7,853 research outputs found

    Secure Communications for the Two-user Broadcast Channel with Random Traffic

    Full text link
    In this work, we study the stability region of the two-user broadcast channel (BC) with bursty data arrivals and security constraints. We consider the scenario, where one of the receivers has a secrecy constraint and its packets need to be kept secret from the other receiver. This is achieved by employing full-duplexing at the receiver with the secrecy constraint, so that it transmits a jamming signal to impede the reception of the other receiver. In this context, the stability region of the two-user BC is characterized for the general decoding case. Then, assuming two different decoding schemes the respective stability regions are derived. The effect of self-interference due to the full-duplex operation on the stability region is also investigated. The stability region of the BC with a secrecy constraint, where the receivers do not have full duplex capability can be obtained as a special case of the results derived in this paper. In addition, the paper considers the problem of maximizing the saturated throughput of the queue, whose packets does not require to be kept secret under minimum service guarantees for the other queue. The results provide new insights on the effect of the secrecy constraint on the stability region of the BC. In particular, it is shown that the stability region with secrecy constraint is sensitive to the coefficient of self-interference cancelation under certain cases.Comment: Submitted for journal publicatio

    On Physically Secure and Stable Slotted ALOHA System

    Full text link
    In this paper, we consider the standard discrete-time slotted ALOHA with a finite number of terminals with infinite size buffers. In our study, we jointly consider the stability of this system together with the physical layer security. We conduct our studies on both dominant and original systems, where in a dominant system each terminal always has a packet in its buffer unlike in the original system. For N = 2, we obtain the secrecy-stability regions for both dominant and original systems. Furthermore, we obtain the transmission probabilities, which optimize system throughput. Lastly, this paper proposes a new methodology in terms of obtaining the joint stability and secrecy regions.Comment: 7 Pages, 8 Figures, Allerton 200

    Random Access in DVB-RCS2: Design and Dynamic Control for Congestion Avoidance

    Full text link
    In the current DVB generation, satellite terminals are expected to be interactive and capable of transmission in the return channel with satisfying quality. Considering the bursty nature of their traffic and the long propagation delay, the use of a random access technique is a viable solution for such a Medium Access Control (MAC) scenario. In this paper, random access communication design in DVB-RCS2 is considered with particular regard to the recently introduced Contention Resolution Diversity Slotted Aloha (CRDSA) technique. This paper presents a model for design and tackles some issues on performance evaluation of the system by giving intuitive and effective tools. Moreover, dynamic control procedures that are able to avoid congestion at the gateway are introduced. Results show the advantages brought by CRDSA to DVB-RCS2 with regard to the previous state of the art.Comment: Accepted for publication: IEEE Transactions on Broadcasting; IEEE Transactions on Broadcasting, 201

    Joint Scheduling and ARQ for MU-MIMO Downlink in the Presence of Inter-Cell Interference

    Full text link
    User scheduling and multiuser multi-antenna (MU-MIMO) transmission are at the core of high rate data-oriented downlink schemes of the next-generation of cellular systems (e.g., LTE-Advanced). Scheduling selects groups of users according to their channels vector directions and SINR levels. However, when scheduling is applied independently in each cell, the inter-cell interference (ICI) power at each user receiver is not known in advance since it changes at each new scheduling slot depending on the scheduling decisions of all interfering base stations. In order to cope with this uncertainty, we consider the joint operation of scheduling, MU-MIMO beamforming and Automatic Repeat reQuest (ARQ). We develop a game-theoretic framework for this problem and build on stochastic optimization techniques in order to find optimal scheduling and ARQ schemes. Particularizing our framework to the case of "outage service rates", we obtain a scheme based on adaptive variable-rate coding at the physical layer, combined with ARQ at the Logical Link Control (ARQ-LLC). Then, we present a novel scheme based on incremental redundancy Hybrid ARQ (HARQ) that is able to achieve a throughput performance arbitrarily close to the "genie-aided service rates", with no need for a genie that provides non-causally the ICI power levels. The novel HARQ scheme is both easier to implement and superior in performance with respect to the conventional combination of adaptive variable-rate coding and ARQ-LLC.Comment: Submitted to IEEE Transactions on Communications, v2: small correction

    On the Stability of Contention Resolution Diversity Slotted ALOHA

    Get PDF
    In this paper a Time Division Multiple Access (TDMA) based Random Access (RA) channel with Successive Interference Cancellation (SIC) is considered for a finite user population and reliable retransmission mechanism on the basis of Contention Resolution Diversity Slotted ALOHA (CRDSA). A general mathematical model based on Markov Chains is derived which makes it possible to predict the stability regions of SIC-RA channels, the expected delays in equilibrium and the selection of parameters for a stable channel configuration. Furthermore the model enables the estimation of the average time before reaching instability. The presented model is verified against simulations and numerical results are provided for comparison of the stability of CRDSA versus the stability of traditional Slotted ALOHA (SA). The presented results show that CRDSA has not only a high gain over SA in terms of throughput but also in its stability.Comment: 10 pages, 12 figures This paper is submitted to the IEEE Transactions on Communications for possible publication. The IEEE copyright notice applie
    corecore