects of human health
(Barabasi and Oltvai, ����). In particular, network analysis plays a central
role at the cellular level, since most of the cellular components are connected
through complex regulatory (Friedman et al., ����; Hecker et al., ����; Lozano
et al., ����), metabolic (Kanehisa, ����) and protein-protein interaction (PPI)
networks (Huang, Liao, and Wu, ����; Jansen et al., ����).
High-throughput technologies allow to describe samples with a large set

of measured variables, that in this context correspond to nodes in a network.
Links between variables, instead, correspond to particular relationships which
depend on the network considered. Indeed, one can model such links between
variables in di�erent ways, corresponding to di�erent network models.

While variables have a di�erent meaning depending on the application,
the graph theory at the basis of graphical inference methods remains valid in
diverse contexts.

Outline

This chapter introduces two general strategies for network inference, based
on pairwise similarity and on probabilistic models. Section �.� contains an
overview on approaches based on pairwise similarity measures, such as mu-
tual information measures. Section �.� sets the network inference problem
within a regularised machine learning contexts, which serves as the basis of
the graphical models of next chapters. Section �.� includes an overview on
Bayesian structure learning to infer multiple graphs associated to probability
distributions.

1.1 Pairwise Networks

Consider a graph G = (V, E), where V is the set of vertices (or nodes) in
the network, and E is the set of edges (or links) between the nodes. In the
context of network inference, variables correspond to nodes in the network.
Hence, given a set of samples that correspond to realisations of the variables,
the goal of pairwise network inference methods is to assign a similarity score
between every possible pair of variables across samples. To avoid an over-
representation of the network, a possible strategy is then to use a threshold to
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1 Network Inference

retain only the most informative connections in the network. Models which
produce such undirected graphs are usually called information theory models
(Hecker et al., ����). Because of their simplicity and low computational cost,
they can be used with large-scale networks.
A drawback of such models is that the inference of links between nodes

happens iteratively (that is, locally between each pair of nodes), so they do not
take into account multiple nodes which can be jointly cause of, for example, a
regulation of another node.
A simple network architecture is the so-called correlation network, where

edges in the network correspond to the weights of correlation coe�cients
between the nodes (Langfelder and Horvath, ����; Stuart et al., ����). Formally,
the weightw of the correlation between two nodes (xi , x j ) in such a network
can be generally de�ned as follows:

wi j = κ(xi , x j ), (�.�)

for some correlation function κ. Hence, two nodes are said to interact if their
correlation is higher than a speci�c threshold. The threshold allows to in-
crease or decrease the sparsity of the resulting network, to avoid an over-
representation of the resulting undirected graph.

Possible extensions of this idea involve di�erent types of scores between the
variables. Instead of correlation coe�cients, one can use Euclidean distances or
information theoretic scores, such as mutual information (Steuer et al., ����).
Mutual information scores are used in lots of popular algorithms for network
inference. Examples include:

• RELNET (Butte and Kohane, ����), which produces relevance networks
for functional genomic clustering;

• ARACNE (Margolin et al., ����), which aims to reconstruct gene regulat-
ory networks, and it has been assessed on human microarray data;

• CLR (Context likelihood of relatedness) (Faith et al., ����) or its recent
extension CLR-MIC (Context likelihood of relatedness with maximal
information coe�cient) (Akhand et al., ����).

Also, one can use asymmetric scores to infer directed networks (Rao, Hero,
and Engel, ����).
Correlation networks inference methods have numerous applications in

real contexts, due to the ease of implementation and usage. One of the most
popular framework for network inference is ����� (Langfelder and Horvath,
����), an R software package which includes a collection of functions for the
analysis of weighted correlation networks. In the context of inferring tras-
criptional networks, other popular algorithms include ����� (Meyer, La�tte,
and Bontempi, ����), which is implemented in R programming language and
uses mutual information to model gene-to-gene interactions. ���������
(Lachmann et al., ����) is a new Java implementation of ������ (Margolin
et al., ����), which makes use of mutual information estimation between
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nodes in order to model a network. ������ was extended for time-series
data, as in T���D����������� (Zoppoli, Morganella, and Ceccarelli, ����).
Other recent software packages include C�N�� (Faust and Raes, ����), an
extension based on C�������� (Shannon et al., ����), a popular tool for
network analysis and visualisation.

1.2 Sparse Network Inference

Independently from the measure adopted, pairwise correlation methods infer
a single link each time. Also, the resulting network is not sparse per se, but
low-weighted links are discarded afterwards based on an arbitrary threshold.
A robust approach to infer a network in a global manner is to interpret

such task in a machine learning setting. The idea, in practice, is to �nd the
underlying function which generates the data. In a real setting this function
is not known, thus can only be approximated by means of some techniques.
Hence, this task has given the name of pattern recognition (Bishop, ����).

1.2.1 Regularisation Methods

Regularisation methods are a popular class of techniques to �nd a function
fw which model a set X of observed data, such that, in the case of classi�ca-
tion methods, Ŷ = fw (X ) is as close as possible to the ground truth Y . Such
approaches are particularly useful in the d � n scenario, where achieving
stable solutions is not trivial due to the ill-posedness of the problem (Hastie,
Tibshirani, and Friedman, ����).

For any function fw : X → Y the solution of thesemethods can be estimated
by minimising an objective function in the following form:

�(y, fw (X ))������������������
loss function

+ λ Ω(fw ).������
regularisation penalty

(�.�)

The loss function estimates the expected risk E(f ):

E(f ) = E[�(y, f (x))] =
∫

p(x,y)�(y, f (x)) dx dy,

which is impossible to compute since the joint probability density function
(pdf) p(x,y) is not known. The loss function is a measure of adherence to
the training data. Instead, the regularisation penalty introduces additional
prior information that can be used to solve the problem. The regularisation
parameter λ controls the trade-o� between the two terms. A common choice
for the regularisation penalty is a �p-norm �w �p = (�i |wi |p )1/p . Di�erent
choices for the value of p produce di�erent e�ects on the solution (Hastie,
Tibshirani, and Wainwright, ����). In particular, the popular choices p = 1 and
p = 2 lead to the �1- and �2-norm, respectively, which will be largely exploited
throughout the work of this thesis.

�



1 Network Inference

1.2.2 Regularisation Methods for Graphical Inference

Regularisation methods can be applied to graphical inference. In particular,
the inference can be stated as a minimisation problem, where the goal is
to approximate the true underlying network starting from observations of
the system. Clearly, in real cases the true underlying network is not known.
Hence, the approach may be to solve a maximum likelihood problem, with the
addition of penalty terms to control the complexity of the estimated graph (see
Section �.�). Such methods search for a suitable model describing available
samples in a global manner, that is, edges of the graph are estimated at once. An
advantage of this approach is the possibility of modelling prior information on
the resulting graph. Indeed, such approach is theoretically grounded, relying
on the assumption that variables follow appropriate probability distributions.
Regularised methods for network inference are shown to be e�cient and
usable in practice, able to infer networks even in high-dimensional cases.

A desired property of the regularisation penalty, in particular in the context
of graphical inference, is that it should enforce sparsity in the solution. This
idea relates to variable selection in standard regression problems, where the
assumption is that the output of interest only depends on a subset of the input
variables.

Sparse models are fundamental in lots of applications, in particular where
the number of variables is higher than the number of available samples (the so-
calledd � n problem). In this context, while standard statistical guarantees are
not available any more, a sparse prior enforces to infer a simpler model, thus
helping to its identi�cation, improving the interpretability of the results and
reducing the noise. Thanks to their �exibility sparse regularisation methods
have been e�ectively used in biological contexts, dealing with high-throughput
data (Giraud, ����; Mascelli et al., ����; Mosci et al., ����; Silver et al., ����).

Formally, priors on the problem translate into arbitrary choices of the regu-
larisation penalty Ω. In particular, a popular sparsity-enforcing penalty is the
so-called �1-norm. In the context of graphical inference, the �1-norm penalises
the weight of edges between the variables, forcing most of the edges to be
zero, thus selecting only a subset of possible connections. The use of �1-norm
is encouraged by the fact that is convex (even though non-smooth).

Indeed, a wide set of methods are based on a lasso-based selection of edges
in the graph (Bien and Tibshirani, ����; Ravikumar et al., ����; Wainwright,
Ravikumar, and La�erty, ����; Yuan and Lin, ����). Among these, notable
methods for regularised graphical inference based on the �1-norm are the
neighbourhood-based selection (Meinshausen and Bühlmann, ����), penalised
maximum-likelihood estimation (Banerjee, Ghaoui, and d’Aspremont, ����)
and the graphical lasso (Friedman, Hastie, and Tibshirani, ����), formalised in
details in Chapter �. The use of a lasso penalty on the edges of the network
allows to natively infer sparse graphs, which helps with the interpretability
and reduction of noise.
Sparsity-enforcing penalties introduce issues in the practical optimisation

of the functionals. To this aim, the main contributions of this thesis rely on
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optimisation methods which are natively able to deal with non-smooth penalty
terms (Section �.�).

A better choice for a sparse graphical inferencewould be, inmost of the cases,
to enforce the number of edges to be small, a function known as the �0-norm.
Such norm is strongly non-convex. Generally, iterative algorithms strongly
require a convex penalty for convergence guarantees, and for this reason the
use of its convex relaxation, the �1-norm, is usually preferred. Recent work
proceeds in the direction of using the �0-norm, based on the development of
an algorithm for solving non-convex and non-smooth minimisation problems
(Bolte, Sabach, and Teboulle, ����; Geer and Bühlmann, ����). The use of
non-convex penalisation terms allows to overcome the bias introduced, for
example, by the �1-norm for large coe�cients (Wen et al., ����).
Regularised methods for network inference, in particular exploiting the

sparsity coming from the �1-norm, are widely used to estimate multiple net-
works at once (Guo et al., ����; Honorio and Samaras, ����; Kolar et al., ����;
Varoquaux et al., ����; Xie, Liu, and Valdar, ����). Indeed, the use of group
lasso norms (�21) helps with the joint selection of features across multiple
graphs. Other penalties can be exploited to enforce consistency between such
graphs (Hallac et al., ����). Section �.� formally introduces the multiple net-
work inference problem, which serves as the link from static to dynamical
network inference since they have similar formulations. A wide overview of
the formalisation of temporal graphical models and relation with multiple
regularised network inference methods is included in Section �.�.

1.3 Bayesian Structure Learning

Methods for graphical inference are usually limited in the sense they provide a
single graph as output. Indeed, a main challenge in the structure learning prob-
lem among a set of variables is the size of the hypothesis space, which includes
up to 2d (d−1)/2 graphs on d variables (Moghaddam et al., ����). Particularly in
the case in which the available samples are much lower than the variables of
the problem, it can be useful to adopt a Bayesian approach and infer a series
of best graphs based on a posterior distribution, instead of relying on a single
best graph (i.e., a maximum likelihood estimation).

Probabilistic methods allow to assign a con�dence interval to results, while
e�ciently dealing with noise by using appropriate priors on the problem at
hand (Sanguinetti, Rattray, and Lawrence, ����). Also, additional priors may
be employed in order to deal with a small number of samples, for example
by imposing a structure on the data. Hence, probabilistic methods are widely
exploited to understand the relation between the variables, in particular for
network inference problems (Pournara and Wernisch, ����; Sabatti and James,
����; Sanguinetti, Rattray, and Lawrence, ����).

A major limitation in their use is the computation of the marginal likelihood
associated to a general graphical model. Decomposable graphs (De�nition �.�)
allow a closed-form solution of the marginal likelihood (Dawid and Lauritzen,
����). However, restricting to decomposable graphs is heavily limiting, since
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the number of decomposable graphs is much less than the total number of
general undirected graphs for a �xed number of variables (Murphy, ����). Other
authors considers the non-decomposable case (Atay-Kayis and Massam, ����;
Jones et al., ����), but the methods are restricted to a small number of variables
due to their use of expensive Monte Carlo approximations of the marginal
likelihood. Lenkoski and Dobra (����) proposed a Laplace approximation via
an iterative proportional algorithm, that requires to compute the maximum a
posteriori (MAP) estimate of the parameters under a G-Wishart prior (Roverato,
����). Moghaddam et al. (����) improve the MAP estimate, resulting in a faster
method that do not need to know the cliques of the graph.
Such methods, however, still depend on the speci�cation of a G-Wishart

prior to e�ciently compute the marginal likelihood, and the prior requires to
know the graph underlying the variables. In practice, Moghaddam et al. (����)
rely on linear regression or lasso methods to identify the Markov blanket for
each node, an approach similar to the graphical lasso (Section �.�). Hence,
resulting graphs are only sparse if the prior is sparse (i.e., the graph speci�ed
in the prior is sparse) while the model does not embed a way to regulate the
amount of sparsity of the graphs. Nonetheless, Bayesian methods are shown
to improve maximum likelihood estimators in real contexts, even though their
computational requirements are not optimal for large sets of variables.

Summary

This chapter brie�y describes two general approaches for network inference.
Due to their simplicity and e�ectiveness in real contexts, pairwise analysis
is one of the best known approach for network inference. Another approach,
instead, relies on a regularised inference, interpreting the task as a machine
learning method which aims to �nd the best model describing available data.
Graphical models have received much attention due to their �exibility

and the support of the theory. Indeed, the next chapter will continue with an
extensive overview on graphical models for structure learning, which represent
the foundations of the work of this thesis.
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2 Gaussian Graphical Models

Given a graph G = (V, E), whereV = {x1, . . . , xd } = {xi }i ∈Γ is a �nite set of
vertices, and E ⊆ V ×V is a set of edges, a graphical model is a multivariate
probability distribution on x1, . . . , xd variables where the conditional inde-
pendence between two variables xi and x j given all the others is encoded in G
(Lauritzen, ����). The two variables xi and x j are conditionally independent
given the others if (xi , x j ) � E and (x j , xi ) � E.

The focus of this thesis is restricted to undirected Gaussian graphical mod-
els (GGMs), where (i) there is no distinction between an edge (xi , x j ) ∈ E
and (x j , xi ), and (ii) variables are jointly distributed according to a multivari-
ate Gaussian distribution N(µ, Σ). For simplicity, unless otherwise speci�ed,
throughout this thesis the normal distributions are assumed to be centred
(without loss of generality), i.e., µ = 0, thus depending only on the covariance
matrix Σ (Choi et al., ����). The inverse covariance matrix Θ = Σ−1, called pre-
cisionmatrix, encodes the conditional independence between pairs of variables,
or, in other words, the structure of the graph. Indeed, the precision matrix
has a zero entry in the position (i, j) (i.e., Θi j = 0) if and only if (xi , x j ) � E
(Lauritzen, ����). For this reason, one can interpret the precision matrix as the
weighted adjacency matrix of G, encoding the dependence between variables.
Hence, the study of the covariance matrix (and its inverse) is fundamental
to understand the graphical model of variables which follow a multivariate
normal distribution.
The problem of graphical inference, that aims at inferring the structure

among observed variables starting from data, has received a lot of attention
in recent years. In particular, this chapter presents two types of graphical
inference, that is (i) static graphical inference, that aims at inferring the graph-
ical model between a set of variables at a single time point (as in Sections �.�
and �.�), and (ii) dynamical graphical inference, that aims at inferring multiple
graphical models for each time-points, exploiting the consistency of temporal
states in a dynamical system (as in Section �.�).
The goal of static methods is to infer a static network between variables.

While powerful in real cases, such models do not consider relevant prior
assumptions on the data, such as their inclusion into a global evolving system.
Indeed, data coming from adjacent time points may direct the analysis for
a more reliable inference of the graphical model between the variables at a
particular time point, as exploited from time-varying models.

Outline

This chapter starts by recalling the continuous multivariate distributions which
are fundamental for the understanding of the work of this thesis. In particular,
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2 Gaussian Graphical Models

Section �.� presents the most common distribution in statistics and machine
learning, namely the Gaussian (or normal) distribution, and clari�es the rela-
tion between a joint Gaussian distribution and the conditional independence
between the variables. Section �.� presents the closely-related Wishart dis-
tribution, which is the distribution of positive-de�nite matrices. Then, this
chapter continues with a list of the most known methods for the task of static
graphical inference, starting from the graphical lasso (Section �.�). Based on
the graphical lasso, several variations have been proposed in the literature,
accounting for more components in order to be able to capture the complexity
of a wide range of systems. Examples include the joint graphical lasso, for
multi-class graph inference (Section �.�), the time-varying graphical lasso, for
dynamical network inference (Section �.�), and the latent variables graphical
lasso, which considers the presence of latent unmeasurable factors during
the inference of the network (Section �.�). This chapter concludes with a
method to use GGMs in presence of non-jointly Gaussian (but still continuous)
variables, using the copula transformation (Section �.�).

2.1 Gaussian Distribution

The multivariate Gaussian or multivariate normal is one the most important
joint probability density function for continuous variables. Let x ∼ N(µ, Σ)
indicate a variable drawn from a multivariate normal, where µ = E[x] ∈ Rd is
the mean vector, and Σ = cov[x] ∈ Sd

++ is the d × d covariance matrix. The
probability density function (pdf) of a multivariate normal in d dimensions is
de�ned as follows:

p(x |µ, Σ) = (2π )−d/2det(Σ)−1/2 exp
�
−12 (x − µ)�Σ−1(x − µ)

�
. (�.�)

Consider a set of n independent and identically distributed (i.i.d.) samples
in d dimensions, such that X = (x1, . . . ,xn) ∈ Rn×d and xi ∼ N(µ, Σ) for
i = 1, . . . ,n. Then, based on Equation (�.�) and using Equation (A.�), the
Gaussian log-likelihood is as follows:

�(µ, Σ) = logp(X |µ, Σ) = log
n�
i=1

p(xi |µ, Σ)

= log
n�
i=1

(2π )−d/2 det(Σ)−1/2 exp
�
−12 (xi − µ)�Σ−1(xi − µ)

�

=

n�
i=1

−d2 log(2π ) − 1
2 logdet(Σ) −

1
2
�(xi − µ)�Σ−1(xi − µ)�

= −nd2 log(2π ) − n

2 logdet(Σ) − 1
2

�
n�
i=1

(xi − µ)�Σ−1(xi − µ)
�

= −nd2 log(2π ) − n

2 logdet(Σ) − n

2 tr(SΣ−1),

(�.�)

with S = (1/n)�n
i=1(xi − µ)�(xi − µ) covariance matrix.
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2 Gaussian Graphical Models

Sometimes it is convenient to work in terms of the precision (or concentra-
tion) matrix Θ = Σ−1. An alternative parametrisation, based on the precision
and empirical covariance matrices, leads to

�(S,Θ) = −nd2 log(2π ) + n

2 logdet(Θ) − n

2 tr(SΘ)
∝ logdetΘ − tr(SΘ).

(�.�)

Consider x ∼ N(µ, Σ), i.e., a random vector drawn from a multivariate
normal distribution. Let the covariance Σ be regular, in the sense that the
precision matrix Θ = Σ−1 is well de�ned. Then, the conditional independence
between variables in the multivariate normal distribution is associated to zero
entries in the precision matrix (Dempster, ����).

Proposition 2.1. Let x ∼ N(µ, Σ), where Σ is regular. Let Γ be the set of entries
in Σ. Then, for each i, j ∈ Γ with i � j,

xi � x j | xΓ\{i , j } ⇐⇒ θi j = 0 (�.�)

where Θ = {θab }a,b ∈Γ = Σ−1 is the precision matrix of the distribution.

This result follows from standard linear algebra. Details and proof of the
proposition can be found in (Lauritzen, ����, Section �.�.�). For this reason, the
inverse covariance matrix is associated to the graph between the variables,
where a link exists if and only if the two variables have a value di�erent than
zero in the corresponding entry of the precision matrix.

Markov properties on undirected graphs

Multivariate normal models de�ned by restricting particular elements in the
inverse covariance matrices to be zero correspond to di�erent Markov prop-
erties. Consider a general probability space X, and cl and bd as de�ned in
Appendix �.�. A probability measure P on X, relative to a graph G = (V, E),
satis�es

(P) the pairwise Markov property, if for each pair (a,b) � E
a � b | V \ {a,b},

(L) the local Markov property, if for any vertex a ∈ V
a � V \ cl(a) | bd(a),

(G) the global Markov property, if for any triple (A,B, S) of disjoint subsets
ofV such that S separates A from B in G

A � B | S .
GGMs assume that the random vector x follows a multivariate normal distri-
bution that satis�es the pairwise Markov property with respect to G. Such
density is continuous and positive, hence it implies global and local Markov
properties (Lauritzen, ����).
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2.2 Wishart Distribution

The Wishart distribution is the sampling distribution of a positive de�nite
matrix, with jointly Gaussian-distributed variables.

De�nition 2.1 (Wishart distribution). A random matrix S ∈ Rd×d follows a
d-dimensional Wishart distribution with parameter Σ and ν degrees of freedom
if

S = X�X , (�.�)

where X ∈ Nν×d (0, Iν ⊗ Σ). A matrix S which follows a Wishart distribution of
dimension d is indicated with S ∼ Wd (ν, Σ).
In particular, the Wishart distribution de�nes a pdf over positive de�nite

matrices S , as follows:

p(S |ν, Σ) = det(S)(ν−d−1)/2
2νd/2 det(Σ)ν/2Γd (ν/2)

exp
�
−12 tr(Σ

−1S)
�
, (�.�)

where Γd (·) is the multivariate Gamma function, de�ned as:

Γd (ν/2) = πd (d−1)/4
d�
i=1

Γ ((ν + 1 − i)/2) . (�.�)

Remark. In the case where d = 1, the Wishart distribution reduces to the χ 2

distribution, i.e.,W1(ν,σ 2) = σ 2χ 2(ν ).
Also, the Wishart distribution can be seen as the generalisation of the

Gamma distribution to positive de�nite matrices. In particular, it can be used
to model the uncertainty in covariance matrices Σ or their inverses Θ. It has
relevant applications in Bayesian inference, as detailed in Chapter �.

2.3 Graphical Lasso

Consider a series of samples drawn from a multivariate Gaussian distribution
X ∼ N(0, Σ), X ∈ Rn×d . Network inference aims at recovering the graphical
model of thed variables, i.e., the interaction structureΘ = Σ−1 givenn observed
samples. The graphical modelling problem (in some cases also known as
covariance selection problem) has been extensively tackled in the literature by
estimating the precision matrix Θ instead of the covariance matrix Σ (Banerjee,
Ghaoui, and d’Aspremont, ����; Bien and Tibshirani, ����; Friedman, Hastie,
and Tibshirani, ����; Lauritzen, ����; Meinshausen and Bühlmann, ����;
Ravikumar et al., ����; Wainwright, Ravikumar, and La�erty, ����; Yuan and
Lin, ����). This has been shown to improve the graphical model inference,
particularly for high-dimensional problems (Meinshausen and Bühlmann,
����). In such contexts, the assumption is that a variable is conditionally
dependent only on a subset of all the others. Hence, a sparse prior may guide
the estimation of the precision matrix in such a way to restrict the number of
possible connections in the network, to improve interpretability and reduce
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2 Gaussian Graphical Models

noise. Also, the imposition of a sparse prior on the problem helps with the
identi�ability of the graph, especially when the available number of samples
is low compared to the dimensionality of the problem.
A sparse prior translates into forcing some connections in the graphical

model to be zero, that are elements of the inverse covariance matrix (Proposi-
tion �.�). As introduced in Section �.�.� this can be obtained using a �0-norm,
which limits the number of non-zero components in the graph. The graphical
inference problem can be interpreted as optimising the following functional:

minimize
Θ

−�(S,Θ), s .t . �Θ�od ,0 ≤ k (�.�)

where � is the Gaussian log-likelihood (up to a constant and scaling factor)
de�ned as �(S,Θ) = logdet(Θ) − tr(SΘ) for Θ � 0 and S = (1/n)X�X =
(1/n)�n

i=1 xix
�
i is the empirical covariance matrix. �Θ�od ,0 =

�
i�j I[θi j � 0]

is the �0-norm of the o�-diagonal entries of Θ, which corresponds to the
number of non-zero entries. The regularisation parameter k of the �0-norm
limits the number of variables that can be (at most) di�erent from 0.

The use of the �0-norm leads to an highly non-convex minimisation problem.
Hence, it is usually better to use a convex relaxation, which translates into
using a �1-norm. A model for the inference of Θ including the sparse (convex)
prior is the graphical lasso (Friedman, Hastie, and Tibshirani, ����; Hastie,
Tibshirani, and Wainwright, ����):

minimize
Θ

−�(S,Θ) + α �Θ�od ,1 , (�.�)

where �·�od ,1 is the o�-diagonal �1-norm, which promotes sparsity in the
precision matrix (excluding the diagonal). Equation (�.�) has a lasso-like form
(Tibshirani, ����). In fact, the problem can be solved by coordinate descent,
using a modi�ed lasso regression on each variable in turn, thus leading to a
simple, e�cient and fast procedure.

Note that it is easy to modify the algorithm in order to have speci�c penalties
αik for each edge. A value αik → ∞ forces nodes xi and x j to be disconnected.
This is particularly relevant in biology, where two variables (such as genes)
are known not to interact directly.
The graphical lasso has solid theoretical guarantees, in particular consist-

ency in the Frobenius norm (Rothman et al., ����) and the operator-norm
bound

��Θ̂ − Θ∗��
2, where Θ̂ is the inferred network and Θ∗ is the optimal one

(Ravikumar et al., ����).
A lasso-based neighbourhood selection for Gaussian graphical models was

�rstly proposed and developed by Meinshausen and Bühlmann (����), with
the following minimisation problem:

θ̂a = argmin
θ :θa=0

�
1
n
�Xa − Xθ �22 + α �θ �1

�
, (�.��)

with �θ �1 =
�

i |θi | is the �1-norm of the coe�cient vector θ , and Xa corres-
ponding to the n independent observations of the node a. For each node a, the
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solution is found by minimising the coe�cient on the edges of the neighbours
of a. Neighbourhood selection with the lasso estimates the conditional inde-
pendence separately for each node in the graph, iteratively. This is equivalent
to variable selection for Gaussian linear models. From this perspective, the goal
of the estimator is to �nd the zero-pattern of the inverse covariance matrix
with the lasso procedure.

Consistency proofs of the estimator under high-dimensional scaling, as
derived by Meinshausen and Bühlmann (����), can be extended for logistic
regression (Wainwright, Ravikumar, and La�erty, ����). Furthermore, Wain-
wright, Ravikumar, and La�erty (����) show how it is possible to establish
su�cient conditions on the number of samples, dimensions and neighbour-
hood size to estimate the neighbourhood of each node simultaneously. On the
contrary, this has been shown to be an approximation of the exact problem
(Friedman, Hastie, and Tibshirani, ����; Yuan and Lin, ����). In particular,
the neighbourhood selection with the lasso as proposed in (Meinshausen and
Bühlmann, ����) does not yield the maximum likelihood estimator when there
is no equality between the empirical covariance matrix S (possibly perturbed
by a matrixU ) and the covariance estimated by the method. Friedman, Hastie,
and Tibshirani (����) bridge the conceptual gap between this and the exact
problem proposing the graphical lasso method, based on the work of Banerjee,
Ghaoui, and d’Aspremont (����).

2.4 Multiple Network Inference

Consider the case in which samples belong to multiple classes, in such a way
that their original covariance matrix depends from the particular class. Here,
the assumption is that there is a covariance matrix Σc = Θ−1

c for each class
c = 1, . . . ,C . In other words, each sample is normally distributed according to
the particular class it belongs to, i.e.,

p(x |y = c, θ ) = N(x |µc , Σc ). (�.��)

This leads to the possibility of classifying a set of samples for which the distri-
bution of the classes is known using the following decision rule, a technique
called Gaussian discriminant analysis (GDA) (Murphy, ����):

ŷ(x) = argmax
c

logp(y = c |π ) + logp(x |θc ), (�.��)

whereπ is the prior on each class c , andθc are the parameter of the distribution
for class c . The posterior over class labels, using the de�nition of the Gaussian
density, is as follows:

p(y = c |x,θ ) = πc |2πΣc |− 1
2 exp

�− 1
2 (x − µc )�Σ−1

c (x − µc )
�

�
c � πc � |2πΣc � |−

1
2 exp

�− 1
2 (x − µc �)�Σ−1

c � (x − µc �)
� , (�.��)

which is known as quadratic discriminant analysis (QDA). Given a set of cov-
ariance matrices, it is possible to classify new samples based on the probability
of belonging to a particular class.
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A naïve learning method to infer the set of covariance (or precision) matrices
would be the application of graphical lasso independently to each class. How-
ever, one may impose a certain consistency in the precision matrices of the C
di�erent classes. The addition of such constraint on problem (�.�) results in
the joint graphical lasso (Danaher, Wang, and Witten, ����):

minimize
(Θ1, ...,ΘC )

C�
i=1

�−ni�(Si ,Θi ) + α �Θi �od ,1
�
+ β P(Θ), (�.��)

where P is a generic penalty imposed on theC precision matrices of the system.
As in the rest of the thesis, without loss of generality the assumption is that
each class is centred, so that µc = 0.
The idea is to impose a prior on multiple precision matrices, to limit the

global behaviour of the system. Instead, one can interpret the classes as time
steps, hence assigning a temporal ordering of the precision matrices. This
idea will be the basis of the time-varying graphical lasso, detailed in the next
section.

2.5 Time-Varying Network Inference

The analysis of a set of variables which describe the system at a particular time
point is often little informative on the more global and general behaviour of
the system. Consider the biological case, where genes interact with each other.
Without further biological assumptions, static network inference answer to
one possible question about the interaction of such genes. Furthermore, an
instant later, one may ask the same question, and the static network inference
method may answer again. By repeating this procedure, one can interpret the
evolution of a system as a consecutive process of static network inference
steps. However, two main problems remain.
Firstly, there is no theoretical guarantee that the network at step t would

even be similar to the network at step t + 1, while one may intuitively expect
so. In fact, there is no possibility to embed prior knowledge on the model on
the evolution of the network.

Secondly, the presence of noise in particular time points of the network may
conceal the global behaviour of the system, without a possibility to understand
the changes due to the actual evolution of the system or to confounding factors.
Indeed, the changes of the network at a particular time point may be due to
external perturbation, noise or a particular developing state of the system.

Consider, as another practical example, a car which is making a right turn.
Sensors associated to steering wheel, brake, velocity, gas pedal, etc., may
o�er information about how they are related to each other. However, only
considering the state in which the car is in that particular moment (i.e., making
a turn) o�ers an explanation on the relations among the signals coming from
the sensors on the machine, which will be supposedly di�erent if the car
changes its state (e.g., going straight ahead or making a left turn).
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Formally, problem (�.�) aims at recovering the structure of the system at
�xed time (static network inference). However, complex systems have tem-
poral dynamics that regulate their overall functioning (Albert, ����; Friedman,
Hastie, and Tibshirani, ����). Hence, the modelling of such complex systems
requires a dynamical network inference, where the states of the network are
co-dependent. This naturally leads to the idea of temporal consistency, which
assumes similarities between consecutive states of the network. In fact, one
can assume that, for su�ciently close time points, a system shows negligible
di�erences. During the inference of a dynamical network, temporal consist-
ency may translate into the imposition of similarities among temporally close
networks (Gibberd and Roy, ����).
In particular, graphical lasso with temporal consistency results in time-

varying graphical lasso (Hallac et al., ����), where the inference of a network
at a single time point t is guided by the states at adjacent time points.
Consider a series of observations (x i (t))1≤i≤nt , x i (t) ∈ Rd , t = 1, . . . ,T ,

each drawn from a multivariate Gaussian distribution N(0, Σ(t)). Network
inference aims at recovering at each time t the interaction structureΘt = Σ(t)−1
of the d variables, starting from nt observations {x1(t), . . . ,xnt (t)} (Hallac
et al., ����). Formally, let Sd

++ be the convex cone of d ×d positive-de�nite real
matrices. The goal is to �nd a set of precision matrices Θt ∈ Sd

++, t = 1, . . . ,T ,
that represents the dynamical network at di�erent time points t . Then, the
time-varying graphical lasso (TGL) problem is de�ned as follows:

minimize
Θt ∈Sd++

T�
t=1

−nt �(St ,Θt ) + α �Θt �od,1 + β
T−1�
t=1

Ψ(Θt+1 − Θt ), (�.��)

where

• St = (1/nt )
�nt

i=1 x
i (t) ⊗ x i (t) is the empirical covariance matrix at time t ;

• �(St ,Θt ) = logdet(Θt ) − tr(StΘt ) is the Gaussian log-likelihood (up to a
constant and scaling factor), where Θt is positive de�nite;

• � · �od ,1 is the o�-diagonal �1-norm, which promotes sparsity in the
precision matrix (excluding the diagonal);

• Ψ encodes prior information on the qualitative temporal behaviour of the
network.

The penalty function Ψ and the parameter β specify the type of similarity
imposed to consecutive time points and its strength, respectively. Such para-
meters can model a variety of behaviours. Options when choosing Ψ include
the following (Hallac et al., ����):

• Lasso penalty (�1) — Ψ =
�

i j | · |.
Encourages few edges to change between subsequent time points, while
the rest of the structure remains the same (Danaher, Wang, and Witten,
����).
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• Group lasso penalty (�12) — Ψ =
�

j � ·j �2.
Encourages the graph to restructure at some time points and to stay stable
in others (Gibberd and Roy, ����; Hallac, Leskovec, and Boyd, ����).

• Laplacian penalty (�22) — Ψ =
�

i j (·i j )2.
Encourages smooth transitions over time, for slow changes of the global
structure (Weinberger et al., ����).

• Max norm penalty (�∞) — Ψ =
�

j (maxi | ·i j |).
Encourages a block of nodes to change their structure with no additional
penalty with respect to the change of a single edge among such nodes.
In fact, �∞ norm is in�uenced only from the most changing element for
each row.

• Row-column overlap penalty — Ψ = minV :A=V+V �
�

j �Vj �p .
Encourages amajor change of the network at a speci�c time, while the rest
of the system is enforced to remain constant. The choice of p = 2 causes
the penalty to be node-based, i.e., the penalty allows for a perturbation of
a restricted number of nodes (Mohan et al., ����).

Depending on prior assumptions on the problem, one may choose the most
appropriate penalty for the data at hand.
A solution to problem (�.��) has been proposed via ADMM (Hallac et al.,

����). While favouring a relatively easy implementation for this model, ADMM
requires a duplication of variables which may not always be feasible in practice,
due to computational constraints, particularly for high-dimensional data.

2.6 Latent Variable Network Inference

Often, real-world observations do not conform exactly to a sparse GGM. This
is due to global hidden factors that in�uence the system, which introduce
spurious dependencies between observed variables (Choi, Chandrasekaran,
and Willsky, ����; Choi et al., ����). For this reason, GGMs can be extended by
introducing latent variables able to represent factors which are not observed
in the data. These latent variables are not principal components, since they do
not provide a low-rank approximation of the graphical model. On the contrary,
such factors are added to the model in order to condition the statistics of the
observed variables. In particular, one can consider both latent and observed
variables to have a common domain (Choi et al., ����).

Let latent variables be indexed by a setH of length h, and observed variables
by a set O of length o. The precision matrix Θ of the joint distribution of both
latent and observed variables may be partitioned into four blocks:

Θ = Σ−1 =



ΘH ΘHO

ΘOH ΘO


,
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so that Θ ∈ R(h+o)×(h+o). Such blocks represent the conditional dependencies
among latent variables (ΘH ), observed variables (ΘO ), between latent and
observed (ΘHO ), and viceversa (ΘOH ). The marginal precision matrix Σ−1

O of
the observed variables is given by the Schur complement w.r.t. the block ΘH

(Chandrasekaran, Parrilo, and Willsky, ����; Horn and Johnson, ����):

Θ̂O = Σ−1
O = ΘO − ΘOHΘ

−1
H ΘHO . (�.��)

ΘO speci�es the precision matrix of the conditional statistics of the observed
variables given the latent variables, while ΘOHΘ

−1
H ΘHO is a summary of the

marginalisation e�ect over the latent variables. Such matrix has a small rank
if the number of latent variables is small compared to the observed vari-
ables. Note that the rank is an indicator of the number of latent variables h
(Chandrasekaran et al., ����).

The e�ect of the marginalisation is scattered over many observed vari-
ables, in such a way not to confound it with the true underlying conditional
sparse structure of ΘO (Chandrasekaran, Parrilo, and Willsky, ����). Typically
Θ̂O is not sparse due to the low-rank term, while the addition of the latent
factors contribution leads to recovering the true sparse GGM. For this reason,
the graphical lasso in Equation (�.�) has been extended with the latent vari-
able graphical lasso that includes the inference of a low-rank term, using the
form (�.��), as follows (Chandrasekaran, Parrilo, and Willsky, ����; Ma, Xue,
and Zou, ����):

Θ̃, L̃ = argmin
(Θ,L)
L�0

− �(S,Θ − L) + α �Θ�od ,1 + τ �L�∗, (�.��)

subject to L � 0 and Θ − L � 0 (this is required by the de�nition of �, see Sec-
tion �.�). Here Θ̃ provides an estimate of ΘO (precision matrix of the observed
variables) while L̃ provides an estimate of ΘOHΘ

−1
H ΘHO (marginalisation over

the latent variables). Note that S is the empirical covariance matrix computed
only on observed variables, since no information on the latent ones is available.
For completeness, Equation (�.��) introduces the original functional as

presented in (Chandrasekaran, Parrilo, and Willsky, ����), with a slightly
di�erent form:

Θ̃, L̃ = argmin
(Θ,L)
L�0

− �(S,Θ − L) + λ(γ �Θ�1 + �L�∗), (�.��)

which allows to prove that, with a suitable choice of λ, there exist a range of
values of γ for which the estimates (Θ̂, L̂) have, with high probability, the same
sparsity and sign pattern and rank as Θ∗

O ,H (Θ∗
H )−1Θ∗

H ,O (Chandrasekaran,
Parrilo, and Willsky, ����, Theorem �.�). The following chapters of this thesis
will rely on the form (�.��), which allows to model the two penalties (�1- and
nuclear-norm) separately.
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2.7 Copula for Non-Gaussian Graphical Models

GGMs assume variables to be jointly Gaussian. This assumption may not be
satis�ed in many applications, thus restricting the practical use of the graphical
lasso and its derivations.

A simple generalisation to non-Gaussian (but still continuous) data exploits
a copula transformation, which estimates a transformation from the empirical
cumulative distribution function (cdf) of each variable such that the resulting
data is jointly Gaussian (Liu, La�erty, and Wasserman, ����). Such transform-
ation allows to compute the empirical covariance matrix corresponding to
the Gaussian-transformed data and then apply the usual graphical lasso or its
extensions (Liu et al., ����).

Summary

Graphical models are widely studied in the literature, in particular during
the last years, since the technology allows the analysis of a large number
of variables and samples. In this context, Gaussian graphical models o�er a
great framework to model interactions between the variables in play. Starting
from the graphical lasso, other methods have been developed to enhance the
�exibility of the model, at the same time resulting in an increasing model
complexity.

In particular, the assumption of latent factors is fundamental in real contexts
where the information is partial, and data are conditioned on hidden com-
ponents (Chandrasekaran, Parrilo, and Willsky, ����). Also, the information
coming from adjacent temporal states o�ers an e�cient strategy to direct the
analysis towards the inference of appropriate models, especially with limited
data available. Indeed, such graphical models o�ered the basis of the work of
this thesis, as detailed in Chapters � and �.
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3 Model Optimisation and Selection

The literature comprises numerous algorithms to optimise a so-called ob-
jective function, each with their respective advantages and drawbacks. Such
algorithms aims to select the best model, given the data and possible constraints
(called priors in di�erent contexts).

A common trait of many machine learning methods (such as those de-
scribed throughout this thesis, as in Chapters � and �) and their corresponding
algorithms is the presence of free parameters, which are usually called hyper-
parameters. Such parameters must be speci�ed before the actual learning step
(e.g., strength of the sparsity α or constraint on the latent variables τ for
Equation (�.��)), as opposed to the model parameters, which are learned from
data (e.g., the interactions between variables). Complex models require the
speci�cation of hyper-parameters which directly a�ect the �nal model. In
particular, distinct choices of a set of hyper-parameters correspond to di�er-
ent models. For this reason, the process of �nding the best performing set of
hyper-parameters is typically called model selection.
The choice of appropriate models for the data at hand must be supported

by (i) reliable model assessment strategies and (ii) robust model selection
techniques. First, a model assessment strategy estimates the generalisation
error of the model on unseen data (Molinaro, Simon, and Pfei�er, ����). A
particular model, instead, needs to be selected based on di�erent criteria,
searching across a set of possible models.

Outline

The rest of the chapter is organised as follows. Section �.� presents two general
and widely used optimisation methods which serve as the basis for the work
of this thesis, in particular for the time-varying graphical models in Chapters �
and �, namely ADMM (Section �.�.�) and FBS (Section �.�.�). Section �.�
recalls commonly used model assessment procedures, exploited by the work of
this thesis. Section �.� shows common model selection techniques, which aim
to select the best model based on appropriate selection criteria. Section �.�
concludes with di�erent metrics for evaluating an inferred graphical model,
based on the ground truth (in the case of synthetic data) or likelihood of the
model on available data.

3.1 Optimisation Methods

Given a complex model, the goal of an optimisation algorithm is to �nd the
solution to the problem (which, usually, has no closed-form) based on an iter-
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3 Model Optimisation and Selection

ative process. The solution is usually interpreted as the value of the variables
which minimise a given functional.

Indeed, functionals that lack a closed-form solution need to rely on optim-
isation methods. The choice of a particular optimisation method is usually
based on constraints on the problem. This section focuses on two widely used
optimisation methods, which allow for the minimisation of the functional
described in the following chapters.

3.1.1 Alternating Direction Methods of Multipliers

The alternating direction methods of multipliers (ADMM) is a widely used
optimisation method to solve problems which can be decomposed into smaller
sub-problems, possibly subject to constraints (Boyd et al., ����).

Consider an objective function of the following form:

minimize f (x) + д(z), (�.�)

subject to Ax + Bz = c , with x ∈ Rd , z ∈ Re , A ∈ Rf ×d , B ∈ Rf ×e , and c ∈ Rf .
The optimal value of problem (�.�) is denoted by

p∗ = inf{ f (x) + д(z)|Ax + Bz = c}. (�.�)

The augmented Lagragian for problem (�.�) is the following:

Lρ (x, z,y) = f (x) + д(z) +y�(Ax + Bz − c) + ρ

2 �Ax + Bz − c�22 . (�.�)

A method of multipliers for problem (�.�) has the following form:

(xk+1, zk+1) = argmin
x ,z

Lρ (x, z,yk ) (�.�)

yk+1 = yk + ρ(Axk+1 + Bzk+1 − c) (�.�)

with ρ > 0. Here, the two variables in the augmented Lagrangian are jointly
minimised. Instead, ADMM consists in the following iterations:

xk+1 = argmin
x

Lρ (x, zk ,yk ) (�.�)

zk+1 = argmin
z

Lρ (xk+1, z,yk ) (�.�)

yk+1 = yk + ρ(Axk+1 + Bzk+1 − c), (�.�)

where the two variables are updated in an alternating fashion, instead of a
joint minimisation. See (Boyd et al., ����) for details on the convergence of
ADMM.

3.1.1.1 Scaled Form

In what follows, the ADMM will be prevalently used in its scaled form (since
this leads to a simpler notation, but otherwise equivalent to an unscaled form)
(Boyd et al., ����). Let

r = Axk+1 + Bzk+1 − c
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be the residual. Then, from the Lagrangian in Equation (�.�),

y�r +
ρ

2 �r �22 =
ρ

2

����r + 1
ρ
y

����
2

2
− 1
2ρ �y�22

=
ρ

2 �r +u�22 −
ρ

2 �u�22 ,

where u = (1/ρ)y is the scaled dual variable. With this rewriting, ADMM as
in Equation (�.�) can be expressed as:

xk+1 = argmin
x

�
f (x) + ρ

2

���Ax + Bzk − c +uk
���2
2

�
(�.�)

zk+1 = argmin
z

�
д(z) + ρ

2

���Axk+1 + Bz − c +uk
���2
2

�
(�.��)

uk+1 = uk +Axk+1 + Bzk+1 − c . (�.��)

Hence, by de�ning rk = Axk + Bzk − c , it is clear that

uk = u0 +
k�
j=1

r j ,

i.e., the running rum of residuals.

3.1.2 Forward-Backward Splitting

Forward-backward splitting (FBS) is an algorithm for the optimisation of
objective functions of the following form (Combettes and Wajs, ����):

minimize
x ∈H

f (x) + д(x), (�.��)

whereH is an Euclidean space, f is convex and smooth, while д is convex and
possibly non-smooth. The idea behind the method is to make a descent step
of size γ towards the direction of gradient of the smooth part f (the forward
step), then project the point back via the proximity operator of д (the backward
step), and �nally to perform a relaxation step of size λ ∈ ]0, 1].

Such algorithm has strong theoretical guarantees (Beck and Teboulle, ����;
Combettes and Wajs, ����). However, these results require the smooth part f
to have a Lipschitz continuous gradient on the whole space H . This is not the
case in the context of Gaussian graphical models, since the negative Gaussian
log-likelihood is de�ned on the open convex cone Sd

++ ⊂ Rd×d and its gradient
is not Lipschitz continuous (Banerjee, Ghaoui, and d’Aspremont, ����).
Only recently, global convergence guarantees along with rates of conver-

gence in function values were extended to a wider class of functions (Salzo,
����) that indeed cover the objective problem in the case of time-varying
graphical models (Chapter �). Such guarantees rely on suitable line-search
backtracking procedures that adaptively select the step-size γ and/or the relax-
ation parameter λ, keeping the iterations inside the domain Sd

++. Algorithm �
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Algorithm 1: Forward-Backward splitting with Line Search (FBS-LS).
for k = 1, . . . do

choose γk ∈ R++;
x̂k = xk − γk∇f (xk );
yk = proxγkд(x̂k ) = argmin

x
γkд(x) + 1

2 �x − x̂k �2;
choose λk ∈]0, 1];
xk+1 = xk + λk (yk − xk );

presents a generic form of FBS. For the sake of compactness let

J (x,γ , λ) = x + λ(proxд(x − γ∇f (x)) − x),
so that xk+1 = J (xk ,γk , λk ).
LS(γ ). Set λk ≡ 1 and let δ , ϵ ∈ ]0, 1[, γ ∈ ]0, 1]. Then γk = γ̄ ϵ i where i is
the smallest integer so that

f (J (xk ,γk , 1)) − f (xk ) ≤ �yk − xk |∇f (xk )� + δ

γk
�yk − xk �2.

LS(γ , λ). Let δ , ϵ ∈ ]0, 1[, γ , λ ∈ ]0, 1]. Then γk = γ̄ ϵ i and i is the smallest
integer so that yk = proxγkд(xk − γk∇f (xk )) ∈ Sd++ and λk = λ̄ϵ j where
j is the smallest integer so that

f (J (xk ,γk , λk )) − f (xk ) ≤ λk

�
�yk − xk |∇f (xk )� + δ

γk
�yk − xk �2

�
.

Salzo (����) proved that Algorithm � with any of the above line searches
gives a sequence (xk )k ∈N converging to a minimiser of f + д and such that
(f + д)(xk ) −minx (f + д)(x) = o(1/k).

3.1.2.1 Fixed-point Criterion

Fixed-point criterion for Algorithm � is de�ned as follows (Goldstein, Studer,
and Baraniuk, ����):

x∗ = x∗ + λk (proxγkд(x∗ − γk∇f (x∗)) − x∗)
0 = λk (proxγkд(x∗ − γk∇f (x∗)) − x∗)
0 = proxγkд(x∗ − γk∇f (x∗)) − x∗

0 = x∗ − γk∇f (x∗) − γkG(x∗) − x∗

0 = −γk∇f (x∗) − γkG(x∗)
0 = ∇f (x∗) +G(x∗),

(�.��)

where G ∈ ∂д(x∗) is a sub-gradient of д, and ∂д is the sub-di�erential of д.
When д is di�erentiable, G = ∇д(x∗). The �xed-point property ensures that
when the FBS is applied to an optimal point x∗, the forward descent step (the
function f ) moves the point to a new location, while the backward descent
step (the function д) moves it back to x∗ — hence, the line-search on λ has no
e�ect when x∗ is an optimal point.
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Round 1

79%Validation accuracy:

Round 2

86%

Final accuracy: average(Round 1, ..., Round M)

... Round M

82%

Train

Test

������ �.�. An example of MCCV. The dataset is divided into training and validation.
A validation score is found as the average across the splits.

3.2 Model Assessment

Assessing a model performance translates into estimating its generalisation
error, which measures the performance that the model is expected to achieve
on future (i.e., unseen) data. Since such data are, in general, not available, the
predictive power of a learning machine should be evaluated on data simulating
future observations. A popular class of techniques which simulate the acquis-
ition of future data are resampling protocols (Molinaro, Simon, and Pfei�er,
����).

3.2.1 Monte Carlo Cross-Validation

The MCCV procedure repeatedly splits the n samples of the data set in two
mutually exclusive sets. For each split,n·(1/ν ) samples are labelled as validation
set and the remaining n · (1 − 1/ν ) as training set, with ν > 1. The data points
of the two sets are randomly sampled without replacement from the entire
dataset. At each repetition, the learning machine is �tted on the training set
and its predictive power is assessed by evaluating a performance metric (see
Section �.�) on the independent test set. Figure �.� shows an example of the
MCCV.

3.2.2 k-fold Cross-Validation

The KFCV procedure splits the dataset into k non-overlapping subsets. At
each iteration, one subset is kept aside as and used to estimate the prediction
error of the model on the rest of the data. The �nal prediction error is the
average on the k estimates obtained during the cross-validation procedure.
In this cross-validation procedure, the number of splits k is limited by the
number of samples at hand (k ≤ n).

One advantage of a k-fold with respect to a MCCV strategy is a less intensive
computational workload. Nonetheless, as the number of splits k cannot be
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Round 1

76%Validation accuracy:

Round 2

88%

Final accuracy: average(Round 1, ..., Round k)

... Round k

81%

Train

Test

������ �.�. An example of KFCV. The dataset is divided into training and validation.
A validation score is found as the average across the splits.

arbitrarily large, this method is not suitable for estimating the probability
distribution of the generalisation error.
When k = n, the validation set has 1 sample and this strategy degenerates

in the so-called leave-one-out cross-validation scheme. Figure �.� shows an
example of the k-fold cross-validation.

3.3 Model Selection

Di�erent techniques to perform hyper-parameters optimisationwere presented
over the years.While the basemodel may be the same, the choice of appropriate
hyper-parameters for the data at hand is critical to de�ne an appropriate and
reliable model, to both generalise available samples and approximate unseen
data.

Model selection strategies aim at generating a wide set of models based on
a set of hyper-parameters. Then, the procedure selects the best model based
on appropriate performance scores, or likelihood of the model on unseen data.
Such strategies di�er in how the choice of hyper-parameters is performed.
Flexible machine learning models (such as the graphical lasso and its exten-
sions) rely on a high number of hyper-parameters. This leads to computational
challenges in the practical use of such models, due to the high number of pos-
sible hyper-parameter combinations that should be tested on the data. Hence,
the speci�cation of appropriate model selection procedures is fundamental for
the use of complex models on both synthetic and real data.

3.3.1 Grid Search

A straightforward hyper-parameter optimisation strategy is the grid-search
cross-validation. For a given model and cross-validation scheme, it generates
a multi-dimensional grid of models based on a user-de�ned grid of hyper-
parameters. This can be considered a brute-force algorithm, since evaluates
every possible combination among the speci�ed hyper-parameters. Hence, for
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models that rely of an high number of hyper-parameters (such as the graphical
models described in Chapters � and �), this strategy can be computationally
demanding even in presence of a restricted subspace for each hyper-parameter
(due to the increase in the dimensions of the search space). In fact, such
product over the sets makes grid search su�er from the curse of dimensionality,
because the number of joint values grows exponentially with the number of
hyper-parameters (Bergstra and Bengio, ����).
Another drawback of this technique is the necessity to include the best

combination of hyper-parameters in the search space. However, this may not
happen in practice, and manual iterative re�nements should be employed to
focus the search on appropriate subsets of the search space.

3.3.2 Randomised Search

An alternative to standard grid-search cross-validation is its randomised
version (Bergstra and Bengio, ����). Instead of specifying a grid of hyper-
parameters in advance, this strategy automatically generates a �xed number
of models, each having hyper-parameters randomly sampled from given distri-
butions. In other words, instead of specifying the actual hyper-parameters to
test with the model (which in practice can be di�cult), this strategy requires
only the hyper-parameter distributions, and then explores the space following
the distributions for each hyper-parameter.
Compared to an exhaustive search, this algorithm has two main bene�ts:

(i) the possibility to specify a �xed budget (e.g., a maximum number of models
to generate) independent of the number of hyper-parameters and values, and
(ii) the addition of hyper-parameters which do not in�uence the performance
does not decrease the e�ciency.

3.3.3 Bayesian Optimisation

A further step towards reducing the computational burden of model selection
techniques, in particular oriented for complex and �exible models with a high
number of hyper-parameters, is to employ an active learning procedure. In
particular, the goal is to propose a meaningful and restricted subset of models
among which to select the best one with respect to the available data.

Consider complex graphical models, such as those introduced in Chapter �
or the temporal models contained in Chapters � and �. Here, the number of
possible combinations of hyper-parameters can be arbitrarily large. In order
to avoid the assessment of a grid of models (which can be computationally
expensive) and a random search on the hyper-parameters space, the idea of
active learning is to interpret the scoring function as a learning task, and
then to propose a new combination of hyper-parameters to both reduce the
uncertainty in the unknown function and �nd the maximum value of the
function (corresponding to the best model, given a performance score).

In this context, Bayesian optimisation has been shown to outperform state-
of-the-art optimisation algorithms (Jones, ����; Snoek, Larochelle, and Adams,
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����). Since performance scores associated to graphical models are continuous
functions, it is possible to assume the unknown function to be sampled from a
Gaussian process (GP) (Rasmussen, ����). Then, the hyper-parameters may be
sampled based on di�erent strategies, such as the probability of improvement,
expected improvement (EI) or GP upper con�dence bound strategies (Snoek,
Larochelle, and Adams, ����).

The EI criterion, in particular, aims to maximise the expected improvement
over the current best. Also, in the context of the GP, the EI strategy has a
closed-form solution. The experiments of this thesis, unless otherwise speci�ed,
rely on a Bayesian optimisation technique for model selection based on the
expected improvement strategy. Such strategy has shown to be better behaved
than the probability of improvement, but unlike GP upper con�dence bounds
it does not require its additional tuning parameter, regulating the balance
between exploitation against exploration.

3.4 Performance Metrics for Graphical Models

Particularly when dealing with real-world data sets, the learning of a model
should be paired with a quantitative and robust performance assessment
strategy. According to the learning task at hand di�erent performance metrics
may be used. For the assessment of a graphical model one should answer, at
least, to the following questions:

(a) Howmuch it is likely that new (i.e., unseen) data come from such model?

(b) Does the model represent the real underlying structure of the system?

A simple answer to (a) might involve the likelihood (or the log-likelihood) of
the model using Equation (�.�). The likelihood of the model does not require
the ground truth, hence it is applicable to both synthetic and real data sets.

Instead, there can be di�erent answers to (b), depending on the performance
metrics used. Such answers require the knowledge of the underlying system
under analysis. It is possible to consider two di�erent (but related) aspects in
answering (b). In particular, one can be interested in approximating the system
where each weight of single edges in�uences the �nal score (i.e., interpreting
the structure learning as a regression problem), or approximating the struc-
ture of the system (i.e., interpreting the structure learning as a classi�cation
problem).

LetΘ ∈ Sd
++ be the true graphical model, and Θ̂ ∈ Sd

++ the predicted one. For
undirected graphical models, let only consider the upper triangular part of the
graph, to avoid the duplication of the edges. Let Θ(u) be the upper triangular
part of Θ. Next sections aim at describing common ways to assess how distant
the predictions ŷ = Θ̂(u) are with respect to the actual output values y = Θ(u).

3.4.1 Structure Learning as Regression

A quantitative measure to assess the regression of the edges is the mean
squared error (MSE), that incorporates bias and variance of the model. The
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MSE of an unbiased estimator corresponds to its variance. Furthermore, the
MSE is scale-dependent, de�ned as follows:

MSE(ŷ,y) = 1
n

n�
i=1

(ŷi − yi )2, (�.��)

where n = d(d − 1)/2. Hence, the MSE measures the distance between the
entries of the inferred precision matrix with respect to the entries in the true
underlying precision matrix.

3.4.2 Structure Learning as Classi�cation

However, often one may be interested into the presence or absence of edges
in the graph, disregarding their actual weight. In fact, for the same principles
related to inferring a sparse network (Section �.�.�), the presence or absence
of edges in the graph plays an important role for the de�nition of interpretable
models. In the context of graphical model assessment, it is possible to interpret
the learning task as a binary classi�cation problem, where classes consist in
the presence or absence of an edge.
Formally, let true/false positive (TP/FP) be the number of cor-

rectly/incorrectly existing inferred edges, true/false negative (TN/FN)
the number of correctly/incorrectly missing inferred edges (Hecker et al.,
����). In such way, the following classi�cation metrics can be used for the
assessment of a graphical model.

3.4.2.1 Accuracy

The accuracy of a model consists in the percentage of correct predictions with
respect to the total number, de�ned as follows:

Acc(ŷ,y) = 1
n

n�
i=1

1(ŷi = yi ). (�.��)

The best possible score is 1, while the expected score of a random classi�er is
the percentage of the most represented class over the total number of samples.

3.4.2.2 Balanced Accuracy

A drawback of the accuracy metric is that it is not easy to assess a model
when the number of samples in each class is highly unbalanced. A simple
extension which takes into account the number of samples in each class is the
balanced accuracy score, for which a random classi�er is constrained to return
0.5 independently from the number of samples in each class. The balanced
accuracy is de�ned as follows:

Bacc(ŷ,y) = 1
2 ·

�
TP

TP + TN +
TN

TN + FP

�
. (�.��)
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3.4.2.3 Precision

Also known as positive predictive value, the precision is the fraction of positive
samples over the total number of samples classi�ed as positive, de�ned as:

Prec(ŷ,y) = TP
TP + FP . (�.��)

3.4.2.4 Recall

Also known as sensitivity or true positive rate (TPR), the recall measures the
proportion of positive samples correctly classi�ed as positive, de�ned as:

Rec(ŷ,y) = TP
TP + FN . (�.��)

3.4.2.5 F1-score

The F1-score is the harmonic mean of precision and recall, and it can be used
to control both of them at the same time. The score is de�ned as:

F1(ŷ,y) = 2TP
2TP + FN + FP . (�.��)

3.4.2.6 True negative rate (TNR)

Also known as speci�city, the TNR measures the proportion of negative
samples which are classi�ed as negative, thus including false positive samples.
The score is de�ned as:

TNR(ŷ,y) = TN
TN + FP . (�.��)

3.4.2.7 False positive rate (FPR)

Also known as fall-out, the FPR measures the proportion of negative samples
which are incorrectly classi�ed as positive, over all of the negative samples.
The score is de�ned as:

FPR(ŷ,y) = FP
FP + TN . (�.��)

3.4.2.8 False negative rate (FNR)

The FNR measures the proportion of positive samples which are incorrectly
classi�ed as negative, over all of the positive samples. The score is de�ned as:

FNR(ŷ,y) = FN
TP + FN . (�.��)
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Summary

E�cient optimisation methods are required for a reliable inference of the
optimal model based on the available data. ADMM is a powerful algorithm,
which allow for the minimisation of complex functionals with a relatively easy
implementation. However, when the functional increases in complexity and
variables increase in size, the convergence of ADMM might not be optimal.

Section �.� presents both the widely used ADMM and advances on the FBS
algorithm which allow for the minimisation of composite convex and possibly
non-smooth objective functions (including sparsity-enforcing penalties). Both
minimisation methods are exploited throughout this thesis, in particular for
the development of the main contributions of this thesis (Chapters � and �).
Such models depend on hyper-parameters, which require particular atten-

tion. Indeed, the choice of reliable models for a particular problem should be
supported by appropriate model selection and assessment techniques, which
in turn rely on di�erent performance metrics.
Usually, there is no straightforward way to achieve this goal. Hence, it is

important to assess an high number of models whenever possible, relying on
performance scores which are appropriate for the task and take into account
peculiarities of the data, such as possibly unbalanced classes of samples.
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Part II

Time-Series Graphical Modelling

Recent advances on graphical models allow for their use with time-series data.
Indeed, temporal consistency between samples can e�ectively be exploited
during the inference of dynamical graphical models, as discussed in Section �.�.
This part includes the novel contributions of this thesis in the context of
time-series graphical modelling, namely the time-varying graphical lasso with
forward-backward splitting (Chapter �) and the latent variable time-varying
graphical lasso (Chapter �). The work of Chapters � and � is included in
(Tomasi et al., ����a,b), respectively.
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4 Time-Varying Network Inference via
Forward Backward Splitting

Taking into account the dynamics of the system under analysis during the
inference of a single graphical model may be bene�cial in real use cases,
helping in the case where the number of samples is lower than the number of
variables. Since the system is assumed to follow a certain temporal behaviour,
adjacent time points may help towards a reliable inference of the point-wise
graphical model.

Motivation

While fundamental to represent real world data, the increasing complexity
of temporal graphical models often challenges state-of-the-art minimisation
methods, which need to deal with an increasing number of factors. This chapter
focuses on the problem of graphical inference under a dynamical system, where
a set of covariance matrices that describe the system is indexed by time, as
introduced in Section �.�. In particular, based on the time-varying graphical
lasso, this chapter includes the �rst main contribution of this thesis, namely two
algorithms for dynamical graphical models based on the forward-backward
splitting minimisation procedure.

Such algorithms adopt two alternative line-search strategies that are studied
in (Salzo, ����). Considering the general Algorithm �, in the �rst one the line
search only involves the parameter γk , whereas the second method performs
a line search on both γk and λk .

Outline

The rest of the chapter is organised as follows. Section �.� details the �rst main
contribution of this thesis, providing two alternative FBS algorithms with line
searches for two types of time-varying graphical lasso models. Section �.�
contains an extensive validation of the FBS-based methods under synthetic
experiments. Section �.� concludes with a discussion on the results.

4.1 Method

While powerful for real and complex systems, graphical models (in particular
those for temporal data) introduce non-trivial challenges from a computational
point of view. In this context, a popular optimisation algorithm is the alternat-
ing direction methods of multipliers (ADMM), which can cope with complex
graphical lasso-based models (Boyd et al., ����). ADMM partitions the problem
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into multiple (easier) sub-problems, so that the solution of the global problem
is found as the consensus among the solutions of the smaller sub-problems
(Section �.�.�). While o�ering a great �exibility for optimising complex models,
a drawback of ADMM is the need of variable duplication before �nding a con-
sensus. This may lead to slow convergence rates and to a high computational
cost (both in terms of computing resources and memory requirements). On
the other hand, other optimisation algorithms make assumptions that are not
satis�ed in the setting of graphical models, thus (usually) not applicable in this
context.

This section formally presents two problems of time-varying network infer-
ence under smooth and bounded variation temporal transitions. In particular,
the time-varying graphical lasso is instantiated through speci�c evolutionary
patterns (Section �.�). The proposed methods cover two types of temporal
transitions (Hallac et al., ����): (i) a possibly discontinuous behaviour with
few time changes in the links, by using a total variation penalty term; (ii) a
smooth transition, adopting a square norm penalty term.

Hence, the �rst main contribution of this thesis consists in two procedures,
based on the forward-backward splitting algorithm, that are ensured to con-
verge to a (global) solution of the above problems. Such procedures rely on
recent advances on the forward-backward splitting (FBS) method which intro-
duces suitable line searches for the parameters of the algorithm and relax the
assumptions, so to include the graphical modelling problem and its constraints
(such as the positive-de�nitness of the precision matrix), while maintaining
strong theoretical convergence guarantees (Salzo, ����). Indeed, the two con-
sidered temporal transitions allow a separable form of the functionals that can
be exploited by the FBS method, as shown in the following section.

The performance of the proposed algorithm is compared against the ground
truth and the state-of-the-art minimisation algorithm in this context, that is,
ADMM. The results show that the proposed FBS-based methods are signi�c-
antly faster than ADMM. Also, since FBS algorithms do not require variable
duplication, the spatial complexity is lower than ADMM, that is a fundamental
feature for the analysis of large networks. This chapter aims at emphasising
the need of investigating alternative optimisation methods for complex ma-
chine learning problems, which can deal with the increasing dimensionality
of the data sets. This work is an attempt in this direction, showing FBS-based
graphical models to be a e�ective alternative.

4.1.1 Problem Formulation

Consider the general form of FBS, as introduced in Section �.�.�. The form (�.��)
covers the time-varying graphical lasso (TGL) objective problem (�.��), where
depending on the di�erent choices of Ψ, the smooth part f may include the
negative Gaussian log-likelihood only, or the last term too.
Di�erent choices of Ψ re�ect di�erent evolutionary patterns of the inter-

actions of variables in play and Hallac et al. (����) consider several options.
Among these consider the �1 norm, which gives rise to a total variation pen-
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alty term, that is, Ψ(Θt+1 − Θt ) = �Θt+1 − Θt �1 =
�d

i , j=1 |θt+1,i , j − θt ,i , j |
and the square of the �2 norm, meaning that Ψ(Θt+1 − Θt ) = �Θt+1 − Θt �22 =�d

i , j=1 |θt+1,i , j −θt ,i , j |2. The �rst choice is suitable when one expects few edges
to change between subsequent time points, whereas the second is appropriate
when the dynamics smoothly varies over time (Hallac et al., ����).

Consider the following two time-varying graphical lasso models:

minimize
Θt ∈Sd++

T�
t=1

−nt �(St ,Θt ) + α �Θt �od,1 + β
T−1�
t=1

�Θt+1 − Θt �1 , (TGL-�1)

and

minimize
Θt ∈Sd++

T�
t=1

−nt �(St ,Θt ) + α �Θt �od,1 + β
T−1�
t=1

�Θt+1 − Θt �22 , (TGL-�22)

where St is the empirical covariance matrix, de�ned as in Section �.�.
In order to put the above minimisation problems in the form (�.��), let

H = (Rd×d )T , Θ = (Θt )1≤t ≤T , with Θt = (θt ,i , j )1≤i , j≤d ∈ Rd×d being the
precision matrix at time t , and consider f and д as follows:

Case (TGL-�1). f (Θ) = �T
t=1 −nt �(St ,Θt ) and

д(Θ) = α
T�
t=1

�Θt �od,1 + β
T�
t=1

�Θt+1 − Θt �1

= α
d�

i , j=1
i�j

T�
t=1

|θt ,i , j | + β
d�

i , j=1

T�
t=1

|θt+1,i , j − θt ,i , j |

=

d�
i , j=1

�(1 − δi , j )α
��θ ·,i , j��1 + βTV (θ ·,i , j )

�
,

where δi , j is the Kronecker symbol and TV (·) is the �D total variation on
RT .

Case (TGL-�22). f (Θ) = �T
t=1 −nt �(St ,Θt ) + β

�T−1
t=1 �Θt+1 − Θt �22 and

д(Θ) = α
T�
t=1

�Θt �od,1 =
d�

i , j=1
(1 − δi , j )α

��θ ·,i , j��1 .
In both such cases the function д is convex and separable, meaning that

д(Θ) =
d�

i , j=1
дi , j (θi , j ), θi , j = (θt ,i , j )1≤t ≤T ,

where, for every (i, j) ∈ {1, . . . ,d}2,

дi , j : RT → R, дi , j (θ ) =
�
(1 − δi , j )α �θ �1 + βTV (θ ) in the case (TGL-�1),
(1 − δi , j )α �θ �1 in the case (TGL-�22).

��
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The proximity operator of д can be computed component-wise (Combettes
and Wajs, ����). Moreover, in the case (TGL-�1) the components of д consist
in a �D total variation penalty if i = j and in a fused lasso penalty otherwise.
It is possible to exactly compute the proximity operator of such penalties by
means of a �nite termination procedure (Condat, ����).
In the case (TGL-�22) the proximity operator of дi , j reduces to a soft-

thresholding operation (Combettes and Wajs, ����). For each of the above
cases, the function f is de�ned on the open convex cone Sd

++, it is convex, and
its gradient is

∇f (Θ) =




�������

n1(S1 − Θ−1
1 )

n2(S2 − Θ−1
2 )

. . . . . .

nT (ST − Θ−1
T )

�������
in the case (TGL-�1)

�������

n1(S1 − Θ−1
1 )

n1(S2 − Θ−1
2 )

. . . . . .

nT (ST − Θ−1
T )

�������
+ 2β

�������

Θ1 − Θ2

2Θ2 − Θ1 − Θ3

. . . . . .

ΘT − ΘT−1

�������
in the case (TGL-�22).

(�.�)
This shows that ∇f is (only) locally Lipschitz continuous on Sd

++.

4.1.2 Algorithm

This section presents two instances of Algorithm � which correspond to two
types of line-search procedures and can be applied to both problems (TGL-�1)
and (TGL-�22).
Algorithm � implements a line-search on the step-size γ only, whereas

Algorithm � performs a line-search on the relaxation parameter λ and an
additional backtracking procedure on the step-size γ to keep the sequence of
the iterates feasible. The operations proxγдi , j and ∇f are those described in
Section �.�.�.

Since f and д are convex and ∇f is locally Lipschitz continuous on Sd
++, it

follows from (Salzo, ����) that Algorithms � and � are ensured to converge
with a rate o(1/k). Both the proposed algorithms are equivalent in terms of
convergence properties and computational cost. However, in practice, they
may behave di�erently depending on the applications, as shown in Section �.�.

4.1.2.1 Stopping Criterion

Since Y k = proxγkд(Θ̂
k ), it follows that (Θ̂k − Y k )/γk ∈ ∂д(Y k ), where ∂д

is the subdi�erential of д. The stopping criterion is based on the following
residual

Rk = ∇f (Y k ) + Θ̂
k −Y k

γk
, (�.�)
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Algorithm 2: FBS-LS(γ ) for time-varying network inference.
choose ϵ ∈ ]0, 1[ , γ̄ > 0, and δ ∈ ]0, 1[ ;
choose Θ0 and set γ−1 = γ̄ ϵ ;
for k = 0, 1, . . . (until convergence) do

initialise γ = γk−1/ϵ ;
do

γ ← γϵ ;
Θ̂
k
= Θk − γ∇f (Θk ) = (θ̂ki j )1≤i , j≤d ;

for each interaction ij do
yki , j = proxγдi , j (θ̂ki j );

Y k = (yki , j )1≤i , j ,≤d = (Y k
1 , . . . ,Y

k
T );

ζk = �Y k − Θk ,∇f (Θk )� + (δ/γ )
���Y k − Θk

���2
2
;

while Y k
1 � 0 or Y k

2 � 0, · · · , or Y k
T � 0 or f (Y k ) − f (Θk ) > ζk ;

γk = γ ;
Θk+1 = Y k ;

which belongs to ∂(f + д)(Y k ) and, in view of the expression of Θ̂ in Al-
gorithms � and �, can also be written as

Rk = ∇f (Y k ) − ∇f (Θk ) + Θk −Y k

γk
. (�.�)

Since Y k − Θk → 0 as k → +∞ (Salzo, ����) and ∇f is locally Lipschitz
continuous, it follows that (Rk )k ∈N is a sequence of subgradients of f + д

(each one at the point Y k ), that converges to zero. A scale invariant stopping
criterion can be obtained by adopting the condition rkr < ϵabs or rkn < ϵabs,
where

rkr =

��Rk��2
max

� ��∇f (Y k )
��
2 ,

���� Θ̂k−Y k

γ k

����
2

�
+ ϵr

and rkn =

��Rk��2
�R1�2 + ϵn

,

are the relative and normalised residuals respectively, ϵabs is an absolute toler-
ance parameter, and ϵr and ϵn are small constants to prevent the denominator
from being zero (Goldstein, Studer, and Baraniuk, ����).

4.1.2.2 Complexity

In Algorithms � and � the most expensive step lies in the inversion of T
matrices, required by the gradient of f , as in Equation (�.�). The complexity
per iteration is equivalent to that of the ADMM proposed by (Hallac et al.,
����).

Indeed, the optimisation of TGL with ADMM requires an eigenvalue decom-
position at each iteration, so both minimisation methods have computational
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Algorithm 3: FBS-LS(γ , λ) for time-varying network inference.
choose ϵ ∈ ]0, 1[ , γ̄ > 0, λ̄ ∈ ]0, 1], and δ ∈ ]0, 1[ ;
choose Θ0 and set γ−1 = γ̄ ϵ, λ0 = λ̄ ;
for k = 0, 1, . . . (until convergence) do

initialise γ = γk−1/ϵ and λ = λk−1/ϵ ;
do

γ ← γϵ ;
Θ̂
k
= Θk − γ∇f (Θk ) = (θ̂ki j )1≤i , j≤d ;

for each interaction ij do
yki , j = proxγдi , j (θ̂ki j );

Y k = (yki , j )1≤i , j ,≤d = (Y k
1 , . . . ,Y

k
T );

while Y k
1 � 0 or Y k

2 � 0, · · · , or Y k
T � 0;

do
λ ← λϵ ;
Θk+1 = Θk + λ(Y k − Θk );
ζk = �Y k − Θk ,∇f (Θk )� + (δ/γ )

���Y k − Θk
���2
2
;

while f (Θk+1) − f (Θk ) > λζk ;
γk = γ ;

complexity of O(Td3) per iteration. However, both the matrix inversion prob-
lem and the eigenvalue decomposition problem can be solved by more e�cient
algorithms with lower complexity. Employing such algorithms can signi�c-
antly improve the time performance of the proposed FBS-based algorithms as
well as of ADMM.

Finally, exploiting a particular structure of the Θ matrix (such as a block
structure) may be an additional bene�t in the matrix inversion operation. Such
improvements are left as a future work.

4.2 Experiments

The performance of the proposed methods has been assessed on synthetic
data in terms of the number of iterations, execution time, and space scalabil-
ity. In particular, the two proposed algorithms FBS-LS(γ ) (Algorithm �) and
FBS-LS(γ , λ) (Algorithm �) are compared to ADMM, which is the state of the
art in the context of time-varying network inference (Hallac et al., ����).

4.2.1 Convergence

Data were generated starting from a set of precisionmatricesΘ = (Θ1, . . . ,ΘT ),
related in time according to a speci�c behaviour while guaranteeing that
Θt ∈ Sd

++ for t = 1, . . . ,T . In particular, the data sets considered consisted of
nt = 200 samples in Rd with d = 200 and T = 10 time stamps. Such data set
follow two di�erent temporal behaviours.
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� � � � �

���

���

���

���

���

���

(�) Smooth signal.

� � � � �

���

���

���

���

���

���

(�) Square signal.

������ �.�. Example of the smooth and square signals used to generate the synthetic
data sets.

precision 0.1 0.01 0.001
score iter. time [s] iter. time [s] iter. time [s]

�1

FBS-LS(γ ) 22 ± 1 4.8 ± 0.7 24 ± 1 5.1 ± 0.4 26 ± 1 5.0 ± 0.3
FBS-LS(γ ,λ) 22 ± 1 4.6 ± 0.7 24 ± 1 5.4 ± 0.5 26 ± 1 5.6 ± 0.5
ADMM 1060 ± 553 75.2 ± 39.8 2623 ± 1757 184.3 ± 122.3 4312 ± 1536 301.6 ± 107.4

�22

FBS-LS(γ ) 72 ± 19 7.9 ± 2.7 107 ± 30 11.7 ± 4.1 137 ± 40 14.9 ± 5.5
FBS-LS(γ , λ) 72 ± 19 8.3 ± 2.8 104 ± 31 12.1 ± 4.5 129 ± 41 14.9 ± 6.0
ADMM 192 ± 24 13.2 ± 1.7 252 ± 42 17.3 ± 3.1 453 ± 66 30.4 ± 3.8

����� �.�. Comparison between FBS with line search and ADMM. The algorithms
were employed with several values of (α, β). The table displays the
average and standard deviation of the number of iterations and CPU
times across the di�erent runs for achieving |objk −m∗ |/|m∗ | ≤ ε , with
ε ∈ {0.1, 0.01, 0.001}. For each pair of hyper-parameters, the minimum
m∗ is estimated as the best value obtained in 500 iterations among the
di�erent algorithms.

For the �rst data set, interactions between variables across time follow a
square waveform behaviour. Under such schema, the interactions may be zero
or positive at particular time points, but the transition between those states is
non-smooth.

For the second data set, variable interactions follow to a smooth sinusoidal
behaviour, hence changing slowly in time. Additional details on data generation
can be found in the implementation (see Availability and Implementation).

The experiments include the time-varying graphical lasso with the two tem-
poral penalties (TGL-�1) and (TGL-�22), according to the type of the data set. As
for the hyper-parameters (α, β), the search space was [0.1, 1]×[0.1, 5] for (TGL-
�1) and [0.1, 1] × [0.01, 0.1] for (TGL-�22). A Bayesian optimisation procedure
ensured that the best hyper-parameters lie in the interior of the search space
(do not belong to the boundary). In particular, (α∗, β∗) = (0.111, 4.855) for
(TGL-�1), while (α∗, β∗) = (0.789, 0.020) for (TGL-�22). Then, I set a grid on the
search space and ran the two proposed algorithms FBS-LS(γ ) and FBS-LS(γ , λ)
as well as ADMM, for the corresponding values of the hyper-parameters.
The performance of the proposed methods was evaluated with respect to

the ground truth in terms of the mean squared error (MSE) for each algorithm
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(�) �1-norm temporal penalty.
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(�) �22-norm temporal penalty.

������ �.�. Relative objective value (decreasing) at each iteration. The relative value
is obtained as |objk −m∗ |/|m∗ |, wherem∗ is the minimum objective value
obtained across 500 iterations, and objk is the value of the objective
function at iteration k . In both cases, FBS-based algorithms converge to
the minimum faster with respect to ADMM.

after convergence, de�ned as:

MSE = 2
Td(d − 1)

T�
t=1

�Θ(u)
t − Θ̃(u)

t �22,

where Θt denotes the ground truth, Θ̃t is the inferred precision matrix, and
the superscript (u) refers to the upper triangular part of the matrix (excluding
the diagonal). The achieved MSE was the same for each algorithm (0.648 · 10−4
for (TGL-�1), 0.498 · 10−4 for (TGL-�22)).

Table �.� reports the performance of the three algorithms across the di�er-
ent runs in terms of the number of iterations and CPU times for achieving
a given precision. Indeed, FBS- and ADMM-based methods have di�erent
stopping criterions. Hence, the comparison of such methods is based on their
convergence with respect to an empirical minimum value of the objective
function. In particular, for each combination of hyper-parameters, the meth-
ods ran for a �xed number of iterations (500) and the best objective value was
selected across all methods. Then, both FBS- and ADMM-based methods were
run again using as stopping criterion the closeness of the current objective
value with the best one previously selected for the particular combination of
hyper-parameters, with di�erent precisions (namely, 0.1, 0.01 and 0.001). In
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this experiment, both FBS-based algorithms outperformed ADMM. FBS-based
algorithms were able, in only a few iterations, to increase the precision of
order of magnitudes for both �1 and �22 set of experiments. The di�erence in
the convergence behaviour with respect to ADMM was less substantial in the
case of �22. In the case of �1, FBS has a higher cost per iteration with respect to
ADMM. This is due to the computation of the proximity operator of the fused
lasso penalty.
In the case of �22, instead, the cost is lower because the proximity operator

of the nonsmooth (penalty) term simpli�es to a soft-thresholding. Finally, for
(TGL-�22), I point out the better performance of FBS-LS(γ , λ) against FBS-LS(γ ).

Figure �.� shows the relative objective value across the �rst 100 iterations
and multiple runs for FBS-based algorithms and ADMM. The averaged value
is depicted in bold line. In particular, in the case of the (TGL-�1), FBS-based al-
gorithms clearly surpass the ADMM in terms of convergence rate (Figure �.��).

The two algorithms FBS-LS(γ ) and FBS-LS(γ , λ) overlap in the case of (TGL-
�1), whereas FBS-LS(γ , λ) shows to convergence slightly faster than FBS-LS(γ ).
The poor convergence rate of ADMM may be due to the need of reaching a
consensus among a large number of variables which is a typical scenario in
the inference of time-varying networks.

4.2.2 Scalability

FBS- and ADMM-based optimisations feature di�erent memory requirements.
In particular, FBS-based implementation requiresO(2d2T ) in space, for keeping
in memory both the precision and empirical covariance matrices at all time
points. Instead, ADMM-based implementation requires more variables due to
the consensus framework and the presence of dual variables. More speci�cally,
in such setting, ADMM requiresO(4d2(2T − 1)) space complexity (Hallac et al.,
����). The di�erence between the two complexities consists in a multiplicative
factor which impact the analysis of large data sets.
Figure �.� shows the di�erence in space complexity as the number of un-

knowns (Td(d + 1)/2) of the problem grows. Such computations do not take
into account optimised data structures for sparse data. Exploiting the structure
and the sparsity of the involved matrices may lead to better computational
e�ciency, but such investigation are left for future work.

4.2.3 Model Selection

The hyper-parameters of the methods have been selected by using a MCCV
producedure (Section �.�.�), based on the average maximum likelihood of the
model across multiple splits of the data set. The selected hyper-parameters
were used for both FBS- and ADMM-based algorithms, for which the functional
is the same. Since the number of TGL-FB hyper-parameters is large, the model
was selected according to a Gaussian process-based Bayesian optimisation
procedure, based on the expected improvement strategy (Snoek, Larochelle,
and Adams, ����).
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������ �.�. Memory requirements as the number of unknowns grows, with T = 50
and d varying. Each matrix entry is stored in double precision.

Note that, when the temporal dynamics is not known, it is possible and
advantageous to include the choice of the temporal behaviour in a cross-
validation procedure.

4.3 Discussion

This chapter proposes two novel algorithms for the graphical modelling of
multivariate time-series, based on a forward-backward splitting procedure
under mild-di�erentiability assumptions. Such algorithm covers two signi�c-
ant types of temporal behaviours, that is, a nonsmooth transition with few
interaction changes, and a smooth transition with slow changes of the global
system. Optimisation algorithms which are usually exploited for network in-
ference su�er from drawbacks when considering large sets of unknowns. The
experiments in this chapter proved that the proposed method is more e�cient
than ADMM for number of iterations, CPU time and memory requirements.

The possibility of applying the FBS algorithm on di�erent graphical models,
such as those considered in (Danaher, Wang, and Witten, ����; Tomasi et
al., ����b), opens the way to the use of graphical models in large-scale data.
When increasing the complexity of models, FBS-based graphical models would
prove even more e�ective for real-world applications. Indeed, particularly
for increasing data sets and model complexity, fast and theoretically sound
optimisation algorithms represent a necessary tool for the graphical modelling
community. In such context, this work could pave the way to develop solid
graphical models with increasing complexity, leading to further advances in
pattern recognition.
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5 Latent Variable Time-Varying Network
Inference

In many applications of �nance, biology and sociology, complex systems in-
volve entities interacting with each other. These processes have the peculiarity
of evolving over time and of comprising latent factors, which in�uence the
system without being explicitly measured. This chapter present a second main
contribution of this thesis, that is the latent variable time-varying graphical
lasso (LTGL), a method for multivariate time-series graphical modelling that
considers the in�uence of hidden or unmeasurable factors. The estimation of
the contribution of the latent factors is embedded in the model which produces
both sparse and low-rank components for each time point. In particular, the
�rst component represents the connectivity structure of observable variables
of the system, while the second represents the in�uence of hidden factors,
assumed to be few with respect to the observed variables. The LTGL model
includes temporal consistency on both components, providing an accurate
evolutionary pattern of the system.
In what follows, I will derive a tractable optimisation algorithm based on

alternating direction method of multipliers, and develop a scalable and e�cient
implementation which exploits proximity operators in closed form. LTGL
is extensively validated on synthetic data, achieving optimal performance
in accuracy, structure learning and scalability with respect to ground truth
and state-of-the-art methods for graphical inference. This chapter concludes
with the application of LTGL to real case studies, from biology and �nance,
to illustrate how LTGL can be successfully employed to gain insights on
multivariate time-series data.

Motivation

The problem of understanding complex systems arises in diverse contexts,
such as �nancial markets (Liu, Han, and Zhang, ����; Orchard, Agakov, and
Storkey, ����), social networks (Farasat et al., ����) and biology (Hecker et al.,
����; Huang, Liao, and Wu, ����; Lozano et al., ����). In such contexts, the
goal is to analyse the system in order to retrieve information on how the
components behave. This requires accurate and interpretable mathematical
models whose parameters, in practice, need to be estimated from observations.

Mathematically, as introduced in Chapter �, a system can be modelled as a
network of interactions (edges) between its entities (nodes). The underlying
structure of the variables within the system is usually not known a priori.
Nevertheless, observations of the system (i.e., data) incorporate information
on the interactions between variables, since they provide measurements of
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such variables acting in the system.
The problem of inferring a network of variable interactions from data is

known as network inference or graphical model selection (Friedman, Hastie, and
Tibshirani, ����; Lauritzen, ����). During the last years the graphical model-
ling problem has received much attention, particularly for the availability of an
always increasing number of samples that are required for a reliable network
inference. Nonetheless, structure estimation of complex systems remains chal-
lenging for many reasons. This chapter tackles two particular aspects: (i) the
presence of global hidden (or latent) factors, and (ii) the dynamics of systems
that evolve over time. Arguably, the inference of a dynamical network encod-
ing a complex system requires a speci�c attention to both aspects to result
in a more realistic representation. In particular, a system may be a�ected by
(latent) factors not encoded in the model. Such factors, acting in the system, in-
�uence how the observable entities behave and, hence, their inter-connections
(Choi, Chandrasekaran, and Willsky, ����). The consideration of hidden and
unmeasured variables during the inference process emerges as crucial to avoid
misrepresenting real-world data (Meng, Eriksson, and Hero, ����).
At the same time, a complex system depends on a temporal component,

which drives variable interactions to evolve consistently during its extent. This
means that the structure can either change or remain stable according to the
nature of the system itself. Hence, the understanding of a complex system
is bound to the observation of its evolution. This is particularly evident in
some applications, such as biology, where the interest could be to understand
the response of the system to perturbation (Heyde et al., ����; Molinelli et al.,
����).

Related Work

Latent variable models have been widely studied in literature, outperforming
graphical models that only consider observable variables (Chandrasekaran,
Parrilo, and Willsky, ����; Choi et al., ����; Yuan, ����). At the same time,
a set of methods were designed to study the temporal component through
the inference of a dynamical network that incorporates prior knowledge on
the behaviour of the system (Bianco-Martinez et al., ����; Hallac et al., ����;
Sima, Hua, and Jung, ����). Time-series with latent variables are considered
to obtain a single graph which represents the global system (Anandkumar
et al., ����; Jalali and Sanghavi, ����). However, to the best of the author’s
knowledge, state-of-the-art methods for regularised network inference do not
consider simultaneously both time and latent variables during the inference
of multiple connected networks.

Contribution

This chapter proposes the latent variable time-varying graphical lasso (LTGL),
a model for dynamical network inference where the observable structure is
in�uenced by latent factors. This can be seen as an attempt to generalise both
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dynamical and latent variable network inference under a single uni�ed frame-
work. In particular, starting from a set of observations of a system at di�erent
time points, LTGL infers an interaction network of the observed variables un-
der the in�uence of latent factors, while taking in consideration the temporal
evolution of the system. The empirical interaction network is decomposed into
the true underlying structure of the network and the contribution of latent
factors, under the assumption that both observable variables and latent factors
interdependence follow a temporal non-random behaviour. For this reason,
the model allows to include prior knowledge on the evolutionary pattern of
the system. The imposition of such prior knowledge bene�ts inference and
subsequent analysis of the network, accentuating precise dynamical patterns.
This is particularly important when the number of samples is low compared
to the number of observed and latent variables in the system. In fact, the infer-
ence of the network at particular time points exploits the dependence between
consecutive temporal states. Such advantage is achieved by a simultaneous
inference of all the dynamical system, that, mathematically, translate into
imposing constraints on the network behaviour. The following sections will
provide a set of possible constraints that can be applied independently on both
observed and latent components, allowing for a wide range of evolutionary
patterns.

Figure �.� provides an example of the theoretical model assumed by LTGL.
Here, observed and latent variables (xi and zi ) are connected in a slightly
di�erent way at each time. Note that the observations of the system only
involve variables xi , while the hidden factors zi in�uence the system without
being actually observed. Hence, when analysing samples which are regulated
from a dynamical network with hidden factors, it is infeasible to precisely
infer the identity of latent variables, but only an estimation of their number
and their e�ect on the global system can be obtained.

Starting from the theoretical model, the contribution of this chapter involves
a minimisation algorithm based on ADMM (Boyd et al., ����). The algorithm is
divided into independent steps using proximal operators, which can be solved
by closed-form solutions favouring a fast and scalable computation (Danaher,
Wang, and Witten, ����; Hallac et al., ����; Ma, Xue, and Zou, ����). Generic
penalties for the problem at hand may be speci�ed, with the only requirement
that it is possible to express such constraints via proximal mappings.
The method is implemented in a Python framework, based on the use of

highly optimised low-level libraries for numerical computations (Availability
and Implementation). Experiments on synthetic data show LTGL to achieve
optimal performance in relation to ground truth and to state-of-the-artmethods
for graphical modelling, in terms of accuracy, structure learning and scalability.
Moreover, a particular emphasis will be put on the computational e�ciency
of LTGL while increasing the number of unknowns of the problem and the
model complexity.

This chapter will conclude with the application of LTGL to real-world data
sets to illustrate how LTGL can be successfully employed to gain insights
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������ �.�. A dynamical network with latent factors zi and observed variables xi . At
each time ti , all connections between latent and observed variables (
lines) and connections among observed variables ( lines) may change
according to a speci�c temporal behaviour. For simplicity, latent variables
are here independent from each other (hence not connected). Blue/red
colours indicate a new link is added to/removed from the network.

on multivariate time-series data. In particular, experiments involve biological
and �nancial data sets, showing the use of LTGL in di�erent contexts. In
the �rst case, the analysis concerns Escherichia coli response to perturbation,
correctly identi�ed by LTGL. In the latter case, LTGL is used to investigate on
a �nancial data set, showing how the contribution of latent factors is relevant
to understand the behaviour of the system.

Outline

The rest of the chapter is organised as follows. Section �.� contains the the-
oretical formulation of the problem and the proposed method. Section �.�
describes in details the optimisation algorithm for the minimisation of the
functional. Sections �.� and �.� illustrate the use of LTGL on synthetic and
real data, respectively. Section �.� concludes with a discussion on the results.

5.1 Model Formulation

This chapter proposes a novel statistical model for the inference of networks
that change consistently in time under the in�uence of latent factors, called
latent variable time-varying graphical lasso (LTGL). LTGL infers the dynamical
network of complex systems by decomposing the problem into two parts —
similarly to (Chandrasekaran, Parrilo, and Willsky, ����) for static network
inference. Two components of the dynamical network are considered: a true
underlying structure on the observed variables and the contribution of latent
factors. This allows to factor out the contribution of hidden variables, favour-
ing a reliable modelling of the dynamical system. The novelty of such method
is the simultaneous inference of a dynamical network with latent factors that
exploits the imposition of behavioural consistency on both observed variables
interactions and latent in�uence through the use of penalisation terms. This
allows for an easier interpretation of the evolution of the dynamical system
while, at the same time, improving its graphical modelling. The two separate
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(while closely related) components at each time point are obtained by integ-
rating the network inference with the information coming from temporally
di�erent states of the network.

Formally, let Xt ∈ Rnt×d , for t = 1, . . . ,T , be a set of observations measured
at T di�erent time points composed by nt samples of d observed variables.
(Note that, for each time point t , samples are assumed to be drawn from the
probability distribution on the observed variables conditioned on the latent
ones.) Let St = (1/nt )X�

t Xt be the empirical covariance matrix at time t . The
goal is to retrieve a set of sparse matrices Θ = (Θ1, . . . ,ΘT ) and a set of low-
rank matrices L = (L1, . . . , LT ) such that, at each time point t , Θt encodes the
conditional independences between the observed variables, while Lt provides
the summary of marginalisation over latent variables on the observed ones
(see Section �.�).

Consider Equation (�.��) at a speci�c time t . Here, the goal is to impose
continuity between the structure and the hidden variables contribution in
time, so the di�erence between consecutive graphs is forced to abide certain
constraints by adding two penalisation terms. The LTGL model takes the
following form:

minimize
Θt−Lt ∈Sd++

Lt ∈Sd+

T�
t=1

�
− nt �(St ,Θt − Lt ) + α �Θt �od ,1 + τ �Lt �∗

�

+ β
T−1�
t=1

Ψ(Θt+1 − Θt ) + η
T−1�
t=1

Φ(Lt+1 − Lt ),

(�.�)

where Ψ and Φ are penalty functions that force the structure of the network
to change over time according to a certain behaviour by acting on Θ and L,
respectively. Temporal consistency of both the structure of the network and
latent factors contribution is guaranteed by the use of such penalty functions,
which bene�ts the network inference in particular in presence of few available
observations of the system.
Chapter � includes possible choices for Ψ and Φ. Their choice is arbitrary,

based on prior knowledge on the evolution of the respective components in
the system. Also, Ψ and Φ are independent, allowing LTGL to model a wide
range of dynamical behaviours of complex systems.

5.2 Minimisation Method

Problem (�.�) is convex, provided that the penalty functions Ψ and Φ are
convex, and it is coercive because of the regularisers. Thus, Problem (�.�)
admits solutions. Nonetheless, its optimisation is challenging in practice due
to the high number of unknown matrices involved (2T , for a total of 2T d (d+1)

2
unknowns of the problem). A suitable method for the minimisation is ADMM
(Boyd et al., ����). It allows to decouple the variables obtaining a separable
minimisation problem which can be e�ciently solved in parallel. The sub-

��



5 Latent Variable Time-Varying Network Inference

problems exploit proximal operators which are (mostly) solvable in closed-
form, leading to a simple iterative algorithm.

In order to decouple the involved matrices, let de�ne three dual variables R,
Z = (Z1,Z2) andW = (W1,W2) and two projections:

P1 : (Rd×d )T → (Rd×d )T−1 P2 : (Rd×d )T → (Rd×d )T−1
A �→ (A1, . . . ,AT−1) A �→ (A2, . . . ,AT )

Problem (�.�) becomes:

minimize
(Θ,L,R ,Z ,W )

Lt �0

T�
t=1

�
− nt �(St ,Rt ) + α �Θt �od ,1 + τ �Lt �∗

�

+ β
T−1�
t=1

Ψ(Z2,t − Z1,t ) + η
T−1�
t=1

Φ(W2,t −W1,t )

s.t. R = Θ − L, Z1 = P1Θ, Z2 = P2Θ, W1 = P1L, W2 = P2L.




(�.�)

The corresponding augmented Lagrangian is as follows:

Lρ (Θ,L,R,Z ,W ,U )

=

T�
t=1

�
− nt �(St ,Rt ) + α �Θt �od ,1 + τ �Lt �∗ + I(L � 0)

�

+ β
T−1�
t=1

Ψ(Z2,t − Z1,t ) + η
T−1�
t=1

Φ(W2,t −W1,t )

+
ρ

2

T�
t=1

� ��Rt − Θt + Lt +U0,t
��2
F −

��U0,t
��2
F

�

+
ρ

2

T−1�
t=1

� ��Θt − Z1,t +U1,t
��2
F −

��U1,t
��2
F +

��Θt+1 − Z2,t +U2,t
��2
F −

��U2,t
��2
F

�

+
ρ

2

T−1�
t=1

� ��Lt −W1,t +U3,t
��2
F −

��U3,t
��2
F +

��Lt+1 −W2,t +U4,t
��2
F −

��U4,t
��2
F

�

(�.�)

where U = (U0,U1,U2,U3,U4) are the scaled dual variables.
The ADMM algorithm for Problem (�.�) writes down as:
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for k = 1, . . . do

Rk+1 = argmin
R

Lρ (Θk ,Lk ,R,Zk ,W k ,U k ) (�.�)

Θk+1 = argmin
Θ

Lρ (Θ,Lk ,Rk+1,Zk ,W k ,U k ) (�.�)

Lk+1 = argmin
L

Lρ (Θk+1,L,Rk+1,Zk ,W k ,U k ) (�.�)

Zk+1 =

�
Zk+1
1

Zk+1
2

�
= argmin

Z
Lρ (Θk+1,Lk+1,Rk+1,Z ,W k ,U k )

(�.�)

W k+1 =

�
W k+1

1
W k+1

2

�
= argmin

W
Lρ (Θk+1,Lk+1,Rk+1,Zk+1,W ,U k )

(�.�)

U k+1 =



U k
0

U k
1

U k
2

U k
3

U k
4


+



Rk+1 − Θk+1 + Lk+1

P1Θ
k+1 − Zk+1

1
P2Θ

k+1 − Zk+1
2

P1Lk+1 −W k+1
1

P2Lk+1 −W k+1
2


. (�.�)

5.2.1 R Step

The minimisation problem involving the matrix R of Equation (�.�) can be split
into parallel updates, since Lρ (Θ,L,R,Z ,W ,U ) is separable in the variables
(R1, . . . ,RT ). Hence, each Rt at iteration k + 1 is given by:

Rk+1t = argmin
R

tr(StR) − logdet(R) + ρ

2nt

���R − Θk + Lk +U k
0,t

���2
F

= argmin
R

tr(StR) − logdet(R) + ρ

2nt

���R −Ak
t

���2
F

= argmin
R

tr(StR) − logdet(R) + ρ

2nt

�����R − Ak
t +A

k�
t

2

�����
2

F

(�.��)

with Ak
t = Θk

t − Lkt − U k
0,t . Note that the last equality in (�.��) follows from

the symmetry of R — which also guarantees the logdet to be well-de�ned.
Equation (�.��) can be explicitly solved. Indeed, Fermat’s rule yields:

St −
ρ

nt

Ak
t +A

k�
t

2 = R−1 − ρ

nt
R. (�.��)

Then the solution to Equation (�.��) is (Danaher, Wang, and Witten, ����;
Hallac et al., ����; Witten and Tibshirani, ����):

Rk+1t =
nt
2ρV

k

�
−Ek +

�
(Ek )2 + 4ρ

nt
I

�
V k�

��
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where V kEkV k� is the eigenvalue decomposition of St − ρ
nt

Akt +A
k�
t

2 .

5.2.2 Θ Step

Likewise the R step, the update of Θ in Equation (�.�) can be done in a parallel
fashion, as follows:

Θk+1
t = argmin

Θ
α �Θ�od ,1 +

ρ

2

� ���Rkt − Θ + Lkt +U
k
0,t

���2
F

+ δ tT

���Θ − Zk
1,t +U

k
1,t

���2
F
+ δ t1

���Θ − Zk
2,t−1 +U

k
2,t−1

���2
F

�

= argmin
Θ

α �Θ�od ,1 + (1 + δ tT + δ t1)
ρ

2

���Θ − Bkt

���2
F

(�.��)

where δ i j = 1 − δi j , with δi j Kronecker delta (that is equal to 1 when i = j, 0
otherwise) and

Bkt =
Lkt + R

k
t +U

k
0,t + δ tT (Zk

1,t −U k
1,t ) + δ t1(Zk

2,t−1 −U k
2,t−1)

1 + δ tT + δ t1
.

Problem (�.��) is solved as:

Θk+1
t = proxζ � ·�od ,1(Bkt ) = Sζ (Bkt )

with ζ = α
ρ(1+δ tT +δ t1)

, and Sζ (·) element-wise o�-diagonal soft-thresholding
function.

5.2.3 L Step

The parallel update of L in Equation (�.�) can be written as:

Lk+1t = argmin
L

τ tr(L) + I(L � 0) + ρ

2

� ���Rk+1t − Θk+1
t + L +U k

0,t

���2
F

+ δ tT

���L −W k
1,t +U

k
3,t

���2
F
+ δ t1

���L −W k
2,t−1 +U

k
4,t−1

���2
F

�

= argmin
L

τ tr(L) + I(L � 0) + (1 + δ tT + δ t1)
ρ

2

���L −Ck
t

���2
F

= argmin
L

τ tr(L) + I(L � 0) + (1 + δ tT + δ t1)
ρ

2

�����L − Ck
t +C

k�
t

2

�����
2

F
(�.��)

where

Ck
t =

Θk+1
t − Rk+1t −U k

0,t + δ tT (W1,t −U3,t ) + δ t1(W2,t−1 −U4,t−1)
1 + δ tT + δ t1

.
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Note that the last equality in (�.��) follows from the symmetry of L. The solution
to Problem (�.��) is (Ma, Xue, and Zou, ����):

Lk+1t = V k ẼV k�,

where V kEkV k� is the eigenvalue decomposition of Ck
t , and

Ẽj j = max
�
Ekj j −

τ

ρ(1 + δ tT + δ t1)
, 0

�
.

5.2.4 Z andW Step

The dual variablesZ andW enforce the network to behave in time consistently
with the choice of Ψ and Φ, respectively. Z is the dual variable of Θ whileW
is the dual variable of L. The update of Z andW are similar, so this section
will cover both of them.

The dual variable Z is de�ned as (Z1,Z2). Such matrices are not separable
in Equation (�.�), thus they must be jointly updated. The update of Z in
Equation (�.�) can be rewritten as:

�
Zk+1
1,t

Zk+1
2,t

�
= argmin

Z1,Z2

β Ψ(Z2 − Z1) +
ρ

2

���Θk
t − Z1 +U

k
1,t

���2
F

+
ρ

2

���Θk
t+1 − Z2 +U

k
2,t

���2
F
.

(�.��)

Let Ψ̂
�
Z1
Z2

�
= Ψ(Z2 − Z1). Then, Problem (�.��) can be solved with an unique

update (Hallac et al., ����):
�
Zk+1
1,t

Zk+1
2,t

�
= prox β

ρ Ψ̂(·)

� �
Θk
t +U

k
1,t

Θk
t+1 +U

k
2,t

� �
.

The same holds for theW step. The update ofW becomes:
�
W k+1

1,t
W k+1

2,t

�
= argmin

W1,W2

η Φ(W2 −W1) +
ρ

2

���Lkt −W1 +U
k
3,t

���2
F

+
ρ

2

���Lkt+1 −W2 +U
k
4,t

���2
F
.

(�.��)

Let Φ̂
�
W1
W2

�
= Φ(W2 −W1). Hence, the proximal operator for the update of

W1,t andW2,t becomes:
�
W k+1

1,t
W k+1

2,t

�
= prox η

ρ Φ̂(·)

� �
Lkt +U

k
3,t

Lkt+1 +U
k
4,t

� �
.

For the particular derivation of di�erent proximal operators, see (Hallac et al.,
����).
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5.2.5 Termination Criterion

According to (Boyd et al., ����), the algorithm is said to converge if the primal
and dual residuals are su�ciently small, i.e., if �rk �22 ≤ ϵpri and �sk �22 ≤ ϵdual.
At each iteration k > 2 these values are computed as follows:

�rk �22 = �Rk − Θk + Lk �2F + �P1Θk − Zk
1 �2F + �P2Θk − Zk

2 �2F
+ �P1Lk −W k

1 �2F + �P2Lk −W k
2 �2F

�sk �22 = ρ
��Rk − Rk−1�2F + �Zk

1 − Zk−1
1 �2F + �Zk

2 − Zk−1
2 �2F

+ �W k
1 −W k−1

1 �2F + �W k
2 −W k−1

2 �2F
�

ϵpri = c + ϵ rel max
�
D1,D2

�
ϵdual = c + ϵ relρ

�
Dk
3
�

where c = ϵabsd(5T − 4)1/2, ϵabs and ϵ rel are arbitrary tolerance parameters,
and ���Dk

1

���2
F
= �Rk �2F + �Zk

1 �2F + �Zk
2 �2F + �W k

1 �2F + �W k
2 �2F ,���Dk

2

���2
F
= �Θk − Lk �2F + �P2Θk �2F + �P1Θk �2F + �P2Lk �2F + �P1Lk �2F ,���Dk

3

���2
F
= �U k

0 �2F + �U k
1 �2F + �U k

2 �2F + �U k
3 �2F + �U k

4 �2F .

5.2.6 Varying ρ

The parameter ρ can be updated at each iteration with the following schema:

ρk+1 =



τ incrρk if �rk �2 > µ�sk �2
ρk/τ decr if �sk �2 > µ�rk �2
ρk otherwise,

where µ > 1, τ incr > 1, τ decr > 1 are parameters of the algorithm, speci�ed in
advance. This has been shown to improve convergence in practice (Boyd et al.,
����). Also, when employing a varying penalty ρ with the scaled ADMM form,
the scaled dual variablesU are rescaled after updating ρ.

5.3 Experiments

Extensive experiments on synthetic data assessed the performance of the
method in terms of structure recovery andmeasure of latent variables in�uence.
The performance of LTGL was evaluated with respect to the ground truth
and to state-of-the-art methods for graphical inference. In particular, two
particular aspects of LTGL were assessed, that are modelling performance and
scalability, in separated experiments. Modelling performance was estimated
by comparing the inferred graphical model to the true network underlying
the data set. The scalability experiment, instead, assessed the computational
time for convergence needed for increasing problem complexity.
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5.3.1 Modelling Performance

The modelling performance of LTGL was evaluated on two synthetic data
sets. The ground truth sets of matrices Θ = (Θ1, . . . ,ΘT ) and L = (L1, . . . , LT )
were obtained by perturbing initial matrices Θ1 and L1, according to a speci�c
behaviour for T − 1 times, guaranteeing that Θt − Lt � 0 and Lt � 0 for
t = 1, . . . ,T . The initial matrices were generated according to (Yuan, ����),
following the form (�.��). Θ1 and L1 correspond to ΘO and ΘOHΘ

−1
H ΘHO , re-

spectively, with ΘH identity matrix and ΘHO = Θ�
OH . Note that, since ΘH has

full rank, the number of latent variables is H . In particular, for d observed vari-
ables, n samples andT timestamps, I generated a data setX ∈ (Rn×d )T sampled
from T multivariate normal distributions Xt ∼ Nt (0, Σt ), for i = 1, . . . ,T , and
Σ−1
t = Θt − Lt .

5.3.1.1 �22 Perturbation (p2)
The �rst data set was generated by perturbing the initial matrices with a
random matrix of small �22 norm. This perturbation assumes the di�erences
between two consecutive matrices to be small and bounded over time, i.e.,
�Θt −Θt−1�F ≤ ϵ for i = 2, . . . ,T . The bound ϵ on the norm is chosen a priori.
The update of Lt is done maintaining consistency with the theoretical model

where Lt = ΘOH ,tΘ
�
OH ,t . Indeed, the update adds a random matrix with a

small norm to ΘOH ,t−1. In this way, the rank of Lt remains the same as the
number of latent variables and constant over time. Data were generated in
R100 with 10 time stamps, conditioned on 20 latent variables. For each time
stamp, 100 samples were drawn from the distribution. For this reason, in this
setting, the contribution of latent factors is predominant with respect to the
network evolution in time.

5.3.1.2 �1 Perturbation (p1)
A second data set was generated according to a di�erent perturbation model.
Here, the precision matrix was updated by randomly choosing an edge and
swapping its state, i.e., by removing or adding a connection between two
variables. This allows for a �1-norm evolutionary pattern of the network. Data
were generated in R50 with 100 time stamps, conditioned on 5 latent variables.
For each time stamp, 100 samples were drawn from the distribution. In this
setting, the time consistency a�ects the network more than the latent factor
contribution.

5.3.1.3 Scores

LTGL was evaluated using di�erent scores measuring the divergence of the
results from the ground truth. In particular, the performance was evaluated
in terms of F1 score, accuracy, mean rank error and mean squared error. Let
true/false positive be the number of correctly/incorrectly existing inferred

��
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����� �.�. Performance in terms of F1 score, accuracy (ACC), mean rank error (MRE)
and mean squared error (MSE) of LTGL with respect to TVGL, LVGLASSO
and GL. LTGL and TVGL are employed with both �22 and �1 penalties, to
show how the prior on the evolution of the network a�ects the outcome.

perturbation method score
F1 ACC MRE MSE

�22 (p2)

LTGL (�22) 0.926 0.994 0.70 0.007
LTGL (�1) 0.898 0.993 0.70 0.007
TVGL (�22) 0.791 0.980 - 0.003
TVGL (�1) 0.791 0.980 - 0.003
LVGLASSO 0.815 0.988 2.80 0.007
GL 0.745 0.974 - 0.004

�1 (p1)

LTGL (�22) 0.842 0.974 0.29 0.013
LTGL (�1) 0.880 0.981 0.28 0.013
TVGL (�22) 0.742 0.950 - 0.009
TVGL (�1) 0.817 0.968 - 0.009
LVGLASSO 0.752 0.964 0.74 0.013
GL 0.748 0.951 - 0.007

edges, true/false negative the number of correctly/incorrectly missing inferred
edges (Hecker et al., ����). The scores were computed as follows:

• F1 score: indicates the quality of structure inference, as the harmonic
mean of precision and recall.

• Accuracy (ACC): evaluates the number of true existing and missing con-
nections in the network correctly inferredwith respect to the total number
of connections.

• Mean rank error (MRE): estimates the precision on the number of inferred
latent variables, based on the rank of the set of matrices L̃ in relation to
the ground truth. The MRE score is de�ned as:

MRE = 1
T

T�
t=1

��rank(Lt ) − rank(L̃t )
��.

A value close to 0 means that LTGL is inferring the true number of
latent variables over time, while, viceversa, a high value indicates a poor
consideration of the contribution of the latent variables.

• Mean squared error (MSE): scores how close is the inferred precision
matrix Θ̃ to the ground truth, in terms of the Frobenius norm:

MSE = 2
Td(d − 1)

T�
t=1

���Θ(u)
t − Θ̃(u)

t

���2
2
,

where Θ(u) denotes the upper triangular part of Θ.
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5 Latent Variable Time-Varying Network Inference

������ �.�. Distribution of inferred ranks over time. For each method that considers
latent variables, I report the frequency of �nding a speci�c rank during
the network inference. The vertical line indicates the ground truth rank,
around which all detected ranks lie. Note that, in (p2), Lt ∈ R100×100, so
the range of possible ranks is [0, 100]. For (p1), Lt ∈ R50×50, hence the
range is [0, 50].

������ �.�. Scalability comparison for LTGL in relation to other ADMM-based meth-
ods. The compared methods are initialised in the same manner, i.e., with
all variable interactions (not self-interacting) set to zero. The compu-
tational time required for hyper-parameters selection is ignored. For
LVGLASSO and TVGL, their relative original implementations were
used. LTGL outperforms the other methods for each increasing time and
dimensionality of the problem.

5.3.1.4 Discussion

Table �.� shows the performance of LTGL compared to graphical lasso
(GL) (Friedman, Hastie, and Tibshirani, ����), latent variable graphical lasso
(LVGLASSO) (Chandrasekaran, Parrilo, and Willsky, ����; Ma, Xue, and Zou,
����) and time-varying graphical lasso (TVGL) (Hallac et al., ����) in terms
of F1 score, accuracy, mean rank error (MRE) and mean squared error (MSE),
for both settings with �22 (p2) and �1 (p1) perturbation. Note that MRE is not
available for all the methods since neither GL nor TVGL consider latent factors.
LTGL and TVGL are used with two temporal penalties according to the dif-
ferent perturbation models of data generation. This shows how the correct
choice of the penalty for the problem at hand results in a more accurate net-
work estimation. In both (p2) and (p1), LTGL outperforms the other methods
for graphical modelling. In (p2), in particular, LTGL correctly infers almost
99, 5% of edges in all the dynamical network both with the �22 and �1 penal-
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ties. Nonetheless, the use of �22 penalty enhance the quality of the inference
as expected from the theoretical assumption made during data generation.
The choice of a proper penalty for the problem and the consideration of time
consistency is re�ected also in a low MRE, which encompasses LVGLASSO
ability in detecting latent factors (Figure �.�). In (p2), in fact, the number of
latent variables with respect to both observed variables and samples is high.
Therefore, by exploiting temporal consistency of the network, LTGL is able to
improve the latent factors estimation. Simultaneous consideration of time and
latent variable also positively in�uences the F1 score, i.e., structure detection.

Above considerations also hold for the (p1) setting. Here, LTGL achieves the
best results in both F1 score and accuracy, while having a low MRE. The adop-
tion of �1 penalty improves structure estimation and latent factors detection,
consistently with the data generation model. Such settings were designed to
show how the prevalence of latent factors contribution or time consistency
a�ects the outcome of a network inference method. In (p2), where the latent
factors contribution is prevalent, network inference is more precise when
considering latent factors. In (p1), instead, the number of time points is more
relevant than the contribution of latent factors, hence it is more e�ective
to exploit time consistency (both for latent and observed variables), evident
from the results of Table �.�. LTGL bene�ts from both aspects, leading to a
noticeable improvement of the graphical modelling.

5.3.2 Scalability

This section shows a scalability analysis using LTGL with respect to di�er-
ent ADMM-based solvers. I evaluated the performance of LTGL in relation
to LVGLASSO and TVGL, both implemented with closed-form solutions to
ADMM subproblems. In general, the complexity of the three compared solvers
is the same (up to a constant). The implementation of GL was not included in
such experiment, since it is not based on ADMM but on coordinate descent
hence not comparable to LTGL. As in Section �.�.�, I generated di�erent data
sets X ∈ (Rn×d )T with di�erent values of T and d . In particular, d ∈ [10, 400)
andT = {20, 50, 100}. Experiments ran on a machine provided with two CPUs
(�.� GHz, � cores each).

Figure �.� shows, for the three di�erent time settings, the scalability of the
methods in terms of seconds per convergence considering di�erent number
of unknowns of the problem (i.e., 2T d (d+1)

2 with d observed variables and T
times). In all settings, LTGL outperforms LVGLASSO and TVGL in terms of
seconds per convergence. In particular, the computational time for convergence
remains stable disregarding the number of time points under consideration. I
emphasise that the most computationally expensive task performed by LTGL
solver consists in two eigenvalue decompositions, with a complexity of O(d3),
to solve both R and L steps (Section �.�).
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5.3.3 Model Selection

The hyper-parameters of the method have been selected by using a Monte
Carlo cross-validation (MCCV) procedure (Section �.�.�). For each hyper-
parameter combination, the model was trained on the learning set and the
likelihood of the model was estimated on the independent test set. Formally,
the score is de�ned as follows:

score =
T�
t=1

log-likelihood(S tst ,Θt − Lt ). (�.��)

The choice of hyper-parameters is based on the average maximum likelihood
of the model across multiple splits of the data set.

However, the number of possible combinations of LTGL hyper-parameters
can be arbitrarily large. In order to avoid the assessment of a grid of models
(which can be computationally expensive), the choice of the best combination
of hyper-parameters for each analysed data set relies on a Gaussian process-
based Bayesian optimisation procedure, based on the expected improvement
strategy (see Section �.�.�) (Snoek, Larochelle, and Adams, ����). In practice,
assuming the dynamics of a real system to be unknown, it is possible to select
the most appropriate temporal penalty by exploiting the same principles, i.e.,
via a model selection procedure based on the likelihood of di�erent temporal
models.

5.4 Applications to Real Data

I applied LTGL to two real data sets, to show how the method can be employed
to infer useful insights on multivariate time-series data. These data sets meas-
ure complex dynamical systems of di�erent (biological and �nancial) nature,
which are usually highly dimensional and feature complicated interdepend-
ences between variables. This fact makes them ideal candidates for an analysis
using graphical models.

5.4.1 Metabolomic Data

The physiology of Escherichia coli necessitates rapid changes of its cellular
and molecular network to adapt to environmental conditions. E. coli is widely
studied because of the e�ciency in its system response to perturbation. Fol-
lowing the analysis of (Jozefczuk et al., ����), I used LTGL on E. coli data to
infer network modi�cations across di�erent time points evaluated before and
after the application of environmental condition perturbations. I analysed the
behaviour of metabolites, which have been shown to change consistently after
the perturbation. Samples underwent one of two types of stress, namely cold
and heat stress.
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5.4.1.1 Perturbation Response Detection

I inferred the dynamical network of E. coli metabolites using LTGL with a
group lasso (�2) penalty on latent variable contribution and a Laplacian (�22)
penalty on the observed network. In this way, latent variables (which, in the
model, could represent the stress or other factors) are allowed to change their
global in�uence at a speci�c time point, while remaining stable in all others.
At the same time, by conditioning the network on the latent variables, the
observed network structure is allowed to change smoothly in time. Hence,
we expect to see a global shift of the network between the second and third
time points, that is when the perturbation has been introduced in the system.
Figure �.� (a) shows the temporal deviation between time points, both for Θ, L
and the total observed system R = Θ − L. Latent variables temporal deviation
reaches a peak at time t2−3, right after the application of the perturbation
to the system. Instead, the di�erence between consecutive Θs remains more
stable. Consistently, the di�erence between the observed networks R shows a
major change at the same time point. Hence we can distinguish the underlying
evolving structure of metabolites while detecting the contribution of the latent
variables which a�ect mostly the total system. In accordance with (Jozefczuk
et al., ����), the result shows a interaction between isoleucine, threonine,
phenylalanine and �-aminobutyric acid during the adaptation phase following
the stress response (Figure �.�, b). Hence, I can conclude that LTGL successfully
inferred a dynamical network which adjusts in response to perturbation, in
accordance with the prior knowledge about E. coli behaviour.

5.4.2 Stock Market

Finance is another example of a complex dynamical system suitable to be
analysed through a graphical model. Stock prices, in particular, are highly
related to each other and subject to time and environmental changes, i.e., events
that modify the system behaviour but are not directly related to companies
share values (Bai and Ng, ����). Such environmental changes could be seen as
latent variables that act on the system without being actually part of it. Here,
the assumption is that each company, while being part of a global �nancial
system, is directly dependent from only a subset of others. For example, one can
reasonably expect that stock prices of a technology company are not directly
in�uenced by trend of companies on the primary sector. The modelling power
of LTGL allows to detect both the evolution of relations between companies
and environmental changes happening at a particular time point. In order to
show this, I analysed stock prices� during the �nancial crisis of ����–����.
The experiment was designed to consider the latent in�uence of the market
drop on technology companies interactions.

�Data are freely available on https://quantquote.com/historical-stock-data.
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������ �.�. Structure change of E. colimetabolites subject to stress. The perturbation
happens between time t = 2 and t = 3 (vertical dotted line). (a) Temporal
deviation where each point represents the di�erence between the net-
work at subsequent time points. The highest deviation on the observed
network R appears when the stress was applied. This can be decomposed
into two parts, the latent factors L and the underlying structure of ob-
served variables Θ. (b) Structural changes of metabolites interactions
before and after the perturbation.

5.4.2.1 Global Market Crisis Detection

I used a group lasso (�2) penalty to detect global shifts of the network. Figure �.�
shows two major changes in both components of the network (latent and
observed), in correspondence of late ���� and late ����. In particular, during
October ���� a global crisis of the market occurred, and this e�ect is especially
evident for the shift of latent variables. Also, the observed network changes in
correspondence of the latent variables shift or immediately after, caused by the
e�ect of the crisis on the stock market. The latent factors in�uence explains
how the change of the network was due to external factors that globally
a�ected the market, and not to normal evolution of companies relationships. I
further investigated on the causes for the �rst shift. Indeed, I found that in late
���� it happened a drop of a big American company that was later pointed
out as the beginning of the global crisis of the following year.

5.5 Discussion

This chapter proposes a novel method for graphical modelling of multivariate
time-series. The model considers simultaneously the contribution of latent
factors and time consistency in evolving systems. Indeed, such work is an
attempt to generalise both latent variable and dynamical network inference.
To this aim, the model imposes prior knowledge on the problem through
penalty terms that force precision and latent matrices to be consistent in
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������ �.�. Temporal deviation for stock market data. Two peaks are observable,
in correspondence of late ���� and late ����, when the �nancial crisis
happened.

time. The choice of proper penalty terms maintains the convexity of the
minimised functional and, along with the coercivity given by the regularisers,
it guarantees global convergence of the proposed minimisation algorithm.
Extensive experiments illustrate the ability of LTGL for the graphical modelling
of synthetic and real-world data, where the possibility to decompose the total
network into two separated components allows for a better understanding of
the underlying phenomenon.
From a computational point of view, the choice of ADMM allows for a

separable algorithm, where its steps have closed-form solutions. ADMM is an
optimisation algorithm which can be easily implemented to run in parallel
or even in a distributed system. At the moment, the implementation relies
only on single-machine parallelisation, but further extensions may involve
distribution on multiple computing machines. Nonetheless, the existing im-
plementation is fast and scalable, as based on highly optimised libraries for
numerical computation.

The proposed framework is modular in the choice of the penalties, allowing
for precise modelling of di�erent and complex behaviours of the system. This
allows for a straightforward inclusion of additional penalty terms, based on the
prior knowledge on the problem at hand. Possible extensions would involve
alternative evolutionary models for di�erent complex systems, e.g., forcing
subgroups of variables to behave consistently in time (Bolstad, Van Veen, and
Nowak, ����).
These could lead to interesting results in time-series clustering and pat-

tern discovery. Such developments may increase the expression power of the
method, leading to advances in data mining and to potential applications in
diverse science �elds.
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Part III

Applications

Recent advances on time-series graphical modelling can be used in real con-
texts, in particular for biomedical data, which o�ers a challenging framework
for the graphical inference methods. This part includes the work developed
by exploiting temporal graphical models as described in Chapters � and �. In
particular, such methods were applied on breast invasive carcinoma RNA-seq
data set (Chapter �) and on haematopoietic stem cells (Chapter �). Part of the
work of Chapter � is included in (Tomasi, Squillario, and Barla, ����).
Chapter � shows an application of Wishart processes for epilepsy data. Part of
such chapter, in particular Section �.�, is included in (D’Amario et al., ����).
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6 Breast Cancer Evolution

Understanding molecular variables which discriminate a set of clinical out-
comes is not su�cient to exhaustively explain the molecular mechanisms that
lead to di�erent biological conditions. In fact, the interplay and interaction of
molecular variables plays a key role in characterising a clinical outcome.
Usually, a set of variables which are able to characterise the biological

conditions under analysis is identi�ed, and then enrichment analysis is used a
posteriori for a functional assessment of selected variables. In this case, prior
knowledge on the interplay of such variables (i.e., involvement in a common
pathway) validates the result (by means of functional characterisation) instead
of leading the analysis from the start.

This approach has some drawbacks. Misguided variable selection and clas-
si�cation procedures may include false hits, or, even worse, exclude variables
potentially relevant in the biological context under analysis. In particular, this
may happen when variables are not important per se, but may be deemed
biologically relevant if considered within a molecular module. Also, when the
number of samples is low compared to the number of variables the use of prior
knowledge on the problem plays a fundamental role to direct the analysis and
obtain a reliable model for the data at hand.

Motivation

Prior biological knowledge can be e�ectively exploited to learn the statistical
model underlying the data, guaranteeing the non-exclusion of variables that
are biologically relevant to the analysed disease (Zycinski et al., ����). Such
procedure may improve the variable selection and classi�cation phase, by
assigning importance to variables given prior biological knowledge.

A situation where the use of prior information has a key role for a reliable
inference of a statistical model is in the context of graphical models. Graphical
modelling of time-series data allow to understand how interactions between
variables evolve over time.

In many real cases data do not correspond directly to time-series, meaning
that the number of samples does not derive from a consecutive sampling
of the same measured variables. However, samples can be considered in an
appropriate ordering based on pseudotime, that is an arbitrary ordering to
model, for example, an evolutionary progression.

Consider biological data, for which samples are associated to the information
on the stage of a particular disease. In this context, a reasonable assumption
is that samples belonging to a certain stage of progression of the disease
may develop subsequent stages of the same disease. Hence, the idea is to
use algorithms designed for time-series data also with samples following a
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pseudotemporal ordering, where assumptions on the data distribution at each
time-step still hold.

Contribution

This chapter comprises two data analysis pipelines for the identi�cation of
meaningful signalling pathways, reconstruction and quantitative assessment
of the networks corresponding to the molecular variables in di�erent tumour
progression stages. Both pipelines exploit explicit prior knowledge on the
problem, considering the information coming from signalling pathways during
the learning phase.
After, groups of variables relevant for the problem are analysed using

both pairwise network inference and graphical modelling methods, namely
ARACNE (Margolin et al., ����) and the latent variable time-varying graphical
lasso (Chapter �), to assess their evolving interactions during the di�erent
biological conditions.
A main di�erence between the pipelines regards the consideration of the

di�erent stages of the disease. The �rst pipeline, detailed in Section �.�, regards
the stages as di�erent classes of the disease, interpreting the learning task
as a multiclass classi�cation. For each pathway speci�ed a priori, a logistic
regression model estimates the relevance of the pathway for the learning
task. Then, the pipeline infers a list of the most informative pathways, before
using such pathways for the next network inference task. A limitation of such
pipeline, however, is that pathways (as inferred by the resampling strategy)
are di�cult to assess, given the dependency of performance on the number of
repetitions of the experiment and on the metric employed.

The second learning pipeline (Sections �.�.� and �.�.�) makes explicit use of
the temporal ordering which allows to use the graphical models for time-series
analysis developed in Chapter �. Also, instead of relying on di�erent learning
tasks for each pathways (Section �.�), this pipelines interprets the pathway
selection as a regularisation task, exploiting the �1-norm to restrict the model
to include only relevant pathways able to discriminate between the classes of
samples, in such a way to select relevant pathways for the learning task at
once.

Outline

The rest of the chapter is organised as follows. Section �.� introduces the data
considered in the analysis. Section �.� describes the �rst learning pipeline,
based on a multiclass learning problem for pathway selection and pairwise
network inference. Section �.� describes the second pipeline, composed of a
pathway selection step using the group lasso with overlap (Section �.�.�) and
a graphical modelling step used for a classi�cation task (Section �.�.�), and
the results obtained on the breast invasive carcinoma data set (Section �.�.�).
Section �.� concludes with a summary of the pipelines described in this chapter.
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N0 ER+ N1−2 ER− N3 ER−

������ �.�. Knowledge driven graphical inference pipeline. The data set X is divided
based on the p pathways. After the model assessment step, the most
performing pathways are selected to generate a network of interactions
that model the system for each class of samples.

6.1 Breast Invasive Carcinoma

This chapter considers a RNA-seq data set� of breast invasive carcinoma
(BRCA), consisting of d = 20501 gene expression measures of n = 822 patients.
Samples belong to eight di�erent classes, based on their clinical information.
Patients are identi�ed based on estrogen receptor positive (ER+) or negative
(ER-). Each group is further divided into four classes, based on the lymph node
involvement of their disease (N�–N�).
Information on 1859 (human) signalling pathways is extracted from Re-

actome (Fabregat et al., ����), a curated and peer-reviewed pathway database.

6.2 Knowledge Driven Network Inference

This learning pipeline consists in two steps:

(a) a pathway selection step, and

(b) a network inference based on the most informative pathways.

Pathways were selected based on their discriminative power for the di�erent
classes. The multiclass problem was managed using a one-vs-rest scheme, that
is, a binary classi�cation problem for each class against the others. For each
pathway, a learning machine consisting of a regularised logistic regression
model with �1 or �2 penalty (based on the dimensionality of the pathway) was
iteratively �t, validated and tested via a model assessment framework based on
MCCV (Barbieri et al., ����). This procedure estimated repeated learning and
test scores. The robustness of the system is tested against chance, by means of
a random label permutation and re-evaluation of the procedure. The procedure
compares the resampled distribution to the random distribution by means of a
nonparametric Wilcoxon signed-rank test (Everitt, ����). Figure �.� shows an
overview of the pipeline.
The choice of a sparsity-enforcing classi�er (via the �1 penalty) allows to

have a list of most selected variables which are important to discriminate out-
put classes. In particular, sparse models assumes that the quantity of interest

�Part of TCGAPancan project, available at https://www.synapse.org/#!Synapse:syn1461151
(last visited: Nov. ��th, ����).
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������ �.�. Network inference on �� selected variables of Kinesins pathway
(R-HSA-������) for BRCA-a�ected patients based on the estrogen re-
ceptor and lymph node involvement.

depends only on a few relevant variables, which is often the case for biological
data. This assumption is at the basis of the construction of interpretable mod-
els, since the relevant dimensions allow for a compact, hence interpretable,
representation. For pathways which contained less than ��� variables, no
feature selection step was employed, and the �2 penalty was used. The �nal
outcome was predicted as the consensus among all di�erent estimators.
Then, a network for each relevant pathway as selected by this procedure

were inferred for each patient, using a pairwise mutual information score. In
particular, the network was generated with ARACNE (Margolin et al., ����)
on the expression of genes selected by the estimators. Two nodes are said
to interact based on their pairwise mutual information. To avoid an over-
representation of the network, edges were limited based on their weights,
setting as a threshold the average weight across all edges.
The di�erence between the networks built on di�erent classes of patients

was quantitatively assessed using the normalised Hamming network distance
(Hamming, ����).

6.2.1 Results

Among the 1859 pathways I selected those which obtained the best predictive
accuracy and the lowest p-value, indicating the signi�cance of the result and
the module under analysis.

This section reports results for the Kinesins pathway (R-HSA-������), as it
harbours groups of genes signi�cantly associated to both lymph node involve-
ment and response to estrogens (Huszar et al., ����).
Figure �.� shows an increasing number of interactions between kinesins

from N� to N� lymph node involvement stage, both for ER+ (top row) and ER-
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������ �.�. Network distances based on estrogen receptor and lymph node involve-
ment. Both dendrograms show that the aggregation of consecutive stages
occurs sequentially.

(bottom row). On average, graphs associated to ER- have a higher number of
interactions with respect to graphs associated to ER+. The distance between
networks under di�erent biological conditions were assessed by using the
Hamming network distance. In Figure �.�, a hierarchical clustering algorithm
built on such precomputed distances highlights how the network di�erences
are related to the increasing of lymph node involvement considering both ER+
and ER- groups.

Kinesin aremicrotubule-basedmotor proteins that mediate diverse functions
within the cell, including the transport of vesicles, organelles, chromosomes
and protein complexes, as well as the movement of microtubules. These pro-
teins are considered to play a central role in the regulation of mitotic events
and potential targets breast cancer therapy, among others (Kaestner and Basti-
ans, ����). This pathway contains important genes which have been associated
to breast cancer, such as KIF��A, KIF��B, TUBB�A and TUBB�C (TUBB�B).
The up-regulation of KIF��A, together with its transcription factor FOXM�,
is signi�cantly associated with poor survival and with Paclitaxel action and
resistance, a chemotherapy medication used to treat breast cancer and other
tumour types (Khongkow et al., ����). Although not as largely characterised,
KIF��B share with KIF��A the interactor FOXM�, as experimentally tested.
Results on the Kinesin pathway suggests a possible involvement of KIF��B in
the malignant progression of breast cancer. The co-occurrence of KIF��A and
KIF��B in the N� ER- graph support this hypothesis.

TUBB�A and TUBB�C genes share an annotation status similar to KIF��A
and KIF��B. This means that TUBB�A is more annotated than TUBB�C and
the up-regulation of TUBB�A, as well as KIF��A, is known to be signi�cantly
associated to Paclitaxel action and resistance (Leandro-Garcia et al., ����).
While poorly annotated, TUBB�C is known to interact with TUBB�A. Results
suggests a possible involvement of TUBB�C in the Paclitaxel action and resist-
ance, hypothesis supported by the co-occurrence of TUBB�A and TUBB�C
and in the N� ER- graph.
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6.3 Lasso-based Pathway Selection and Discriminative Analysis

A limitation of the �rst pipeline is that there is no straightforward way to
assess the pathways as inferred by the resampling strategy. Indeed, the scores
are dependent on the number of repetitions of the experiment, and on the
metric employed.
This section presents two improvements on the previous pipeline, which

aim to reliably select the most informative pathways interpreting the task
in a regularised machine learning framework, with the use of group lasso
with overlap method. Also, since samples are considered to belong to a com-
mon progression trajectory, the network inference should rely on temporal
graphical models, such as those described in Chapter �, with the possibility to
quantitatively assess the multiple inferred networks.

6.3.1 Group Lasso with Overlap

Group lasso is a method that is able to select the most relevant variables
with respect to a learning goal (Yuan and Lin, ����). Such norm allows the
speci�cation of groups of variables which need to be considered jointly. In fact,
the goal is to estimate a sparse set of groups able to discriminate between two
or more classes. As introduced in Section �.�.�, sparsity is a desired property
with real data, in particular when the number of samples are lowwith respect to
the variables. Similarly, starting from a potentially high number of groups, the
goal of the group lasso penalty is to restrict them based on their discriminative
power. When groups are not overlapping, the model assumes the form of (Yuan
and Lin, ����). Instead, in presence of overlapping groups the penalty assumes
a slightly di�erent (and more general) form, introduced in (Jacob, Obozinski,
and Vert, ����; Villa et al., ����).
Consider the general form (�.�). A �1-norm �w �1 =

�
i |wi | leads to sparse

models, but does not contain any information on groups of variables which
should be selected jointly. Hence, Jacob, Obozinski, and Vert (����) introduced
the group lasso with (possibly) overlapping groups, de�ned as follows:

ΩG(w) =
�
д∈G

��wд
�� . (�.�)

Based on the group lasso with overlapping groups one can use as a prior
information a list of pathways, which contains the variables describing BRCA
data, as in Section �.�. Such penalty is based on the �1-norm, able to enforce
sparsity in the solution. As a result, the method extracts a restricted list of
pathways, which will be the input for the next step of the second pipeline
presented in this chapter.

6.3.2 Discriminant Analysis

Understanding the structure among variables allows to improve the classi-
�cation task in the case in which the samples belong to di�erent classes. As
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such, consider the case where each class of samples have a di�erent covariance
matrix, i.e., belongs to a di�erent distribution (see also Section �.�).
Samples belong to di�erent stages of disease based on their lymph node

involvement (Section �.�). Hence, it is possible to assume underlying similarit-
ies between the distributions of the samples. With such ordering, I used the
latent variable time-varying graphical lasso method in Chapter � to estimate a
covariance matrix for each class of samples, where the β parameter is higher
than zero, thus exploiting samples of related “neighbouring” classes during
the inference of the covariance matrix.
In particular, I used latent variable time-varying graphical lasso twice, for

samples having estrogen receptor positive (ER+) and negative (ER-), that is,
belonging to separate progression trajectories. The eight covariance matrices
are assessed using a single quadratic discriminant analysis, as in Equation (�.��).
Di�erences between the networks are quantitatively assessed using the

weighted spectral distribution (WSD) distance, based on the normalised Lapla-
cian matrix of the networks and the spectral distribution of eigenvalues (Fay
et al., ����).

6.3.3 Results

The classi�cation coe�cients, as extracted from group lasso penalty, indicate
the best pathways to use for the network inference. Since the penalty is based
on the �1-norm, the number of non-zero elements (that is, the number of
groups comprising variables associated to a non-zero weight) is low compared
to the number of groups. In particular, given its formulation in Equation (�.�),
the group lasso with overlap minimises the number of groups involved in the
classi�cation without minimising the non-zero variables inside each group
(as opposed to sparse group lasso, [Friedman, Hastie, and Tibshirani, ����]),
because of the presence of the �2-norm.
Table �.� contains the list of the pathways as found by group lasso with

overlap along with their score, measured as the average weight (in absolute
value) assigned to the proteins contained in the pathway for the classi�cation
task (discriminating ER+/ER-), and the number of variables included in the
pathway.

The pathways selected by the group lasso procedure for the binary classi�ca-
tion task (Table �.�) include R-HSA-������ (Kinesins), selected as relevant also
by the �rst pipeline. Here it assigned to the last position, with the least average
weight as assigned by group lasso. Since this pathway was indeed selected by
both procedures, it will be used to compare the following analysis to the �rst
pipeline (Section �.�). I used the latent variable time-varying graphical lasso
on samples belonging to both ER+ and ER- classes, in such a way to maximise
the classi�cation score in Equation (�.��).
Figure �.� shows the networks for the di�erent classes as estimated by

LTGL (�.�a) and ARACNE (�.�b). Then, Equation (�.��) on left out samples (as a
test data set) assigned a performance score based on the precision matrices as
found by LTGL and ARACNE, respectively. Table �.� contains an overview of

��
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����� �.�. Pathway selected by group lasso with overlap (classi�cation task ER+/ER-),
with their score and number of proteins associated.

pathway average weight cardinality

R-HSA-������� 9.18e−03 24
R-HSA-������ 7.23e−03 38
R-HSA-������� 6.74e−03 40
R-HSA-������� 5.66e−03 35
R-HSA-������ 3.34e−03 23
R-HSA-������ 3.21e−03 21
R-HSA-������ 2.90e−03 22
R-HSA-������ 2.76e−03 50
R-HSA-������ 2.33e−03 60
R-HSA-������� 2.19e−03 54
R-HSA-������� 1.72e−03 36
R-HSA-������ 1.54e−03 39
R-HSA-������ 1.54e−03 39
R-HSA-������ 1.46e−03 55
R-HSA-������� 1.40e−03 25
R-HSA-������ 1.40e−03 25
R-HSA-������� 1.40e−03 25
R-HSA-������ 6.44e−04 42
R-HSA-������ 2.80e−04 56

the pathways analysed with their multi-class performance metrics (accuracy
and F1-score). The F1-score is calculated for each label and averaged weighting
by support (the number of true instances for each label).

The Kinesins pathway (R-HSA-������) achieves one of the best classi�cation
scores when considering LTGL, as opposed to ARACNE. While both pipelines
highlighted such pathway as interesting, Table �.� shows the clear advantage in
using a temporal graphical model (and also latent factors) during the inference
of the networks at each stage of the disease.

Table �.� highlights another pathwaywith the highest weight score, meaning
that all of the variables have, on average, the highest weights as assigned
by group lasso, namely R-HSA-������� (Nuclear signaling by ERBB�). Such
pathway was not in precedence selected by the selection procedure described
in Section �.�. A lot of recent studies highlight the relevance of ERBB� in
breast cancer (Chuu et al., ����; Hollmén et al., ����; Kim et al., ����; Sahu
et al., ����; Sundvall et al., ����), indicating an enhanced ERBB� processing in
breast cancer tissue. Also, empirical observations demonstrate a relation (and
coregulation) between estrogen receptor and ERBB� in breast cancer (Hollmén
et al., ����; Zhu et al., ����). These observations are in line with the group
lasso results, where the task was to discriminate between ER+ and ER- patients.
Notably, down-regulation of ERBB� in ER+ breast cancer cell lines inhibits
colony formation, while no e�ects were observed in ER- cell lines (Tang et al.,
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����� �.�. Top �� pathway selected by group lasso with overlap (classi�cation task of
ER+ between N�, N�, N� and N�), with their score and number of proteins
associated.

pathway average weight cardinality

R-HSA-������ 1.81e−03 21
R-HSA-������� 1.45e−03 54
R-HSA-������� 1.17e−03 36
R-HSA-������ 1.07e−03 22
R-HSA-������ 9.69e−04 60
R-HSA-������� 8.54e−04 57
R-HSA-������ 7.44e−04 26
R-HSA-������ 7.43e−04 50
R-HSA-������ 7.18e−04 38
R-HSA-������ 6.79e−04 34

����� �.�. Top �� pathways selected by group lasso with overlap (classi�cation task
of ER- between N�, N�, N� and N�), with their score and number of
proteins associated.

pathway average weight cardinality

R-HSA-������� 5.38e−03 59
R-HSA-������� 4.55e−03 54
R-HSA-������� 4.41e−03 44
R-HSA-������� 4.35e−03 36
R-HSA-������ 3.87e−03 21
R-HSA-������� 3.05e−03 43
R-HSA-������� 2.89e−03 58
R-HSA-������ 2.67e−03 36
R-HSA-������� 2.53e−03 21
R-HSA-������ 1.92e−03 60

����).
Based on R-HSA-������� pathway I analysed data with the latent variable

time-varying graphical lasso method. Network between proteins in the path-
way were validated using the classi�cation score in Equation (�.��). Prediction
scores on test data are contained in Table �.�.
Figure �.� shows the networks for the di�erent classes as estimated by

LTGL (�.�a) and ARACNE (�.�b). Consistently with the group lasso results,
estimated networks by LTGL show visible di�erences between ER+ with ER-
(average WSD network distance 0.079), while di�erences among the networks
belonging to the same ER class are less evident (averageWSD network distance
0.074). On the contrary, di�erences as estimated by ARACNE are negligible in
both cases (average distance between ER+ and ER-: 0.007, average distance
among ER+ and among ER-: 0.008).
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����� �.�. Performance score associated to the precision matrices estimated by LTGL
and ARACNE, based on accuracy and F1-score. The F1-score is calculated
for each label and averaged weighting by support (the number of true
instances for each label). The results are computed for one split of the data
set. For such particular split, a dummy classi�er has F1-score = 1.8e−01
and accuracy = 1.7e−01 (averaged on 50 repetitions). Hence, ARACNE
classi�cation results are below the dummy classi�er. Instead, networks as
inferred by LTGL can be used to e�ectively classify test samples.

pathway ARACNE LTGL
accuracy F1-score accuracy F1-score

R-HSA-������ 1.30e−02 3.71e−04 4.29e−01 3.69e−01
R-HSA-������� 5.19e−02 3.15e−02 4.42e−01 3.07e−01
R-HSA-������ 5.19e−02 5.96e−03 2.73e−01 2.35e−01
R-HSA-������ 1.30e−02 4.40e−04 4.16e−01 3.62e−01

Table �.� highlights another selected pathway that has the highest num-
ber of variables and an high weight score, namely R-HSA-������ (O-linked
glycosylation of mucins). Interestingly, recent studies highlights the relev-
ance of R-HSA-������ pathway in breast cancer, since mechanisms involving
proteins in the pathway can contribute to tumour growth and progression
(Burchell et al., ����; Dimitro�, ����; Mukhopadhyay et al., ����; Vojta et al.,
����). Such pathway emerges as relevant in all considered tasks, and it has
high performance score using LTGL with respect to ARACNE (Table �.�).

Finally, Figure �.� shows the networks for the di�erent classes as estimated
by LTGL (�.�a) and ARACNE (�.�b) based on the R-HSA-������ (Aquaporin-
mediated transport). Such pathway did not emerge as signi�cant by the selec-
tion procedure described in Section �.�. Interestingly, recent studies highlights
the relevance of R-HSA-������ pathway in breast cancer since Aquaporins
(�–�) have been linked to cancer invasion and metastasis, even though their
mechanisms remain unclear (De Ieso and Yool, ����; Marlar et al., ����; Satooka
and Hara-Chikuma, ����; Zhu et al., ����). Recent clinical studies suggested, in
particular, the relevance of Aquaporin-� in tumour progression and prognosis
of other malignant cancers, such as colorectal (Li et al., ����) and hepatocellu-
lar carcinoma (Guo et al., ����). However, the study in this chapter does not
include positive and negative samples. Hence, such pathway does not emerge
as relevant possibly because diverse genes included in R-HSA-������ pathway
(such as Aquaporins � and �) exhibit expression changes only between car-
cinoma tissue compared with normal tissue. Nonetheless, using restricting
variables to Aquaporins pathway allow to discriminate the di�erent classes
of samples available maximising the classi�cation score in Equation (�.��),
as shown in Table �.�. Indeed, the R-HSA-������ pathway includes lots of
genes that are linked to malignant tumour stages. Such genes are seen as
markers that is, the stronger is the lymph node involvement, the higher is
their inter-dependence, as seen in Figure �.�. While N� and N� include a small
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number of links between such genes, the network becomes more connected in
N� and N�.

6.4 Discussion

In contexts where the number of samples is low in contrast to the number of
variables (a common situation when working with biological data), the use
of prior information on the data set at hand a priori to direct the analysis
represents an e�ective strategy, instead of relying on it for validation of the
results.
The information on the groups of variables (for example, corresponding

to nodes of biological pathways) allows to uncover structures under devel-
opment or evolution. Such di�erences between stages of a disease may also
be quantitatively addressed by the use of network distances or classi�cation
scores, based on a discriminant analysis.
Both pipelines described in this chapter allow to reconstruct networks

of gene interactions based on di�erent biological conditions. Selecting the
relevant modules only partially sheds light on the phenomenon under study. In
particular, the interplay among variables within the same module may change
when considering di�erent biological conditions. In this context, network
inference methods are powerful tools that allow to depict the evolution of the
module. The inference of a di�erent network at each stage of the disease, and
moreover considering an evolutionary pattern of the variables, paves the way
to a more in-depth understanding of how the evolution of the disease a�ects
the interplay among variables involved in speci�c pathways, which can be
e�ectively interpreted and exploited in clinical contexts.
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(�) Graphical models for BRCA as estimated by latent variable time-varying graphical
lasso.
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(�) Networks for BRCA as estimated by ARACNE.

������ �.�. Results for the network inference estimated by latent variable time-
varying graphical lasso (�.�a) and ARACNE (�.�b) for the R-HSA-������
(Kinesins) pathway.
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(�) Graphical models for BRCA as estimated by latent variable time-varying graphical
lasso.

ER+ N0 ER+ N1 ER+ N2 ER+ N3

ER- N0 ER- N1 ER- N2 ER- N3

NRG2

EREG

NCOR1
ESR

1S1
00

BCS
N

2

PG
R

G
FAPBTC

STAT5A
YAP1

CXCL12

PSEN2

NRG3

ADAM17

NRG1

AP
H1

B

N
RG

4 N
CSTN

APH
1A

HBEGF

TAB2

PSENEN

WWOX

NRG2

EREG

NCOR1
ESR

1S1
00

BCS
N

2

PG
R

G
FAPBTC

STAT5A
YAP1

CXCL12

PSEN2

NRG3

ADAM17

NRG1

AP
H1

B

N
RG

4 N
CSTN

APH
1A

HBEGF

TAB2

PSENEN

WWOX

NRG2

EREG

NCOR1
ESR

1S1
00

BCS
N

2

PG
R

G
FAPBTC

STAT5A
YAP1

CXCL12

PSEN2

NRG3

ADAM17

NRG1

AP
H1

B

N
RG

4 N
CSTN

APH
1A

HBEGF

TAB2

PSENEN

WWOX

NRG2

EREG

NCOR1
ESR

1S1
00

BCS
N

2

PG
R

G
FAPBTC

STAT5A
YAP1

CXCL12

PSEN2

NRG3

ADAM17

NRG1

AP
H1

B

N
RG

4 N
CSTN

APH
1A

HBEGF

TAB2

PSENEN

WWOX

NRG2

EREG

NCOR1
ESR

1S1
00

BCS
N

2

PG
R

G
FAPBTC

STAT5A
YAP1

CXCL12

PSEN2

NRG3

ADAM17

NRG1

AP
H1

B

N
RG

4 N
CSTN

APH
1A

HBEGF

TAB2

PSENEN

WWOX

NRG2

EREG

NCOR1
ESR

1S1
00

BCS
N

2

PG
R

G
FAPBTC

STAT5A
YAP1

CXCL12

PSEN2

NRG3

ADAM17

NRG1

AP
H1

B

N
RG

4 N
CSTN

APH
1A

HBEGF

TAB2

PSENEN

WWOX

NRG2

EREG

NCOR1
ESR

1S1
00

BCS
N

2

PG
R

G
FAPBTC

STAT5A
YAP1

CXCL12

PSEN2

NRG3

ADAM17

NRG1

AP
H1

B

N
RG

4 N
CSTN

APH
1A

HBEGF

TAB2

PSENEN

WWOX

NRG2

EREG

NCOR1
ESR

1S1
00

BCS
N

2

PG
R

G
FAPBTC

STAT5A
YAP1

CXCL12

PSEN2

NRG3

ADAM17

NRG1

AP
H1

B

N
RG

4 N
CSTN

APH
1A

HBEGF

TAB2

PSENEN

WWOX

(�) Networks for BRCA as estimated by ARACNE.

������ �.�. Results for the network inference estimated by latent variable time-
varying graphical lasso (�.�a) and ARACNE (�.�b) for the R-HSA-�������
(Nuclear signaling by ERBB�) pathway.
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(�) Graphical models for BRCA as estimated by latent variable time-varying graphical
lasso.

ER+ N0 ER+ N1 ER+ N2 ER+ N3

ER- N0 ER- N1 ER- N2 ER- N3

B4GALT5
GCNT3

ST6GAL1MUC1GCNT1GALNT2GALNT1
ST3GAL1

ST
3G

AL3

ST
3G

AL
4

GA
LN

T3

ST
3G

AL
2

G
AL

N
TL

6

M
U

C2
1

B3
G

N
TL

1M
U

C17

W
BSCR17

G
ALN

TL4

B3G
N

T9

M
U

C6

B3GNT6

GCNT7

GALNTL5

B3GNT8
GALNT5GALNT7GALNT10GALNT13GALNT12

MUC20
MUC15

GALNTL2

GALNTL1

GALNT4

CHST4

GALNT6

GALNT11

ST6GALN
AC3

B3G
NT7

M
UC7

M
UC

16
M

U
CL

1
C1

G
AL

T1
C1

G
AL

N
T1

4
M

U
C4

B3G
N

T5
B3G

N
T4

M
U

C13
ST6G

ALN
AC4

M
U

C5B
GALNT9

C1GALT1
GALNT8

B3GNT2

GCNT4

B4GALT6

ST6GALNAC2

MUC12

A4GNT

B3GNT3
B4GALT5

GCNT3
ST6GAL1MUC1GCNT1GALNT2GALNT1

ST3GAL1

ST
3G

AL3

ST
3G

AL
4

GA
LN

T3

ST
3G

AL
2

G
AL

N
TL

6

M
U

C2
1

B3
G

N
TL

1M
U

C17

W
BSCR17

G
ALN

TL4

B3G
N

T9

M
U

C6

B3GNT6

GCNT7

GALNTL5

B3GNT8
GALNT5GALNT7GALNT10GALNT13GALNT12

MUC20
MUC15
GALNTL2

GALNTL1

GALNT4

CHST4

GALNT6

GALNT11

ST6GALN
AC3

B3G
NT7

M
UC7

M
UC

16
M

U
CL

1
C1

G
AL

T1
C1

G
AL

N
T1

4
M

U
C4

B3G
N

T5
B3G

N
T4

M
U

C13
ST6G

ALN
AC4

M
U

C5B
GALNT9

C1GALT1
GALNT8

B3GNT2

GCNT4

B4GALT6

ST6GALNAC2

MUC12

A4GNT

B3GNT3
B4GALT5
GCNT3

ST6GAL1MUC1GCNT1GALNT2GALNT1
ST3GAL1

ST
3G

AL3

ST
3G

AL
4

GA
LN

T3

ST
3G

AL
2

G
AL

N
TL

6

M
U

C2
1

B3
G

N
TL

1M
U

C17

W
BSCR17

G
ALN

TL4

B3G
N

T9

M
U

C6

B3GNT6

GCNT7

GALNTL5

B3GNT8
GALNT5GALNT7GALNT10GALNT13GALNT12

MUC20
MUC15

GALNTL2

GALNTL1

GALNT4

CHST4

GALNT6

GALNT11

ST6GALN
AC3

B3G
NT7

M
UC7

M
UC

16
M

U
CL

1
C1

G
AL

T1
C1

G
AL

N
T1

4
M

U
C4

B3G
N

T5
B3G

N
T4

M
U

C13
ST6G

ALN
AC4

M
U

C5B
GALNT9

C1GALT1
GALNT8

B3GNT2

GCNT4

B4GALT6

ST6GALNAC2

MUC12

A4GNT

B3GNT3
B4GALT5
GCNT3

ST6GAL1MUC1GCNT1GALNT2GALNT1
ST3GAL1

ST
3G

AL3

ST
3G

AL
4

GA
LN

T3

ST
3G

AL
2

G
AL

N
TL

6

M
U

C2
1

B3
G

N
TL

1M
U

C17

W
BSCR17

G
ALN

TL4

B3G
N

T9

M
U

C6

B3GNT6

GCNT7

GALNTL5

B3GNT8
GALNT5GALNT7GALNT10GALNT13GALNT12

MUC20
MUC15

GALNTL2

GALNTL1

GALNT4

CHST4

GALNT6

GALNT11

ST6GALN
AC3

B3G
NT7

M
UC7

M
UC

16
M

U
CL

1
C1

G
AL

T1
C1

G
AL

N
T1

4
M

U
C4

B3G
N

T5
B3G

N
T4

M
U

C13
ST6G

ALN
AC4

M
U

C5B
GALNT9

C1GALT1
GALNT8

B3GNT2

GCNT4

B4GALT6

ST6GALNAC2

MUC12

A4GNT

B3GNT3

B4GALT5
GCNT3

ST6GAL1MUC1GCNT1GALNT2GALNT1
ST3GAL1

ST
3G

AL3

ST
3G

AL
4

GA
LN

T3

ST
3G

AL
2

G
AL

N
TL

6

M
U

C2
1

B3
G

N
TL

1M
U

C17

W
BSCR17

G
ALN

TL4

B3G
N

T9

M
U

C6

B3GNT6

GCNT7

GALNTL5

B3GNT8
GALNT5GALNT7GALNT10GALNT13GALNT12

MUC20
MUC15

GALNTL2

GALNTL1

GALNT4

CHST4

GALNT6

GALNT11

ST6GALN
AC3

B3G
NT7

M
UC7

M
UC

16
M

U
CL

1
C1

G
AL

T1
C1

G
AL

N
T1

4
M

U
C4

B3G
N

T5
B3G

N
T4

M
U

C13
ST6G

ALN
AC4

M
U

C5B
GALNT9

C1GALT1
GALNT8

B3GNT2

GCNT4

B4GALT6

ST6GALNAC2

MUC12

A4GNT

B3GNT3
B4GALT5

GCNT3
ST6GAL1MUC1GCNT1GALNT2GALNT1

ST3GAL1

ST
3G

AL3

ST
3G

AL
4

GA
LN

T3

ST
3G

AL
2

G
AL

N
TL

6

M
U

C2
1

B3
G

N
TL

1M
U

C17

W
BSCR17

G
ALN

TL4

B3G
N

T9

M
U

C6

B3GNT6

GCNT7

GALNTL5

B3GNT8
GALNT5GALNT7GALNT10GALNT13GALNT12

MUC20
MUC15
GALNTL2

GALNTL1

GALNT4

CHST4

GALNT6

GALNT11

ST6GALN
AC3

B3G
NT7

M
UC7

M
UC

16
M

U
CL

1
C1

G
AL

T1
C1

G
AL

N
T1

4
M

U
C4

B3G
N

T5
B3G

N
T4

M
U

C13
ST6G

ALN
AC4

M
U

C5B
GALNT9

C1GALT1
GALNT8

B3GNT2

GCNT4

B4GALT6

ST6GALNAC2

MUC12

A4GNT

B3GNT3
B4GALT5
GCNT3

ST6GAL1MUC1GCNT1GALNT2GALNT1
ST3GAL1

ST
3G

AL3

ST
3G

AL
4

GA
LN

T3

ST
3G

AL
2

G
AL

N
TL

6

M
U

C2
1

B3
G

N
TL

1M
U

C17

W
BSCR17

G
ALN

TL4

B3G
N

T9

M
U

C6

B3GNT6

GCNT7

GALNTL5

B3GNT8
GALNT5GALNT7GALNT10GALNT13GALNT12

MUC20
MUC15

GALNTL2

GALNTL1

GALNT4

CHST4

GALNT6

GALNT11

ST6GALN
AC3

B3G
NT7

M
UC7

M
UC

16
M

U
CL

1
C1

G
AL

T1
C1

G
AL

N
T1

4
M

U
C4

B3G
N

T5
B3G

N
T4

M
U

C13
ST6G

ALN
AC4

M
U

C5B
GALNT9

C1GALT1
GALNT8

B3GNT2

GCNT4

B4GALT6

ST6GALNAC2

MUC12

A4GNT

B3GNT3
B4GALT5
GCNT3

ST6GAL1MUC1GCNT1GALNT2GALNT1
ST3GAL1

ST
3G

AL3

ST
3G

AL
4

GA
LN

T3

ST
3G

AL
2

G
AL

N
TL

6

M
U

C2
1

B3
G

N
TL

1M
U

C17

W
BSCR17

G
ALN

TL4

B3G
N

T9

M
U

C6

B3GNT6

GCNT7

GALNTL5

B3GNT8
GALNT5GALNT7GALNT10GALNT13GALNT12

MUC20
MUC15

GALNTL2

GALNTL1

GALNT4

CHST4

GALNT6

GALNT11

ST6GALN
AC3

B3G
NT7

M
UC7

M
UC

16
M

U
CL

1
C1

G
AL

T1
C1

G
AL

N
T1

4
M

U
C4

B3G
N

T5
B3G

N
T4

M
U

C13
ST6G

ALN
AC4

M
U

C5B
GALNT9

C1GALT1
GALNT8

B3GNT2

GCNT4

B4GALT6

ST6GALNAC2

MUC12

A4GNT

B3GNT3

(�) Networks for BRCA as estimated by ARACNE.

������ �.�. Results for the network inference estimated by latent variable time-
varying graphical lasso (�.�a) and ARACNE (�.�b) for the R-HSA-������
(O-linked glycosylation of mucins) pathway.

��



6 Breast Cancer Evolution

ER+ N0 ER+ N1 ER+ N2 ER+ N3

ER- N0 ER- N1 ER- N2 ER- N3

AQP7
GNGT2
GNB5

ADCY6AQP9GNG7ADCY3

ADCY9AQ
P8AD

CY
5

AV
P

PR
KA

R1
A

PR
KA

R2
AG

N
B3

PRKACA

PRKACG

PRKACB

AQ
P1M

IPAVPR2

PRKAR1B
PRKAR2BADCY8AQP2

GNG4
GNG10
ADCY7

AQP5

AQP4

GNG2

GNG11

RAB11A

GNB1

GNB2
GNAS

GN
GT

1
G

N
G

3
G

N
G

5
AD

CY
2 AD

CY1
AQ

P6
RAB11FIP2
AQ

P12A
AQ

P11
ADCY4

AQP3

AQP10

GNB4

GNG13

GNG12

GNG8

MYO5B

AQP7
GNGT2
GNB5

ADCY6AQP9GNG7ADCY3

ADCY9AQ
P8AD

CY
5

AV
P

PR
KA

R1
A

PR
KA

R2
AG

N
B3

PRKACA

PRKACG

PRKACB

AQ
P1M

IPAVPR2

PRKAR1B
PRKAR2BADCY8AQP2

GNG4
GNG10
ADCY7

AQP5

AQP4

GNG2

GNG11

RAB11A

GNB1

GNB2
GNAS

GN
GT

1
G

N
G

3
G

N
G

5
AD

CY
2 AD

CY1
AQ

P6
RAB11FIP2
AQ

P12A
AQ

P11
ADCY4

AQP3

AQP10

GNB4

GNG13

GNG12

GNG8

MYO5B

AQP7
GNGT2
GNB5

ADCY6AQP9GNG7ADCY3

ADCY9AQ
P8AD

CY
5

AV
P

PR
KA

R1
A

PR
KA

R2
AG

N
B3

PRKACA

PRKACG

PRKACB

AQ
P1M

IPAVPR2

PRKAR1B
PRKAR2BADCY8AQP2

GNG4
GNG10
ADCY7

AQP5

AQP4

GNG2

GNG11

RAB11A

GNB1

GNB2
GNAS

GN
GT

1
G

N
G

3
G

N
G

5
AD

CY
2 AD

CY1
AQ

P6
RAB11FIP2
AQ

P12A
AQ

P11
ADCY4

AQP3

AQP10

GNB4

GNG13

GNG12

GNG8

MYO5B

AQP7
GNGT2
GNB5

ADCY6AQP9GNG7ADCY3

ADCY9AQ
P8AD

CY
5

AV
P

PR
KA

R1
A

PR
KA

R2
AG

N
B3

PRKACA

PRKACG

PRKACB

AQ
P1M

IPAVPR2

PRKAR1B
PRKAR2BADCY8AQP2

GNG4
GNG10
ADCY7

AQP5

AQP4

GNG2

GNG11

RAB11A

GNB1

GNB2
GNAS

GN
GT

1
G

N
G

3
G

N
G

5
AD

CY
2 AD

CY1
AQ

P6
RAB11FIP2
AQ

P12A
AQ

P11
ADCY4

AQP3

AQP10

GNB4

GNG13

GNG12

GNG8

MYO5B

AQP7
GNGT2
GNB5

ADCY6AQP9GNG7ADCY3

ADCY9AQ
P8AD

CY
5

AV
P

PR
KA

R1
A

PR
KA

R2
AG

N
B3

PRKACA

PRKACG

PRKACB

AQ
P1M

IPAVPR2

PRKAR1B
PRKAR2BADCY8AQP2

GNG4
GNG10
ADCY7

AQP5

AQP4

GNG2

GNG11

RAB11A

GNB1

GNB2
GNAS

GN
GT

1
G

N
G

3
G

N
G

5
AD

CY
2 AD

CY1
AQ

P6
RAB11FIP2
AQ

P12A
AQ

P11
ADCY4

AQP3

AQP10

GNB4

GNG13

GNG12

GNG8

MYO5B

AQP7
GNGT2
GNB5

ADCY6AQP9GNG7ADCY3

ADCY9AQ
P8AD

CY
5

AV
P

PR
KA

R1
A

PR
KA

R2
AG

N
B3

PRKACA

PRKACG

PRKACB

AQ
P1M

IPAVPR2

PRKAR1B
PRKAR2BADCY8AQP2

GNG4
GNG10
ADCY7

AQP5

AQP4

GNG2

GNG11

RAB11A

GNB1

GNB2
GNAS

GN
GT

1
G

N
G

3
G

N
G

5
AD

CY
2 AD

CY1
AQ

P6
RAB11FIP2
AQ

P12A
AQ

P11
ADCY4

AQP3

AQP10

GNB4

GNG13

GNG12

GNG8

MYO5B

AQP7
GNGT2
GNB5

ADCY6AQP9GNG7ADCY3

ADCY9AQ
P8AD

CY
5

AV
P

PR
KA

R1
A

PR
KA

R2
AG

N
B3

PRKACA

PRKACG

PRKACB

AQ
P1M

IPAVPR2

PRKAR1B
PRKAR2BADCY8AQP2

GNG4
GNG10
ADCY7

AQP5

AQP4

GNG2

GNG11

RAB11A

GNB1

GNB2
GNAS

GN
GT

1
G

N
G

3
G

N
G

5
AD

CY
2 AD

CY1
AQ

P6
RAB11FIP2
AQ

P12A
AQ

P11
ADCY4

AQP3

AQP10

GNB4

GNG13

GNG12

GNG8

MYO5B

AQP7
GNGT2
GNB5

ADCY6AQP9GNG7ADCY3

ADCY9AQ
P8AD

CY
5

AV
P

PR
KA

R1
A

PR
KA

R2
AG

N
B3

PRKACA

PRKACG

PRKACB

AQ
P1M

IPAVPR2

PRKAR1B
PRKAR2BADCY8AQP2

GNG4
GNG10
ADCY7

AQP5

AQP4

GNG2

GNG11

RAB11A

GNB1

GNB2
GNAS

GN
GT

1
G

N
G

3
G

N
G

5
AD

CY
2 AD

CY1
AQ

P6
RAB11FIP2
AQ

P12A
AQ

P11
ADCY4

AQP3

AQP10

GNB4

GNG13

GNG12

GNG8

MYO5B

(�) Graphical models for BRCA as estimated by latent variable time-varying graphical
lasso.
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(�) Networks for BRCA as estimated by ARACNE.

������ �.�. Results for the network inference estimated by latent variable time-
varying graphical lasso (�.�a) and ARACNE (�.�b) for the R-HSA-������
(Aquaporin-mediated transport) pathway.
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7 Temporal Models for Single-cell Data

Statistical inference of structure and function of transcriptional regulatory net-
works is a fundamental and open research question in computational biology.
Single-cell sequencing technologies provide a unique opportunity towards
such end, given the richness of the data produced. Unlike earlier assays of gene
expression measurement, these technologies can expose the heterogeneity
within seemingly homogeneous groups of cells helping to infer the regulat-
ory mechanisms of transcription in multicellular organisms, a crucial task
to understand and model cellular processes. This chapter presents a possible
application of latent variable graphical models for transcription regulation
using scRNA-seq data, including temporal information regarding cell evolution
through the use of appropriate priors. Single-cell data present challenges due
to their nature. In fact, such data are highly-dimensional, intrinsically sparse
and subject to high levels of noise. Hence, a graphical modelling of single-
cell data without sparsity-enforcing priors is not feasible. The application of
time-varying graphical lasso and latent variable time-varying graphical lasso
(Chapters � and �) inherently include both a sparsity prior on single networks
(at each time point) and a temporal component, to constrain and overcome
the disadvantages of working with such sparse and noisy data, providing a
useful framework for graphical modelling of single-cell data.

Outline

The rest of the chapter is organised as follows. Section �.� introduces single-
cell sequencing, a recent and powerful technology for sequencing biological
data. Section �.� describes the data used in the following analysis, i.e., haema-
topoietic stem cells. Section �.� includes the analysis involving latent variable
time-varying graphical lasso based on a pseudotemporal ordering of the cells.
Section �.� concludes with an overview of the work and further research
directions.

7.1 Single-cell Data

Single-cell sequencing is a recent approach to characterise gene expression at
the single cell level (Tang et al., ����) and it has opened the possibility to in-
vestigate cellular heterogeneity in terms of RNA expression, protein abundance
and metabolites (Blainey and Quake, ����; Sandberg, ����; Spitzer and Nolan,
����; Zenobi, ����). In particular, the single-cell sequencing technology allows
to separately sequence each cell, thus having the expression information at
the particular state of the cell during its evolution.
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7 Temporal Models for Single-cell Data

Standard expression experiments (bulk RNA-seq) are limited in the sense
that they provide measurements that result from the averaging of heterogen-
eous populations of cells, thus masking or smoothing the signal of interest.
Single-cell data, instead, provide targeted measurements that characterise each
cell di�erently. In this way heterogeneous measurements can be uncovered,
with increasing variability and expression distributions. Particularly, molecular
information at the resolution of single cells allows to investigate cellular diver-
si�cation, a key factor to understand the underlying complexity of di�erent
cell states (Yuan et al., ����).
Common goals with such data include the identi�cations of subpopula-

tions of cells within a particular biological context, the characterisation of
di�erentially distributed genes across cells and conditions, and pseudotime
reconstruction (Bacher and Kendziorski, ����). The latter is crucial to inter-
pret the exact state of a cell at a �xed time. The pseudotime reconstruction is
needed because single-cell pro�ling happens after the cell has been isolated
from its local environment and destroyed.While informative for the expression
levels of genes and proteins of the cell, the spatial-temporal context of the cell
itself at the moment of the sequencing is lost. Hence, lots of methods aims
to infer both the spatial environment of a cell and its state in a trajectory of
dynamic behaviour using the measured gene expression (Skylaki, Hilsenbeck,
and Schroeder, ����). Single-cell data have the great advantage not to obscure
or misrepresent the signal of interest (Trapnell, ����). Such data, while o�ering
opportunities to discover molecular patterns that were hidden in traditional
expression experiments, pose in contrast challenges for standard statistical
and computational methods.
This chapter focuses on single cell RNA sequencing (scRNA-seq), one of

the most important tool for single-cell analysis (Skylaki, Hilsenbeck, and
Schroeder, ����). While having the mentioned advantages over earlier ex-
pression measurement techniques, such as RNA-seq (bulk), scRNA-seq data
analysis is challenging as the data produced is intrinsically noisier, due to the
low amount of starting material coupled with sparse sampling (Yuan et al.,
����), thus not allowing the intrinsic noise attenuation as in bulk RNA-seq.
However, such data may allow the regulatory network inference using the vari-
ation across cells, taking into account the variation caused by the longitudinal
information of the cell itself.

7.2 Haematopoietic Stem Cell Development

The entire blood system can be restored from a single haematopoietic stem cell
(HSC), which makes the HSC transplantation a therapeutic option. Manufac-
turing HSCs in the laboratory, i.e., a de novo generation of haematopoietic stem
and progenitor cells would constitute a powerful treatment of blood disorders.
However, the derivation of HSCs from pluripotent stem cells has not yet been
fully understood (Wahlster and Daley, ����). In particular, attempts were made
to reprogram non-haematopoietic cell types into HSCs, but these e�orts have
not been successful (Doulatov et al., ����; Lis et al., ����). A possibility to
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������ �.�. Generation of haematopoietic stem cell.

������ �.�. Pseudotime ordering.

convert human adult endothelial cells into transplantable multipotent haema-
topoietic progenitors have been possible with the involvement of transcription
factors FOSB, GFI�, RUNX�, and SPI� (Sandler et al., ����), under important
limitations (Lis et al., ����).
The following analysis involved single-cell data composed by ��� haema-

topoietic (Mus Musculus) stem cells, divided into four pseudotime points by
GrandPrix, a Bayesian Gaussian process latent variable model (GPLVM) able
to reduce single-cell gene expression pro�les into a low-dimensional space
(Ahmed, Rattray, and Boukouvalas, ����).

The pseudotemporal ordering assumes cells to represent a time-series, where
each cell belongs to a particular time point in a pseudotime trajectory. Such
trajectory corresponds to a process of interest where, in the case of haema-
topoietic stem cell, this is represented by the development and specialisation
of the cell. Figure �.� shows the low-dimensional representation of the cells.
Consistently to their trajectory, the pseudotime ordering shows the progres-
sion from endothelium to intra-aortic haematopoietic cell type, corresponding
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������ �.�. Evolution of the expression of two classes of genes. The gene behaviour
across cells re�ects the division into four pseudotemporal steps.

to the �nal step in their trajectory.
Figure �.� shows how the cells, divided into the four pseudotime steps,

exhibit consistent developmental progression across the samples.

7.3 Network Inference

Based on the pseudotime ordering, cells are grouped into developmental states.
Next, I used the latent variable time-varying graphical lasso to infer the dynam-
ical network across the four di�erent pseudotime points. For computational
advantage, 2444 gene expression levels were considered.

I devoted particular attention on the β penalty across the di�erence between
time points (Section �.�). Based on the pseudotemporal ordering, the temporal
penalty of precision matrices β = (β0−1, β1−2, β2−3) is considered as a vector to
enforce di�erent temporal similarities.
In particular, β0−1 was set to 0, since the di�erent cells at t = 0 may fol-

low di�erent evolutionary trajectories. Instead, β1−2 and β2−3 have strictly
positive values, since cells at time t = 1 are bound to develop into endothelial-
to-haematopoietic transition (EHT) and intra-aortic haematopoietic clusters
(IAHC) stages. Table �.� shows the top �ve interactions across the time
points. Such interactions involve EIF�S�Y, DDX�Y and XIST, shown to be
sex-chromosome linked and expressed in the neonatal mouse heart (Ehmann
et al., ����; Isensee et al., ����). Figure �.� shows a gene network based on
the Runt Related Transcription Factor � (RUNX�) gene, a transcription factor
fundamental in haematopoietic stem cell development (Sugimura et al., ����).
Table �.� shows the top �ve pathways after the enrichment based on the
biological progresss (GO) and KEGG pathways. The haematopoietic pathways
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gene pair t0−1 t1−2 t2−3

HSPA�A–HSPA�B −6.28 −6.25 −6.22
XIST–EIF�S�Y 5.38 5.36 5.33
XIST–DDX�Y 4.54 4.53 4.49
CCNA�–UB��C −4.01 −3.98 −3.93
RPS�-PS��–XIST −3.93 −3.99 −3.99

����� �.�. Relevant interactions across time.

TfrcKitl Vamp8

Csf1Runx1

Vps18
Csf1r

Igfbp3 Cdk2

Vps16Vps39

Gfi1
Cdkn1a

Hdac7Cav1
Dnmt3b

������ �.�. Gene network based on Runt Related Transcription Factor � (RUNX�)
gene. Colors of nodes refer to pathways in Table �.�, while colors of
edges refer to the speci�c types of interactions between genes. Image
generated with https://string-db.org.

are the most relevant among both GO and KEGG pathways, with a low false
discovery rate (order of magnitude of 10−5 and 10−4).
Figure �.� shows the inferred networks for each time step. While most

of the nodes are not connected, nodes in the centre of the layout became
progressively more connected at t = 2 and t = 3.

7.4 Discussion

The advent of scRNA-seq technology brought new challenges along with an
incredible source of potential information. Currently, due to the novelty of
such a technology, methods to e�ciently deal with scRNA-seq data are scarcely
available. Inference of regulatory networks is an open question in biomedical
data science. With the addition of longitudinal information of the network,
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pathway ID pathway description gene count false discovery rate

Biological
Process (GO)

0046718 viral entry into host cell 4 5.59e−06
0030097 hemopoiesis 7 5.22e−05
0002684 positive regulation of immune system process 7 6.95e−05
0002763 positive regulation of myeloid leukocyte di�e. . . 4 6.95e−05
0002520 immune system development 7 7.45e−05

KEGG
Pathways

4640 Hematopoietic cell lineage 4 7.95e−05
4151 PI�K-Akt signaling pathway 5 2.74e−04
5200 Pathways in cancer 5 2.74e−04
5202 Transcriptional misregulation in cancer 4 2.75e−04
4115 p�� signaling pathway 3 7.30e−04

����� �.�. Relevant pathways after enrichment process on a subset of the inferred
network.

the task becomes quickly intractable for state-of-the-art methods for graphical
modelling.
Novel statistical methodologies are required to tackle the problem of tran-

scriptional regulatory network inference. In this context, the latent variable
graphical modelling using scRNA-seq data after a pseudotime ordering of-
fers a great opportunity to discover novel as well as established interactions
between genes. In particular, the method is designed to model scRNA-seq data
at each time-step as a network with latent variables and simultaneously relate
networks close in time. The inferred networks are validated by showing the
consistency with the underlying biology. Further validation may o�er novel
insights into the regulatory network structure of multicellular organisms.
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Time 1 Time 2

Time 3 Time 4

������ �.�. Visual representation on the global inferred network after LTGL, for
t = 1, 2, 3, 4.
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8 Wishart Process for Epilepsy

Estimating a series of covariance matrices indexed by time is daunting task.
Chapter � introduces the task of graphical modelling of time-series under a
sparsity constraint which allows the inference of a wide set of variables based
on a small number of samples, which would normally not be possible under
standard statistical guarantees. The time-varying graphical lasso is one of
the state-of-the-art methods to both incorporating temporal dynamics across
covariance matrices over time and enforcing sparsity in each single precision
matrix. However, TGL and LTGL introduce an approximation following the
discretisation of the time-series.

A similar approach interprets the sequence of covariance matrices over time
as a single draw from a generalised Wishart process (GWP), i.e., a process
with Wishart marginals (Cardona, Álvarez, and Orozco, ����; Fox and West,
����; Wilson and Ghahramani, ����). This chapter introduces an application
for Wishart process for epilepsy data, following the analysis in (D’Amario
et al., ����). Such method allows to natively consider the temporal evolution
of the epileptic channels, to understand how correlation between channels
evolves over time.

Motivation

Epilepsy is a neurological disorder a�ecting more than �� million people
worldwide. This disease is characterised by abrupt loss of consciousness and
convulsions, causing severe impairments in daily life. The occurrence of epi-
leptic symptoms can be local (focal seizure) or general (general seizure). In the
�rst case, the seizure onset zone is restricted to a portion of the brain which
produces both hyper synchronisation and hyper activity typical of the patho-
logy (Jiruska et al., ����). The onset zone can be further sub-categorised into
(i) epileptogenic areas, which generate the epileptic activity and (ii) irritative
areas that actively contribute to the propagation. In the rest of the chapter such
areas will be generally referred to as critical (or, equivalently, pathological).
About 30% of focal epileptic patients do not respond to pharmacological

treatments, needing surgical ablation of the pathological area. In such cases, the
identi�cation of the minimal amount of neural cortex to ablate for seizure-free
outcomes, namely the epileptic zone (EZ), is an extremely delicate and precise
task. To this aim, clinicians use non-invasive methodologies such as magnetic
resonance imaging, computed tomography and scalp electroencephalography
as �rst clinical tests, seeking for clear evidence of tumours or dysplasia which
may cause the seizures. Nonetheless, EZ borders may be di�cult to localise.
Medical experts often resort to the use of invasive investigation techniques
such as stereo-electroencephalography (SEEG) to assess critical areas.
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������ �.�. Example of epileptic signal corresponding to 10 minutes of acquisition.
SEEG recordings are characterised by high sampling frequencies (� kHz).
These signals are usually analysed by clinical experts that look for bio-
markers, a subjective and error-prone process.

SEEG measures the electrical activity from intracranial areas through �li-
form electrodes implantation, where each sensor is endowed with dozen of
acquisition channels. These recordings have high spatial and temporal correla-
tion (Figure �.�), because of the complexity of the brain structure and the long
period acquisitions at high sampling frequencies (≥ 1 kHz), respectively.

Related Work

The characterisation of SEEG signals is a challenging and time-consuming
task, usually based on visual inspection or signal processing tools, and it is
intrinsically subjective, possibly leading to misclassi�cation (Soriano et al.,
����; Staba, Stead, and Worrell, ����; Yardi et al., ����). Therefore, automatic
classi�cation of neural recordings is an emerging �eld. In this context, methods
consider both temporal and spectral representation of the signal (Omerhodzic
et al., ����). The signal can in fact be described by its energy at di�erent
frequency bands, which shows highest discriminative power in seizure onset
zone detection (γ frequency band, 20–70 Hz) (Vila-Vidal et al., ����). Also, the
quanti�cation of energy concentration at di�erent bands can be a measured
with wavelet entropy (Mooij et al., ����; Rosso et al., ����).

Another typical approach for the classi�cation of epileptogenic channels is
through the de�nition of the most informative biomarkers. Interictal spikes
and spike-and-wave complexes are considered a well established evidence of
the pathological condition (Avoli, Biagini, and De Curtis, ����; Curtis and
Avanzini, ����).

High-frequency oscillations (HFOs) are short events (2–5 ms) at frequen-
cies in the range of 80–500 Hz, sub-categorised in ripples (80–200 Hz) and
fast ripples (200–500 Hz). HFOs are considered as a good predictors for EZ
localisation (Fedele et al., ����). The role of HFOs in seizure generation has
been object of investigation, which attest reliable co-occurrence of HFOs in
critical areas (Jacobs et al., ����). Indeed, several works reveal the primary role
played by HFOs as biomarkers for epilepsy (Höller et al., ����; Zijlmans et al.,
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����).

Contribution

Subject to high level of intrinsic correlation, understanding the evolving rela-
tions between channels is not a trivial task. Indeed, a quantitative measure of
correlation between channels is a desirable result to compare di�erent brain
areas in focal epilepsy. This would consistute an appropriate application for the
latent variable time-varying graphical lasso method, which would aim at redu-
cing spurious signal correlations. However, the application of sparse graphical
models introduces a signi�cant coarse approximation in the time-series, in
particular when the temporal window is highly restricted.

Also, time-series may exhibit complex relation patterns, which may involve
time points that are not necessarily contiguous. In that case, instead of a
penalty across subsequent time points, a reasonable approach would be to
consider a temporal kernel across all time points, allowing for the possibility
to �exibly model generic complex interaction patterns that may be expressed
via kernels.

This �nal chapter presents a di�erent approach for inferring developing
relations among time-series variables when sparsity is not a necessary property
of the estimated graphical model, integrating the work on the graphical models
for temporal data developed throughout this thesis.

Outline

The rest of the chapter is organised as follows. Section �.� brie�y details the
data used. Section �.� presents the data analysis pipeline developed for the
analysis of stereo-electroencephalography (SEEG) data through a multi-task
multiple kernel learning approach. Section �.� introduces the Wishart process
and an algorithm for their inference. Section �.� contains the results of the
Wishart process application on the SEEG data. Section �.� concludes with an
overview of the pipeline explained in this chapter.

8.1 Stereo-electroencephalography Time-Series

Data comprise signals recorded from 18 patients, acquired at Ospedale Ca’
Granda Niguarda, Milan (Italy)� with the acquisition system of Arnulfo et al.
(����).

Each electrode was endowed with a varying number of channels (8–15).
For each patient, data included 590 seconds of spontaneous interictal activity
with closed eyes at resting state, at 1 kHz sampling frequency, comprising a
total number of channels of 2347, 984 of which tagged as critical by medical
experts.

�Patients provided written consent for further analysis with scienti�c research purpose.
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8.2 Multiple Kernel Learning for Epilepsy

The localisation of epileptic zone in pharmacoresistant focal epileptic patients
is a di�cult task, typically performed by medical experts through visual inspec-
tion over neural recordings. For a �ner localisation of the epileptogenic areas
and a deeper understanding of the pathology both the identi�cation of patho-
genical biomarkers and the automatic characterisation of epileptic signals are
desirable. This section presents a data integration learning method based on
multi-level representation of stereo-electroencephalography recordings and
multiple kernel learning. To the best of the author’s knowledge, this represents
a �rst attempt to tackle both aspects simultaneously, as the approach described
in what follows is devised to classify critical and non-critical recordings while
detecting the most discriminative frequency bands.

Indeed, this section introduces a machine learning method which simultan-
eously tackles the problem of searching for informative frequency bands and
localising critical areas in focal epilepsy, through a multi-scale integration of
SEEG recordings. The method leverages on continuous wavelet representation
of the signal, exploiting its multi-level nature to obtain a redundant descrip-
tion that is integrated through pairwise similarity measures in the learning
pipeline.
Since the number of channels and the type of signal acquired changes

across patients, a direct comparison between patients is not feasible. The pro-
posed procedure overcomes this issue by extending a multiple kernel learning
(MKL) algorithm in a so-called multi-task multiple kernel learning (MT-MKL)
(Borgwardt, ����; Wang et al., ����). MT-MKL aims at optimising a multi-task
classi�cation problem. It includes additive constraints guaranteeing robustness
to noise, providing interpretable and stable results. The outcome of the method
incorporates both a personalised description for each patient and the selection
of the best descriptors of the pathology across the population.

8.2.1 Data Representation through Multi-Scale Analysis

A multi-scale representation aims at di�erentiating a signal in several fre-
quency bands, each corresponding to a di�erent behaviour of the recording.
Indeed, the wavelet transform o�ers a reliable tool that, due to its local nature,
is able to detect transients through a time-frequency representation. In particu-
lar, the continuous wavelet transform (CWT) with a set of generators (mother
wavelet) gives a rich and redundant decomposition of the signal (Mallat, ����).

The mother wavelet is de�ned to be the complex Morlet transform:

ψτ ,s (t) = 1√
πs

e2iπ
t−τ
s e−

(t−τ )2
s2 , (�.�)

where τ , s denote respectively the temporal shift and the scaling parameter. For
any one dimensional signal x(t), its representation through wavelet transform
ψ at a �xed scale s is given by the coe�cientsWτ ,s (x). Hence, CWT results in
a two dimensional representation of the original signal.
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8.2.2 Similarity Measures

The decomposition of neural signals through CWT is necessary in the per-
spective of a multi-level pairwise comparison and a deeper insight in the
role played by di�erent frequency rhythms in the discrimination of EZ. For
a comprehensive description of the signal, it is necessary to consider meas-
ures involving both phase and amplitude correlation, taking into account the
possible temporal shift between recordings. Indeed, signals were encoded into
kernels via phase locking value (PLV), normalised correlation and spectral
measures, computed for each scale s of the wavelet under analysis (D’Amario
et al., ����).

8.2.3 Multiple Kernel Learning

Multiple kernel learning (MKL) integrates data by combining sets of kernel
functions (Borgwardt, ����; Lanckriet et al., ����). Kernels are positive semi-
de�nite matrices whose entries Ki j = κ(xi , x j ) encode pairwise similarities
between data points (xi , x j ). However, the choice of the most suitable kernel
function for each problem at hand is tricky, and heavily depends on available
data. Therefore, the idea behind MKL is to construct di�erent measures of
similarity on the same data set and then integrate them into a single ker-
nel (Gönen and Alpaydın, ����). For example, a straightforward MKL may
be a linear combination of di�erent kernels (Borgwardt, ����). This is pos-
sible given the fact that kernels allow linear operations while preserving their
mathematical properties, such as positive semi-de�niteness and symmetri-
city (Friedman, Hastie, and Tibshirani, ����). Formally, consider k kernels
{K1, . . . ,Kk } ∈ Rk×n×n that represent di�erent similarities measures among
points of a data set. Kernels can be combined linearly as a weighted sum�k

i=1wiKi , where w = (w1, . . . ,wk )� ∈ Rk+ is a list of (non-negative) coe�-
cients, measuring the relevance of each kernel for the particular problem at
hand.

8.2.4 Multi-Task Multiple Kernel Learning

Implantation settings strongly depend on the patient clinical condition and
on preliminary medical evaluations, based on previous non-invasive clinical
tests. Such variability does not allow for a direct comparison of the neural
activity across patients. In other words, the di�erent acquisition procedure for
each patient denies a single uni�ed regression model for all patients. For this
reason, the analysis pipeline extends the MKL to account for di�erent patient
conditions, resulting in multi-task multiple kernel learning (MT-MKL). Each
kernel represents a particular similarity matrix among all the channels in a
single patient at a speci�c scale. The innovation of such method consists in
the capability of jointly analysing the patients by taking into account their
diversity.
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The goal is three-fold: (i) to combine kernels to predict whether a channel
is epileptic or not, (ii) to identify the most informative kernels for prediction
across patient, and (iii) to select relevant channels for each patient. After the
preprocessing step, data for each patient consists in a matrix X (p) ∈ Rcp×T
and a vector of labels y(p) denoting the pathological or physiological nature of
each signal in X (p). Note that the number of channels cp varies across patients,
and the proportion of epileptic channels is not uniform across the population.
Let (K (p)

1 , . . . ,K
(p)
k ), where K (p)

j ∈ Scp
+ , be the set of k kernels for a patient p.

The decision function f (p) for a patient p and a channel x is de�ned as:

f (p)(x) = α
(p)
0 +

cp�
i=1

�
α
(p)
i

k�
j=1

w jK
(p)
j (xi , x)

�
, (�.�)

whereα (p)
i denotes the i-th component of the regression parameterα (p) speci�c

for each patient p. Having separate parameters (α (p) andw) is fundamental
for the resolution of the problem. In fact, α (p) allows to better approximate
the labels y(p) by capturing the variance of each patient, while w combines
the kernels by weighting them and, as it holds across patients, indicates the
most discriminative kernels.
The addition of a �1�2 penalty onw and α = (α (1), . . . ,α (n)), also, ensures

interpretable and stable solutions. By considering all the patients, our goal
translates into minimising the following objective function:

minimize
α (1), ...,α (n),w

� n�
p=1

�
�f (p)

�
X (p),y(p)

�
+ λ(rλ �α (p)�1 + (1 − rλ)�α (p)�22)

�

+ nβ
�
rβ �w �1 + (1 − rβ )�w �22

� �

s.t.w j ≥ 0 for each j = 1, . . . ,k

(�.�)

where �f (p)
�
X (p),y(p)� = −�cp

i=1 log(1+ exp(−y
(p)
i f (p)(xi ))) is the negative log-

likelihood of the logistic probability function and rλ and rβ are the elastic-net
penalty ratios on α andw , respectively. The elastic-net penalty bene�ts from
the stability property of the �2 regularisation term (Zou and Hastie, ����).

8.2.4.1 Minimisation Method

The optimisation of Equation (�.�) relies on alternating minimisation (Bolte,
Sabach, and Teboulle, ����). Note that the problem is not jointly convex in
both α andw . Hence, no theoretical guarantees on convergence to a global
minimum exist. Problem (�.�) is bi-convex — i.e., it is convex in each variable
keeping the other �xed. Its optimisation is based on an alternating forward-
backward splitting procedure given the non-di�erentiability of parts of the
functional (�1 norm) (Bolte, Sabach, and Teboulle, ����; Combettes and Vũ,
����). Algorithm � describes the optimisation procedure.
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Algorithm 4: Alternating minimisation algorithm for the MT-MKL.
Initialise α (1)(0), . . . ,α (n)(0),w(0);
for t < tmax do

for p = 1, . . . ,n do
α (p)(t) ← minimise Problem (�.�) withw = w(t − 1)

w(t) ← minimise Problem (�.�) with α = α (t);
if stop criterion is met then

return α (1)(t), . . . ,α (n)(t),w(t)

8.2.4.2 Minimisation of α

Fixingw , for each patient p the functional with respect to α (p) takes the form
of a standard logistic regression. Its minimisation is performed by computing
the derivative on the logistic loss and then applying the soft-thresholding
operator (Tibshirani, ����) on the result of the gradient descent step.

8.2.4.3 Minimisation ofw

The minimisation ofw is non-separable across patients. Its gradient, computed
on the di�erentiable part of the functional, is a sum of gradients computed
for each patient p. Then, the soft-thresholding operator is applied to enforce
sparsity in the solution. Also, kernel weights are projected into the positive half-
space by applying a threshold on zero. This ensures that a kernel is considered
only if its weight is positive, otherwise it is discarded.

8.2.5 Pipeline Design

The proposed pipeline consists of three main steps: (i) signal preprocessing
and multi-scale representation of the signals, (ii) computation of similarity
measures, and (iii) learning the optimal combination of kernels and channels
weights for signal classi�cation (Figure �.�).

In step (i), given an input matrix X (p) we re-refer the potential using the
bipolar montage, which consists in the di�erential measures between two
adjacent channels. Local reference is standard for phase measures, as it re-
duces volume conduction e�ects caused by white matter (Mercier et al., ����).
The output of this operation is �ltered, to remove power line e�ect (50 Hz
and harmonics in Europe), using a FIR bandstop �lter with 2 Hz bandwidth.
Then, each SEEG recording is transformed using the CWT. With respect to
Equation (�.�), the shift parameter τ takes discrete values in [1,T ], with T

number of points of each time series. The scaling parameter s is a list of 100
elements equally spaced in the logarithmic scale in the interval [0.3, 3]. Fixing
s , the central frequency fa of the mother wavelet corresponds to fa = (s · ts )−1
with ts = 1 ms (sampling period). Consequently, the values of fa vary in the
range between 0.5 Hz and the Nyquist frequency (500 Hz).
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������ �.�. Schematic representation
recordings are �lter
The central panel
applied for each scale
MT-MKL algorithm learns the optimal hyper-parameters. This �nal step
is repeated to obtain statistics on the parameters (w, α ), the vector of
classi�cation probabilities and permutation test results.

In step (ii), the multi-scale representation is given as input to di�erent
similarity measures (PLV, correlation and spectral measures). For each patient
p, data are transformed into k = 3 × 100 kernels, each of dimension cp × cp
(number of channels for a patientp). The computation of spectral measures over
all the time series is heavily intensive. Hence, this quantity was approximated
by averaging its estimation on smaller, non-overlapping windows of the signal
(5.9 seconds length each).

Finally, in step (iii), the MT-MKL is applied on the resulting kernels. In
particular the data set is split, for each patient, in half channels for the learning
set and the other half for the validation set. The proportion between critical
and non-critical channels in each set is kept �xed. The learning set is used
to select optimal hyper-parameters with a MCCV procedure over a grid of
parameters, and the score is computed on the validation set. The procedure is
repeated 50 times to assess the stability of the result. The best hyper-parameters
were selected based on the average balanced accuracy over all patients. The
outcomes of the pipeline are: (a) a vector w which weights the similarity
measures, shared across all patients, (b)measures on single subject that include
statistics on the set of coe�cients α , to classify previously unseen channels,
(c) statistics on the probability of each channel of being critical, and (d) scores
for the classi�cation task and permutation test.
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������ �.�. Kernels contributing to the characterisation of the epileptogenic areas,
indicated with the central frequency of the mother wavelet and the event
type related to each frequency. Each bar corresponds to weight average
and standard deviation through the repetitions of the experiment. The
right y-axis denotes the occurrence, the green dots correspond to the
number of times each kernel was selected throughout the repetitions.
The dashed line indicates the 0.75% occurrence value.

8.2.6 Results

The learning pipeline has di�erent outputs starting from the neural recordings
of multiple patients. This section focuses on the selection of the relevant
channels for the discrimination task, which will be used in the second part of
this chapter. Instead, (D’Amario et al., ����) contains a complete set of results
on the data analysis pipeline as introduced in this section.
Figure �.� shows the kernels which were selected at least once, ordered

by their total occurrence throughout the 50 repetitions of the experiment.
The imposition of the �1�2 penalty in Equation (�.�) results in a sparse, stable
and small-normed vector w . The non-zero components of this vector indi-
cate the importance of similarity measures at speci�c frequency bands for
the prediction task. Indeed, such result highlights the contribution of high
frequency events to signal classi�cation.
The highest components ofw correspond to amplitude correlation at high

frequency and phase synchrony at γ and high-γ bands. Without imposition of
any prior knowledge, the method con�rms the relevance of high frequencies
and abrupt changes in the brain activity for the localisation of pathological
areas in focal epilepsy. The selection of ripples and fast ripples events con�rms
the recent result of Fedele et al. (����), which shows that the co-occurrence
of the two patterns allows for a more precise localisation of the EZ. Also,
co-occurrence of γ and high-γ bands with HFO events are con�rmed to play a
relevant role in the de�nition of EZ, as observed by Diessen et al. (����).
This pipeline allows to highlight both important similarity measures for

the classi�cation task (across patients) and relevant channels for each pa-
tient. Figure �.� shows the channels importance for the prediction task of
a particular patient. Recalling Equation (�.�), the classi�cation coe�cients
α (p) for each patient p are estimated based on repetitions of the experiment.
Each component of α (p) corresponds to a speci�c channel selected during the
training phase. This vector is constrained to be sparse and small normed via
the �1�2 regularisation term. Figure �.� shows the highest values ofα (p) across
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������ �.�. Channel importance for the prediction for a single patient.
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������ �.�. Probabilities of each channel to be critical.

repetitions. Each channel is related to its occurrence as the number of times
its coe�cient was non-zero on the number of times it was selected during
the training phase. In the plot, channels are ordered both in their average
coe�cient value and occurrence. Note that the algorithm correctly assigns
positive weights to critical channels and negative weights to non-critical ones
in all cases.

Figure �.� shows the probabilities of each channel to be critical, compared to
true critical and non-critical channels (red/blue) as tagged by clinical experts.
The logistic function quanti�es the probability of belonging to the class of
critical channels, hence provides, for each patient, the statistics on probability
values for the critical class when selected as test samples. The red dashed
line corresponds to 50% probability. This allows to individuate the channels
corresponding to less reliable prediction. Note that generally most of the
channels are far from chance.
Such learning pipeline favoured the identi�cation of interesting channels

where to further investigate for their interactions over time, a process described
in what follows.

8.3 Wishart Process

The idea of Wishart processes is closely related to Gaussian processes (GPs),
since the GWP is built starting from GPs. A Gaussian process is a collection
of random variables, for which (any �nite number) have a joint Gaussian
distribution (Rasmussen, ����). Hence, it is possible to de�ne a distribution
over functions u(z) ∼ GP(m(z),κ(z, z �)), where z is an arbitrary dependent
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8 Wishart Process for Epilepsy

variable, and the meanm(z) and kernel function κ(z, z �) are de�ned as follows:
m(z) = E[u(z)], (�.�)

κ(z, z �) = cov[u(z),u(z �)]. (�.�)

Any collection of function values has a joint Gaussian distribution, as follows:

(u(z1), . . . ,u(zN ))� ∼ N(µ,K), (�.�)

where K ∈ SN
+ is the Gram matrix which encodes the kernel between the

dependent variables z, i.e., Ki j = κ(zi , zj ), and the mean µ = (m(zi ))i ∈{1, ...,N }.
The choice of a particular kernel determines the property of such functions
(e.g., smoothness, periodicity).

Similar to constructing a Wishart distribution starting from multivariate
Gaussian distribution, the idea is to build the generalised Wishart process
starting from Gaussian processes (Wilson and Ghahramani, ����). In particular,
this chapter assumes the dependent variable z to be the time indexing, even
if the construction allows z to assume values from any arbitrary set. For
simplicity of the notation, temporal indexing is indicated with t .
Consider νd independent Gaussian process functions, such that ui j (t) ∼

GP(0,κ) with i = 1, . . . ,ν and j = 1, . . . ,d . Particularly, cov[ui j (t),ui j (t �)] =
κ(t, t �)δii�δ j j� and (ui j (t1), . . . ,ui j (tN ))� ∼ N(0,K), where δ is the Kronecker
delta, and K ∈ RN×N is the kernel matrix with elements Ki j = κ(ti , tj ).
Following the notation of Wilson and Ghahramani (����), let ûi (t) =

(ui1(t), . . . ,uid (t))�, and L be the Cholesky decomposition of a scale matrix
V ∈ Sd

++, such that LL� = V . In this setting, the covariance matrix Σ(t) at each
time point t has a Wishart marginal distribution (Section �.�):

Σ(t) =
ν�
i=1

Lûi (t)û�
i (t)L� ∼ Wd (ν,V ), (�.�)

under the constraint that the kernel function κ(t, t) = 1. Each element ûi (t)
is a univariate Gaussian with zero mean and variance κ(t, t) = 1. Given the
fact that each one of this elements are uncorrelated, ûi (t) ∼ N(0, I ), and
E[Lûi (t)û�

i (t)L�] = LIL� = LL� = V , which leads to Lûi (t) ∼ N(0,V ). Since
Equation (�.�) includes a sum across ν outer products of N(0,V ) random
variables, according to De�nition �.�, the covariance at a time t follows a
Wishart distribution Wd (ν,V ). Let Σ(t) ∼ GWP(V ,ν,κ(t, t �)) denote that
Σ(t) is a sequence of positive semi-de�nite random matrices with Wd (ν,V )
marginals. Hence, a draw from the Wishart process is a collection of matrices
indexed by time, like a draw from a Gaussian process is a collection of function
values indexed by time. Figure �.� shows an example for a two-dimensional
Wishart process.

8.3.1 Inference

Consider a data set D, composed of the observations (x i (t))1≤i≤nt , x i (t) ∈ Rd ,
t = 1, . . . ,T . Assume to have a generalised Wishart process prior on the
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������ �.�. A draw from theWishart process. Each ellipse represents a �-dimensional
covariance matrix indexed by time (from left to right). The ellipse rep-
resentation of a covariance matrix is given by the correlation between
the variables (rotation), and the eigenvalues of the matrix (major and
minor axes).

sequence of covariance matrices in time, i.e., Σ(t) ∼ GWP(V ,ν,κ). A Bayesian
inference procedure allows to sample from the posterior distributions given
the observations using the Gibbs sampling (Geman and Geman, ����). After
the initialisation of u,θ , L,ν , the sampling algorithm consists in the following
iterative steps:

p(u |θ , L,ν,D) ∝ p(D |u, L,ν )p(u |θ ) (�.�)
p(θ |u, L,ν,D) ∝ p(u |θ )p(θ ) (�.�)
p(L|θ ,u,ν,D) ∝ p(D |u, L,ν )p(L) (�.��)
p(ν |θ ,u, L,D) ∝ p(D |u, L,ν )p(ν ) (�.��)

which will converge to samples from p(u,θ , L,ν |D).
As before, u are the Gaussian process functions. In particular, u is a vector

of length Ndν . The prior p(u |θ ) = N(0,KB) is a Gaussian distribution where
KB is a block diagonal covariance matrix formed using dν of the K matrices.
If the K matrices depend from dimensions d or degree of freedom ν , then
such matrices will be di�erent from one another. Sampling from (�.�) exploits
the elliptical slice sampling (Murray, Prescott Adams, and MacKay, ����),
which jointly updates every element of u, and it was designed to sample from
posteriors with correlated Gaussian priors (Wilson and Ghahramani, ����).
The prior on the parameters depends on the data. In general, Wilson and

Ghahramani (����) suggest to sample from (�.�) and (�.��) using theMetropolis-
Hastings algorithm (Hastings, ����), with a lognormal prior onθ and a spherical
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����� �.�. Subset of the interesting channels. Almost all of them reside in di�erent
regions of the brain. Three of them are tagged as epileptogenic (�) by the
clinical expert, while the others are tagged as not epileptogenic (-�).

channel tag region channel tag region

B��-B�� � Hip R��-R�� -� Wm-sINS
V��-V�� � Wm O��-O�� -� Wm
C��-C�� � meOTS X��-X�� -� CIa

normal prior on L. Instead of learning ν , also, the authors show to be e�ective
to set ν = d + 1.

8.4 Wishart Process for Epilepsy Data

The sampling algorithm (Section �.�.�) was applied on the epilepsy data used
in Section �.�. Here, considerN data points, one at each time t . The dimensions
d corresponds to the channels.

The following analysis involves a single patient, for which only channels
included in Table �.� were analysed due to computational restrictions. Indeed,
such channels were selected as relevant based on Figures �.� and �.�, and their
belonging to di�erent part of the brain. Also, the time-series was restricted to
1000 ms (starting from 504000 ms, to avoid border e�ects). Figure �.� shows
the results of the Wishart process for such channels, including a covariance
matrix averaged for each 20 ms.

The general correlation between channels is in line with their characteristics
(tag and region). For example, V��-V�� and O��-O�� exhibit a certain pattern
of correlation in the �rst part of the series, decreasing (to almost zero) in the
second part. While their tag is di�erent (V��-V�� is tagged as epileptogenic,
O��-O�� is not), they belong to the same area of the brain (white matter).
C��-C�� and X��-X��, C��-C�� and O��-O��, V��-V�� and R��-R�� exhibit
almost zero correlation. This is reasonable given the information on their
tag and the region of the brain associated, which is di�erent among them.
Likewise, the temporal correlation between B��-B�� and C��-C�� remains
low. While the tag associated to such channels is the same (both epileptogenic),
they belong to di�erent part of the brain (Hippocampus and meOTS).

Also, R��-R�� and X��-X�� exhibits a low amount of (positive) correlation.
Indeed, while belonging to di�erent areas of the brain, both channels were
tagged as epileptogenic by the medical experts.
Channels B��-B�� and O��-O�� belong to di�erent part of the brain and

are marked with di�erent tags. However, their correlation is (in some time
points) higher than 0. Figure �.� shows a zoomed portion of the time series
for visual inspection, where the covariance between channels B��-B�� and
O��-O�� varies across time. Notably, the covariance between the two channels
is generally higher than zero, so that there is a positive correlation between
B��-B�� and O��-O��. This is not true for each point of the series, which
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40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5
ms +5.041e5

6

4

2

0

2

4

6

20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5
ms +5.042e5

B01-B02, O02-O03

������ �.�. Visual inspection on the covariance matrix for B��-B�� and O��-O��
channels. Each covariance matrix is averaged in 20 ms. For two cov-
ariance matrix in the particular time-points, we plot the time-series
associated.

shows an oscillating behaviour. Indeed, the time-series associated to such
covariance matrices exhibit an discernible correlation when the covariance is
higher than zero, while they appear to be independent when the covariance is
zero.

8.5 Discussion

Epilepsy is a disorder which cause severe impairments in daily life. More
than �� million people are a�ected by such disease and many needs surgical
operations. The identi�cation of a minimal amount of neural cortex to ablate
from the patient is a crucial and challenging task, often based on invasive
procedures such as SEEG. Nonetheless, characterisation of SEEG signals is
burdensome and time-consuming, usually based on signal processing tools or
visual inspection.

This chapter proposes a novel data analysis pipeline on SEEG signals, in
order to automatic classify the neural recordings and quantitatively assess
their inter-correlation, allowing for in-depth characterisation of the SEEG
signals. The pipeline allows the pairwise comparison between multi-scale
representation of the time series, in such a way to automatically select the most
relevant similarity measures at speci�c frequency bands and to di�erentiate
pathological activity from physiological in focal epilepsy. The learning pipeline
was applied to a data set of 18 patients for a total of 2347 neural recordings
analysed by medical experts. Without any prior assumption on the problem,
the data-driven method revealed the most discriminative frequency bands for
the localisation of epileptic areas in the high-frequency spectrum (≥ 80 Hz)
while showing high performance metric scores, which represents a starting
point for the search of clinical biomarkers of epileptogenicity.
Temporal characterisation of the channels using Wishart processes o�ers

insight on the developing relations across di�erent brain areas, considering
each time point as a di�erent sample which belongs to a similar but distinct dis-
tribution, with respect to the previous and subsequent time point. Furthermore,
appropriate kernel functions for the evolutionary behaviour of the time series
would favour additional characterisation of SEEG signals at high frequencies
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(≥ 80 Hz), highlighting high frequency patterns which are informative for the
critical/non-critical state discrimination.
To the best of the author’s knowledge, this represents a �rst attempt to

integrate multi-scale kernel representation of neural signals for EZ localisation,
in a context of multi-task classi�cation and kernels selection. The proposed
pipeline shows optimal performance and provides a starting point in the
direction of data-driven de�nition of clinical biomarkers and of a general
deeper understanding of focal epilepsy.
This chapter focuses on the interictal phase. Preictal and ictal phases may

o�er further insights, since the synchronisation level changes across these
stages (Burns et al., ����). With the help of Wishart processes for the char-
acterisation of evolution patterns of the time series, preictal and ictal phases
may help the identi�cation of di�erent frequency bands and the classi�cation
outcome.
These steps represent further e�orts in the direction of a personalised

medicine approach to focal epileptic patients, with the double aim of explicitly
understand the main features of the pathology and detect the EZ in the most
e�cient and precise way possible.
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������ �.�. Wishart process for the channels as detailed in Table �.�. The covariance
matrices belonging to channels with the same tag have a correlation
coe�cient in green/red for positive tags, purple/brown for negative
tags, while blue/orange indicates a correlation between channels with
opposite tag.
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Conclusion and Future Work

The work of this thesis focuses on the graphical modelling of multivariate time
series, and aims at extending recent advances in dynamical network inference.
In particular, from the methodological point of view this thesis contains two
main contributions.

The �rst contribution leverages on recent advances in optimisation theory
resulting in a novel forward-backward splitting (FBS) procedure for the time-
varying graphical lasso model, allowing to scale and speed-up the computation
in some common use cases (Chapter �). Also, the FBS procedure avoids variable
duplication, which is fundamental to analyse a large set of variables in real
contexts.

The second main contribution consists in the development of a novel graph-
ical modelling method, that is the latent variable time-varying graphical lasso,
to model a dynamical system while taking into account latent factors that
may change during the evolution of the system (Chapter � and Tomasi et al.,
����b). Such contributions have been extensively validated on both synthetic
and real data, showing empirical advantages in using such models over the
state-of-the-art methods for graphical modelling.
Graphical models for temporal (or pseudotemporal) data have been the

centre of the work of this thesis also from an application point of view, in
particular for breast cancer progression (Chapter �), haematopoietic stem cells
(Chapter �) and epilepsy data (Chapter �). These works are suitable for the
application of the developed dynamical graphical modelling methods.

Both proposed methods in Chapters � and � may be further improved, such
as exploiting the structure of the involved matrices (e.g., the block structure of
precision matrices) to increase the e�ciency of the implemented optimisation
algorithms, such as the computation of ∇f in Equation (�.�). In particular,
consider the latent variable time-varying graphical lasso. Here, the L matrix
is natively not decomposable, because the information on the latent factors,
as well as the information on the interactions between latent and observed
variables. Additional information on, for example, the matrix ΘOH as in Equa-
tion (�.��), allows to decompose the L matrix into its three components. Fur-
thermore, matrix factorisation methods may in general head to the inference
of the exact contribution of latent factors starting from the L matrices (Ding,
He, and Simon, ����; Tozzo et al., ����).

Also, a notable remark involves the relevant similarity between latent vari-
able and data integration methods. Interpreting Equation (�.��) as two di�erent
networks (one between variables H and one between variables O), the idea of
network integration may be to use the information between the variables H
andO to estimate both networks betweenH and betweenO (Cheng, Shan, and
Kim, ����). Starting from this, the latent variable time-varying graphical lasso
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method may be adapted for a data integration method with the information
on the temporal evolution of the data.
Future improvements may also involve the minimisation of Θ in the time-

varying graphical lasso algorithm under FBS minimisation. A bottleneck of
the method presented in Section �.� involves the need of the search for γ to
ensure the positive-de�niteness of the matrix under minimisation. However,
consider the lower Cholesky decomposition of the precision matrixΘt = CtC

�
t .

Such decomposition and the following minimisation of C allow to ensure the
positive-de�niteness of the matrix Θt implicitly. In this context, minimising
the C matrix would be su�cient, so to avoid the γ step in Algorithm � which
only ensure the positive-de�niteness of Θt .

Furthermore, the temporal penalty which both the time-varying graphical
lasso and latent variable time-varying graphical lasso exploit only involves
consecutive time points. Instead, it would be possible to use di�erent temporal
kernels to model diverse behaviours of variable interactions, such as periodicity
(e.g., in circadian cycles), an approach similar to Wishart processes (Wilson
and Ghahramani, ����).

The graphical modelling of time-series is a relevant topic in machine learn-
ing. As such, this thesis represents a starting point in the direction of develop-
ing appropriate models for time series and data analysis, aiming at a better
understanding of underlying processes to improve pattern recognition tasks.
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Availability and Implementation

The code developed for the work included in this thesis is freely available
online. The minimisation algorithms of time-varying graphical lasso with
forward-backward splitting (Chapter �), latent variable time-varying graphical
lasso (Chapter �), the group lasso with overlap, Gaussian discriminant ana-
lysis (Chapter �) and the Wishart process inference (Chapter �) are included
into ������, a open-source Python library, available under BSD-�-Clause at
https://github.com/fdtomasi/regain. ������ is fully compatible with the
������������ library of machine learning algorithms, providing a straight-
forward and intuitive interface. The implementation relies on low-level high-
performance libraries for numerical computations and it exploits closed-form
solutions for proximal operators, leading to a fast and scalable optimisation
algorithm even with an increasing number of unknowns.
The multi-task multiple kernel learning pipeline (Section �.�) is available

online as an open-source Python framework, available under BSD-�-Clause at
https://github.com/fdtomasi/multikernel. The implementation relies on
high-performance libraries for numerical computations, scaling properly to
an arbitrary number of patients and acquisition areas per patient.
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Part IV

Appendix

This appendix contains further details on the methods presented in this thesis.
In particular, Appendix � contains useful mathematical notions for the theory
used in Chapters � and �. Appendix � includes additional work developed in a
parallel direction with respect to the core of this thesis. Such work is contained
in (Tomasi et al., ����).
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A Linear Algebra

This appendix presents useful theorems and properties that have been used
throughout this thesis. Other details (and proofs) of such results may be found
in (Harville, ����; Lauritzen, ����; Murphy, ����).
Appendix �.� shows omitted steps for the derivation of ADMM that have

been used in Section �.�, namely the minimisation equivalence in the deriva-
tion of ADMM.

A.1 Graph Theory

Consider a graph G = (V, E), where V is the set of vertices of the graph and
E is the set of edges. The boundary bd(A) of a subset A of vertices is the set of
vertices inV \A that are neighbours to vertices in A. The closure cl(A) of A is
de�ned as A ∪ bd(A).
De�nition A.1 (Decomposition of graphs). A pair (A,B) of subsets of the
vertex set V of an undirected graph G is said to form a decomposition of G if
V = A ∪ B, A ∩ B is complete and separates A from B.

In this case, (A,B) decomposes the graph G into the components GA and
GB . A decomposable graph is a graph that can be decomposed into its cliques,
that is, formally, follows the next de�nition.

De�nition A.2 (Graph decomposability). An undirected graph is said to be
decomposable if it is complete, or if there exists a proper decomposition (A,B)
into decomposable subgraphs GA and GB .

A.2 Matrix Results

De�nition A.3 (Inverse of a partitioned matrix). The inverse of a partitioned
matrix is given by

�
A B

C D

�−1
=

�
E−1 −E−1G

−FE−1 D−1 + FE−1G

�
(A.�)

where E = A − BD−1C , F = D−1C , and G = BD−1.

A.3 Trace

De�nition A.4 (Trace). The trace of a matrix X is denoted with tr(X ), and it
is de�ned as the sum of its diagonal:

tr(X ) =
�
i

Xii . (A.�)
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Property A.1 (Inner product). If �·, ·� is the standard inner product on Rn , then
tr(A�B) = �A,B�. (A.�)

Property A.2 (Cyclic permutation).

tr(ABC) = tr(CAB) = tr(BCA) (A.�)

A.4 Derivatives

Proposition A.1 (Trace).
∂ tr (BA)
∂A

= B� (A.�)

Proposition A.2 (Determinant).
∂ det(A)
∂A

= adj�(A) (A.�)

Proposition A.3 (Logarithm of the determinant).

∂ logdet(A)
∂A

=
adj�(A)
det(A) = A−� � (A−1)� (A.�)

A.5 Minimisation Equivalence

Consider the following minimisation problem:

argmin
Θ

f (Θ) + ρ

2 �Θ −A�2 + ρ

2 �Θ − B�2 + ρ

2 �Θ −C�2 (A.�)

A minimiser is given by:

0 ∈ ∂ f (Θ) + ρ(Θ −A) + ρ(Θ − B) + ρ(Θ −C) (A.�)

= ∂ f (Θ) + 3ρ(Θ − A + B +C

3 ) (A.��)

which is the minimiser of:

argmin
Θ

f (Θ) + 3ρ
2 �Θ − A + B +C

3 �2. (A.��)

Equivalently, this can be shown as follows:

2�Θ − A + B

2 �2 ≈ �Θ −A�2 + �Θ − B�2

2�Θ −A

2 +
Θ − B

2 �2 = 1
2 �Θ −A�2 + 1

2 �Θ − B�2 + �Θ −A,Θ − B�
= �Θ −A�2 + �Θ − B�2 + �Θ −A,Θ − B�

− 1
2 �Θ −A�2 − 1

2 �Θ − B�2

= �Θ −A�2 + �Θ − B�2 − 2�Θ −A

2 − Θ − B

2 �2

= �Θ −A�2 + �Θ − B�2 − 1
2 �B −A�2,

hence �Θ −A�2 + �Θ − B�2 = 2�Θ − A+B
2 �2 + 1

2 �B −A�2.
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B Immunoglobulin Analysis

This chapter introduces an additional work developed over the course of my
Ph.D. studies, which is not related to graphical models or time series data, but
introduces challenging questions from a biomedical point of view, that is the
clonotype identi�cation of antibodies.
Immunoglobulin (IG) clonotype identi�cation is a fundamental open ques-

tion in modern immunology. An accurate description of the IG repertoire is
crucial to understand the variety within the immune system of an individual,
potentially shedding light on the pathogenetic process. Intrinsic IG heterogen-
eity makes clonotype inference an extremely challenging task, both from a
computational and a biological point of view. This chapter presents �����,
a framework that allows to reconstruct clonal families also in case of highly
mutated sequences. ����� has a modular structure, and it is designed to be
used with large next generation sequencing (NGS) data sets, a technology
which allows the characterisation of large-scale IG repertoires. The framework
is extensively validated with clustering performance metrics on the results in
a simulated case. ����� is implemented in Python, and it is publicly available
under FreeBSD licence at https://github.com/slipguru/icing.

B.1 Scienti�c Background

The identi�cation of immunoglobulin (IG) clonotypes is a key question in
modern immunology. A clonotype is a particular combination of IGs gener-
ated by a single plasma cell clone, which is a population of cells all derived
from a single progenitor cell (germline). The ability to infer clonotypes is
crucial as it allows to understand how much diversity an individual has in
its immune repertoire and to study immune response through B-cell clonal
ampli�cation and diversi�cation. Indeed, understanding the variety within the
immune system of an individual may potentially shed light on pathogenetic
processes. In healthy individuals the repertoire is expected to be extremely
diverse, to guarantee the ability to respond to a wide range of antigens (e.g.
bacteria, viruses). The diversity of the B-cell repertoire is due to the gene
recombination process, where, by random selection, one for each V, D and
J genes are joined together, with a simultaneous trimming and addition of
random nucleotides (Figure �.�). The resulting bridging segment between V
and J genes, called complementarity determining region � (CDR�), is the most
variable and therefore important for the antigen binding (Rock, ����). Before
encountering an antigen, B-cells have zero (or few) somatic mutations.Without
considering mutations, the overall repertoire diversity usually comprises 107
to 108 clonotypes, with lower bounds of diversity of 105 and potentially as
high as 1011 unique molecules in a single individual (Glanville, ����). After the
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������ �.�. IG recombination. Starting from V(D)J gene segments, one of each type
is selected to produce the IG sequence. When joining two segments,
some insertions and deletions (indels) may occur. A constant region is
appended to the IG sequence after the recombination.

immune response, they undergo clonal ampli�cation and somatic hypermuta-
tion, to increase the binding a�nity to the antigen (Kleinstein, Louzoun, and
Shlomchik, ����). The potential frequency of somatic hypermutation, which
can be at least 105-106 fold greater than the normal rate of mutation across the
genome (Oprea, ����), may generate many orders of magnitude more diversity
in the B-cell receptor repertoire than the 1011 unique molecules per individual.
Therefore, intrinsic data heterogeneity makes IG clonotyping an extremely
di�cult task.

B.2 I����

To tackle the problem of IG clonotyping inference, I developed �����
(Inferring Clonotypes of ImmuNoGlobulins), a Python library publicly avail-
able at https://github.com/slipguru/icing. The method aims at grouping
IGs into clonal families, whose members derive from the same germline an-
cestor. Input and output data have the same format used by the Change-O
suite, hence ����� is easily integrable in the usual pRESTO/Change-O pipeline
(Gupta, ����; Vander Heiden, ����). In particular, data should be in the format
produced by Change-O, that is, IGs should be represented via their V gene
calls and CDR� amminoacidic (or nucleotidic) sequence. Also, an indication of
the mutation level of the sequence with respect to reference should be present,
to allow for the �nal steps of the pipeline (Appendix �.�.�).

����� is designed to be used with a large number of data, for example
coming from NGS technologies. The method is implemented in Python,
exploiting separate processes on multi-core machines for almost each step of
three sequential phases: (i) data shrinking, (ii) high-level grouping and (iii)
�ne-grained clonotype identi�cation (Figure �.�).

B.3 Materials and Methods

B.3.1 Synthetic Data Generation

Synthetic data sets are generated using partis (Ralph andMatsen IV, ����). Data
are characterised by an increasing number of IGs and clones, 0.05 frequency
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CSV or TAB-delimited file (1) Data shrinking (2) High-level clustering (3) Clonotype identification

������ �.�. ����� pipeline. Starting from a CSV or TAB-delimited �le, the �rst step
consists in grouping together sequences based on their V gene calls and
CDR� identity (data shrinking step). An high-level clustering is done on
CDR� lengths to reduce the computational workload of the third and
�nal phase, which involves a clustering step on each of the previously
found groups to obtain �ne-grained IG clonotypes.

of insertions and deletions (indels) of maximum length of 6 nucleotides on the
CDR� sequence, and di�erent degrees of V gene sequence mutation level. In
particular, synthetic data sets contained from 104 to 106 records, divided into
100 to 3000 clonotypes, respectively. Table �.� presents an overview of the
data sets.

B.3.2 Preprocessing

The data sets were submitted to IMGT/HighV-QUEST (Alamyar, ����) for
V(D)J genes inference, then preprocessed by a Change-O feature (Gupta, ����).
The outcome is a single TAB-delimited �le containing the information about
IGs and their metadata, such as the identi�cation of V(D)J sequences (i.e.,
V(D)J gene calls), V gene sequence mutation level and identi�cation of CDR�
sequence, to be used as input to the pipeline.

B.3.3 Clonotype Identi�cation

The clonotype identi�cation step is divided into three parts.

���� ���������. Input data are grouped based on V gene calls (exact
correspondence) and CDR� identity (completely overlapping sequence). This
allows to reduce the computational workload of next clustering steps. To each
group is assigned a weight, equal to the cardinality of the group.

���������� ����� ���������. This phase involves a clustering step on
CDR� lengths of previously identi�ed groups. The outcome, which consists
of high-level groups of IGs to be re�ned afterwards, contains IG sequences
having comparable CDR� lengths. This is done using MiniBatchKMeans clus-
tering algorithm (Sculley, ����), which is computationally e�cient and, more
importantly, may group together very similar clusters.

������������ ����� ���������. Each high-level group extracted before
is then subdivided based on the actual IG distance. The distance between
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����� �.�. Datasets overview. For reference, the total number of functional gene
segments for the V/D/J regions of heavy chains in the human genome are
��/��/� (Janeway et al., ����).

data set sequences clonotypes avg
seqs/clone

unique
V genes

unique
D genes

unique
J genes

mean (std)
of V gene mutation

D� ���� �� ��.�� �� �� � �.�� (�.��)
D� ����� �� ���.�� �� �� � �.�� (�.��)
D� ����� �� ���.�� �� �� � �.�� (�.��)
D� ����� ��� ��.�� �� �� � �.�� (�.��)
D� ������ ��� ���.�� �� �� � �.�� (�.��)
D� ������ ��� ���.�� �� �� � �.�� (�.��)
D� ������ ���� ���.�� �� �� � �.�� (�.��)
D� ������ ���� ���.�� �� �� � �.�� (�.��)
D� ������ ���� ���.�� �� �� � �.�� (�.��)
D�� ������ ���� ��.�� �� �� � �.�� (�.��)
D�� ������ ���� ���.�� �� �� � �.�� (�.��)
D�� ������� ���� ���.�� �� �� � �.�� (�.��)

IGs is computed taking into account V gene calls and CDR� sequences. In
particular, the distance between two IGs is lower than in�nity if and only if
they have at least one V gene call in common. In such case, their actual distance
is computed using a sequence distance method on their CDR� sequences. In
particular, the method implements a generic normalised distance measure
based on a particular model matrixM. Let �M�max = maxi , j |Mi j |. For two
sequences s and t of equal length �, their distance D(s, t) is de�ned as:

D(s, t) = 1
� · �M�max

��
i=1

M(si , t i ). (B.�)

The choice of a speci�c model depends on the type of data under analysis.
WhenM = H , whereH(x,y) = 0 if x = y and 1 otherwise, the model assumes
the form of a normalised Hamming distance (Hamming, ����).

Such distance measure allows seamless integration of di�erent nucleotidic
and amminoacidic models. ����� includes Hamming and its weighted variants,
such as HS�F (Yaari, ����). The models are de�ned between sequences of equal
length. The method allows also the comparison of sequences with di�erent
lengths, by tuning a tolerance parameter. In such case, a standard alignment
step between two sequences of di�erent lengths may be performed before
the computation of their distance, using the Smith-Waterman algorithm for
sequence alignment (Smith and Waterman, ����).
IG sequences are characterised by an high level of mutation. Therefore, a

correction function based on V gene sequence mutation level may be used
to reduce distances between two IGs if mutated. This procedure encodes the
uncertainty of the distance measure when dealing with highly mutated data,
allowing for a more robust measure. Note that this is a step which is strongly
depends on the data at hand. In my experiments, I corrected the distances
between two IGs by multiplying D(s, t) with νst , where νst = 1− ms−mt

2 , with
ms andmt are the mutation levels of the sequences s and t , respectively.

After the design of such distance metric, �ne-grained groups (i.e., �nal
clonotypes) are extracted using the DBSCAN clustering algorithm (Ester et al.,
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����), which only require the parameter ϵ for the neighbourhood search of
spatial distances. On top of an appropriate index structure, the algorithm can
run in O(n logn) and it only needs linear memory, allowing the analysis of
large-scale data.

B.3.4 Performance Assessment

For synthetic data sets the information about IG clonotypes is known, and it is
used as ground truth. In order to evaluate clustering performance of themethod,
I used standard metrics such as homogeneity (HOM), completeness (COM) and
V-measure (VSC), mutual information based scores, namely Adjusted Mutual
Information (AMI) and Normalized Mutual Information (NMI), Adjusted Rand
Index (ARI), and Fowlkes-Mallows score (FMI) (Fowlkes and Mallows, ����;
Hubert and Arabie, ����; Strehl and Ghosh, ����; Vinh, Epps, and Bailey, ����).
Such measures are bound by [0, 1], and no assumption is made on the cluster
structure. Moreover, AMI, ARI and FMI are adjusted against chance, which is
an important feature when evaluating a clustering performance in presence
of a large number of clusters. Therefore, random (uniform) label assignments
have scores close to 0 for measures normalised against chance.

B.3.5 Computing Architecture

Experiments were performed using a computing machine equipped with two
Intel® Xeon® CPUs E�-���� v� (�.� GHz, � cores each) and ��� GB of RAM�.

B.4 Results

B.4.1 Performance Evaluation

I evaluated the method performance on the data sets shown in Table �.�. In
particular, Table �.� shows the clustering scores (Appendix �.�.�) for data
sets D�–�, obtained using di�erent ����� con�gurations. The metric used
for CDR� sequence distance computation is the Hamming metric. The other
parameters we investigated involve the neighbourhood selection radius of the
DBSCAN clustering algorithm (restricted to �.� or �.�), the tolerance of the
di�erence in CDR� sequence lengths (�, � or up to � allowed insertions or
deletions), and the optional distance correction based on the V gene segment
mutation level. Table �.� is ordered based on a decreasing FMI score, which,
for its properties, it is the most strict of the clustering measures described in
Appendix �.�.�. The highest scores (close to 1) for each of the three data sets
are associated to similar ����� con�gurations, in which the neighbourhood
selection of the DBSCAN clustering algorithm is restricted to �.�, the tolerance
of the di�erence in sequence lengths is � (i.e., no alignment between CDR�s
needed to be done), and sequence distances are corrected based on the V gene

�This is not representative of the amount of computational resources required by the method.
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����� �.�. Comparison of performance metrics between various ����� con�gur-
ation on synthetic data sets. Columns are: ϵ (the DBSCAN parameter
for neighbourhood selection), tolerance (tolerance parameter on CDR�
length), correction (Y for a correction based on the mutation level of V
gene segments, N for no correction), followed by the clustering measures
as described in Appendix �.�.�. For each data set, results are ordered by a
decreasing FMI, which is the most strict of the measures for its properties.

no chance normalisation chance normalisation

data set ϵ tolerance correction HOM COM VSC NMI AMI ARI FMI

D�

�.� � Y �.�� �.�� �.�� �.�� �.�� �.�� �.��
�.� � Y �.�� �.�� �.�� �.�� �.�� �.�� �.��
�.� � Y �.�� �.�� �.�� �.�� �.�� �.�� �.��
�.� � N �.�� �.�� �.�� �.�� �.�� �.�� �.��
�.� � N �.�� �.�� �.�� �.�� �.�� �.�� �.��

D�

�.� � Y �.�� �.�� �.�� �.�� �.�� �.�� �.��
�.� � Y �.�� �.�� �.�� �.�� �.�� �.�� �.��
�.� � Y �.�� �.�� �.�� �.�� �.�� �.�� �.��
�.� � N �.�� �.�� �.�� �.�� �.�� �.�� �.��
�.� � N �.�� �.�� �.�� �.�� �.�� �.�� �.��

D�

�.� � Y �.�� �.�� �.�� �.�� �.�� �.�� �.��
�.� � Y �.�� �.�� �.�� �.�� �.�� �.�� �.��
�.� � N �.�� �.�� �.�� �.�� �.�� �.�� �.��
�.� � Y �.�� �.�� �.�� �.�� �.�� �.�� �.��
�.� � N �.�� �.�� �.�� �.�� �.�� �.�� �.��

segment mutation level. Particularly for data set D�, the distance correction is
shown to be a critical step to reliably identify IG clonotypes, as con�rmed by
high ARI, AMI and FMI scores (chance-corrected clustering measures). Notably,
for D� and D� data sets, the correction gives better results when associated to
a tolerance parameter of � or � nucleotides for CDR� sequences.

The best parameters selected on data sets D�–�were used to evaluate the res-
ults on the remaining data sets of Table �.�. The results presented in Table �.�
show that ����� is capable to achieve high performance, which means a reli-
able IG sequence clonotyping, even with an increasing number of sequences.
Also, the method is stable across data sets with di�erent sizes.

B.4.2 Expected Clonotypes

Figure �.� shows the number of clonotypes found by ����� compared to
the expected clonotypes (ground truth). Inferred clonotypes are very close to
the ground truth disregarding the size of the data sets. This result, together
with the high clustering performance achieved by our method (Table �.� and
Table �.�), makes ����� a reliable framework for IG clonotype identi�cation
in real contexts, where real clonotypes are not known.
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����� �.�. ����� results on synthetic data sets, using the best parameters as selected
in Table �.� (ϵ : �.�, tolerance: �, correction: Y). For each data sets, clustering
measures are reported as described in Appendix �.�.�.

no chance normalisation chance normalisation

data set sequences HOM COM VSC NMI AMI ARI FMI

D� ����� �.�� �.�� �.�� �.�� �.�� �.�� �.��
D� ������ �.�� �.�� �.�� �.�� �.�� �.�� �.��
D� ������ �.�� �.�� �.�� �.�� �.�� �.�� �.��
D� ������ �.�� �.�� �.�� �.�� �.�� �.�� �.��
D� ������ �.�� �.�� �.�� �.�� �.�� �.�� �.��
D� ������ �.�� �.�� �.�� �.�� �.�� �.�� �.��
D�� ������ �.�� �.�� �.�� �.�� �.�� �.�� �.��
D�� ������ �.�� �.�� �.�� �.�� �.�� �.�� �.��
D�� ������� �.�� �.�� �.�� �.�� �.�� �.�� �.��

B.5 Discussion

Synthetic experiments show ����� to be capable of successfully identifying
IG clonotypes, using synthetic data comprising highly mutated sequences,
di�erent V(D)J recombination events and indels on CDR� sequences. Due to
the intrinsic di�culty of validating the method on real data (where the ground
truth is not known), this chapter only includes the results obtained on synthetic
data, where the method can be validated in relation to the ground truth.

����� has a modular structure which allows to combine di�erent features.
In particular, the clonotype identi�cation step has the potential to include
Hamming or other arbitrary nucleotidic or amminoacidic models to compute
sequence distances, arbitrary CDR� length tolerance or V gene sequence
mutation-based correction, which is an original contribution of this framework.
����� is scalable with the number of input sequences, allowing for the analysis
of large-scale data sets composed of more than 106 sequences, which is a typical
use-case when dealing with NGS data. To achieve scalability, ����� is based
on a novel methodology which exploits the DBSCAN clustering algorithm, on
top of an appropriate index structure. In particular, I was not able to compare
such pipeline with plain Change-O which, since it is based on hierarchical
clustering, has memory complexity ofO(n2), thus infeasible for large data sets.
However, i was able to analyse arbitrarily large data sets by exploiting all of
the steps shown in Appendix �.�.�, which turned out to be fundamental in
the experiments.

����� is easily integrable in the usual pRESTO/Change-O pipeline for IG
analysis and it is ready to be used in real scenarios. In presence of sequences
with low rate of recombination and mutation (i.e., as in the case of non-healthy
patients), I expect the data shrinking step (Appendix �.�.�) to be highly bene-
�cial for reducing the complexity of the algorithm, which is proportional to
the number of unique CDR� sequences and V gene calls in the data set.
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������ �.�. Comparison between ����� clusters and expected clonotypes on syn-
thetic data sets. For each data set (x-axis), the number of clonotypes
found by ����� is compared with the expected clonotypes (y-axis), i.e.,
the ground truth. For data sets D�–�, only the best results based on FMI
score (Table �.�) are included.
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