31 research outputs found

    Summation-By-Parts Operators and High-Order Quadrature

    Get PDF
    Summation-by-parts (SBP) operators are finite-difference operators that mimic integration by parts. This property can be useful in constructing energy-stable discretizations of partial differential vequations. SBP operators are defined by a weight matrix and a difference operator, with the latter designed to approximate d/dxd/dx to a specified order of accuracy. The accuracy of the weight matrix as a quadrature rule is not explicitly part of the SBP definition. We show that SBP weight matrices are related to trapezoid rules with end corrections whose accuracy matches the corresponding difference operator at internal nodes. The accuracy of SBP quadrature extends to curvilinear domains provided the Jacobian is approximated with the same SBP operator used for the quadrature. This quadrature has significant implications for SBP-based discretizations; for example, the discrete norm accurately approximates the L2L^{2} norm for functions, and multi-dimensional SBP discretizations accurately mimic the divergence theorem.Comment: 18 pages, 3 figure

    High-order accurate difference schemes for the Hodgkin-Huxley equations

    Full text link
    A novel approach for simulating potential propagation in neuronal branches with high accuracy is developed. The method relies on high-order accurate difference schemes using the Summation-By-Parts operators with weak boundary and interface conditions applied to the Hodgkin-Huxley equations. This work is the first demonstrating high accuracy for that equation. Several boundary conditions are considered including the non-standard one accounting for the soma presence, which is characterized by its own partial differential equation. Well-posedness for the continuous problem as well as stability of the discrete approximation is proved for all the boundary conditions. Gains in terms of CPU times are observed when high-order operators are used, demonstrating the advantage of the high-order schemes for simulating potential propagation in large neuronal trees

    Higher order finite difference schemes for the magnetic induction equations

    Get PDF
    We describe high order accurate and stable finite difference schemes for the initial-boundary value problem associated with the magnetic induction equations. These equations model the evolution of a magnetic field due to a given velocity field. The finite difference schemes are based on Summation by Parts (SBP) operators for spatial derivatives and a Simultaneous Approximation Term (SAT) technique for imposing boundary conditions. We present various numerical experiments that demonstrate both the stability as well as high order of accuracy of the schemes.Comment: 20 page

    Adjoint-based sensitivity analysis of ignition in a turbulent reactive shear layer

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143014/1/6.2017-0846.pd

    Review of Summation-by-parts schemes for initial-boundary-value problems

    Full text link
    High-order finite difference methods are efficient, easy to program, scales well in multiple dimensions and can be modified locally for various reasons (such as shock treatment for example). The main drawback have been the complicated and sometimes even mysterious stability treatment at boundaries and interfaces required for a stable scheme. The research on summation-by-parts operators and weak boundary conditions during the last 20 years have removed this drawback and now reached a mature state. It is now possible to construct stable and high order accurate multi-block finite difference schemes in a systematic building-block-like manner. In this paper we will review this development, point out the main contributions and speculate about the next lines of research in this area

    Direct numerical simulation of noise suppression by water injection in high-speed flows

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143117/1/6.2017-1700.pd

    Stability of Correction Procedure via Reconstruction With Summation-by-Parts Operators for Burgers' Equation Using a Polynomial Chaos Approach

    Get PDF
    In this paper, we consider Burgers' equation with uncertain boundary and initial conditions. The polynomial chaos (PC) approach yields a hyperbolic system of deterministic equations, which can be solved by several numerical methods. Here, we apply the correction procedure via reconstruction (CPR) using summation-by-parts operators. We focus especially on stability, which is proven for CPR methods and the systems arising from the PC approach. Due to the usage of split-forms, the major challenge is to construct entropy stable numerical fluxes. For the first time, such numerical fluxes are constructed for all systems resulting from the PC approach for Burgers' equation. In numerical tests, we verify our results and show also the advantage of the given ansatz using CPR methods. Moreover, one of the simulations, i.e. Burgers' equation equipped with an initial shock, demonstrates quite fascinating observations. The behaviour of the numerical solutions from several methods (finite volume, finite difference, CPR) differ significantly from each other. Through careful investigations, we conclude that the reason for this is the high sensitivity of the system to varying dissipation. Furthermore, it should be stressed that the system is not strictly hyperbolic with genuinely nonlinear or linearly degenerate fields

    Summation-by-parts operators for general function spaces: The second derivative

    Full text link
    Many applications rely on solving time-dependent partial differential equations (PDEs) that include second derivatives. Summation-by-parts (SBP) operators are crucial for developing stable, high-order accurate numerical methodologies for such problems. Conventionally, SBP operators are tailored to the assumption that polynomials accurately approximate the solution, and SBP operators should thus be exact for them. However, this assumption falls short for a range of problems for which other approximation spaces are better suited. We recently addressed this issue and developed a theory for first-derivative SBP operators based on general function spaces, coined function-space SBP (FSBP) operators. In this paper, we extend the innovation of FSBP operators to accommodate second derivatives. The developed second-derivative FSBP operators maintain the desired mimetic properties of existing polynomial SBP operators while allowing for greater flexibility by being applicable to a broader range of function spaces. We establish the existence of these operators and detail a straightforward methodology for constructing them. By exploring various function spaces, including trigonometric, exponential, and radial basis functions, we illustrate the versatility of our approach. We showcase the superior performance of these non-polynomial FSBP operators over traditional polynomial-based operators for a suite of one- and two-dimensional problems, encompassing a boundary layer problem and the viscous Burgers' equation. The work presented here opens up possibilities for using second-derivative SBP operators based on suitable function spaces, paving the way for a wide range of applications in the future.Comment: 20 pages, 7 figure
    corecore