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On the Stability of Contention Resolution Diversity
Slotted ALOHA (CRDSA)

Christian Kissling

Abstract�The stability of Random Access protocols is of
high importance to ensure an ef�cient usage of resources and
good service perception by the users. In this paper the stability
region for the recently proposed Contention Resolution Diversity
Slotted ALOHA random access protocol is discussed for �nite
user populations. The system dynamics of a CRDSA Random
Access channel are described and a mathematical model is
formulated, which allows predicting the stability of the system.
From the derived model quantitative approximations of the
stability regions and parameter selection for stable operation are
provided. Numerical results are derived by means of simulations
for validating the mathematical model and the quantitative
approximations of the stability region.

I. INTRODUCTION

STARTING with the original proposal of ALOHA, one
of the key problems, which need to be addressed in

Random Access (RA) channels, is analyzing the protocols
stability. Finding the stability region is important since the
usage of resources and the service perception of the users
suffers drastically in instable systems, making these systems
practically unusable.

Colliding transmissions, leading to the loss of packets can
naturally occur in RA channels. While lost packets could be
simply discarded in principle, RA schemes usually attempt
retransmission of the lost packets, either until they are success-
fully received or until a maximum number of retransmissions
has been reached. In order to make retransmissions possible,
the users need to receive feedback whether their transmission
attempt was successful, e.g., by means of acknowledgements.
The instantaneous throughput of the channel S(G) is then
dependent on the total load G, being the sum of the load due
to new transmissions GF and the load due to retransmissions
GB . In this sense the RA channel forms a feedback loop
as is illustrated in Fig. 1. It is an inherent property of
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Fig. 1. Feedback loop of a RA channel

closed-loop feedback systems, that the feedback can lead to
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reinforcement of the signal. Here this results in an increase
of the overall load due to the additional retransmissions. The
well known dependency of the throughput S on the offered
load G is shown in Fig. 2 for ALOHA, Slotted ALOHA
(SA) [1] and Contention Resolution Diversity Slotted ALOHA
(CRDSA) [2]. As can be seen, the qualitative shape of the
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Fig. 2. Throughput in dependency of load for some ALOHA variants

throughput curves is the same for all of them. By increasing
the offered load G from zero, the throughput S �rst increases
until reaching a maximum throughput Smax. After this S
decreases again and asymptotically approaches zero for further
increasing G. If due to retransmission attempts of lost packets
the total load exceeds a critical threshold, then even more
packets experience a collision and get lost, resulting in an
even higher retransmission load. In the end the channel is
driven into total saturation in the area of having very high load
and very low throughput. To avoid this ampli�cation effect
a retransmission strategy is used, which shall limit the load
due to retransmissions and reduce the risk of getting more
collisions (see Fig. 1). Many different retransmission strategies
that try to achieve this goal are known from literature. In
[3] the selection of the time of retransmission with uniform
probability within a parameterizable interval t ∈ [0, ..., K] is
proposed. In [1] a strategy is described where the decision for
a retransmission attempt is taken with a probability pr in every
slot (for SA) resulting in a geometric distribution. In [4] the
selection of the retransmission time from an interval, which
grows exponentially with every collision (Binary Exponential
Backoff), is proposed. Finally so called splitting algorithms are
known from literature (see e.g., [1], [5]), which iteratively split
the set of collided users into two sets and stabilizes the system
this way. Furthermore two different types of user population
are distinguished, �nite and in�nite user populations. For a
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�nite user population, every user that experienced a collision
is backlogged, which means that he is not generating any
new traf�c until the collided packet has been successfully
transmitted. The in�nite user population on the other hand
refers to either an in�nite number of users or a �nite num-
ber of users that generate new traf�c independently whether
another retransmission is still pending or not.1 While some
retransmission strategies assume a visibility of the channel
activities by all users, here we assume that every user has
no instant visibility of other users activity (as is the case
in satellite system with directive links and long propagation
delays) and only receives feedback about the success of his
own transmission attempt from the receiving end system. The
retransmission mechanisms using a uniform and geometric
retransmission probability have in common that the probability
of retransmission is a �xed parameter and does not change
dynamically. For the binary exponential backoff and tree
splitting algorithm, the actual retransmission probability may
change over time dependent on the situation. In the remainder
of this paper the focus is put on a geometrically distributed
retransmissions mechanism, since it was shown in [6] that
the channel performance of SA is mainly dependent on the
average retransmission delay and largely independent of the
retransmission probability distribution.

The analysis of what is the critical threshold from which
on the system moves self-energizing into the low throughput
saturation and for which con�gurations such a situation never
occurs is, besides the choice of the RA scheme, naturally also
dependent on the retransmission strategy. Within this paper
the stability of CRDSA with a geometric distributed retrans-
mission probability and a �nite user population is addressed.
For this purpose the Packet Loss Rates (PLR) properties of
CRDSA are investigated and following this a mathematical
model is derived, which describes the dynamics of the overall
system and allows drawing conclusions about the maximum
stability (section III). The results of this mathematical model
are then discussed �rst qualitatively, followed by a quantitative
analysis of the stability for representative user populations,
traf�c generation probabilities and retransmission probabili-
ties. In the end the predictions of the mathematical model are
validated by numerical simulations and the match of model
and simulation is shown.

II. RANDOM ACCESS TECHNIQUES AND STABILITY

A. Review of MF-TDMA Random Access Techniques
Over the last years the recently regained popularity of RA

schemes resulted in the de�nition of new RA protocols. In
particular a recent enhancement of the SA protocol, named
CRDSA [2], [7], using Successive Interference Cancellation
(SIC) techniques over a set of slots (denoted frame) to improve
the throughput and PLR behaviour of SA, has been studied
showing an impressive gain over SA increasing the maximum
throughput from Smax,SA = 0.36 pktslot to Smax,CRDSA =

1Generating a new transmission in addition to a retransmission can be
also seen as two users, one retransmitting, one transmitting new. Since the
new transmissions are not bounded, this case corresponds to an in�nite user
population case
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Fig. 3. SIC principle of CRDSA.

0.55 pktslot . Up to now however the consequences for the system
stability of this new access scheme have not been analyzed
yet. The fundamental concept of CRDSA is to generate a
replica burst for every transmission burst within a set of NS
slots, called frame, see also Fig. 3. While the generation of
a redundant copy of a burst is similar to previous proposals
such as Diversity Slotted ALOHA (DSA) [8], the fundamental
difference here is that every burst contains a pointer to the
location of its replica. In case a clean replica arrives, meaning
that the burst could be decoded and received successfully, the
channel is estimated from it and the interference that this burst
introduces to other users is removed for all burst locations,
including the replicas.

In the example in Fig. 3 the �rst burst of user 1 is received
successfully since not interfered. As consequence of the SIC
process, the interference that the replica of user 1 introduces
to the second burst of user 2 is removed so that this burst of
user 2 can be decoded in the next round. This process is then
iteratively repeated. In the example in Fig. 3 all replicas can
be recovered this way.

B. Characterization of the Packet Loss Rate in CRDSA
For SA, the necessary condition to have a successful re-

ception is that only a single transmission must occur in a
timeslot, otherwise the burst is lost. Let us denote by M the
total user population of the system and p0 the probability
that a user attempts a transmission in a time slot, then the
probability that a user successfully receives a packet gets
pSucc,SA = p0 ⋅(1−p0)M−1. Increasing the overall number of
users M →∞, the totally transmitted packets can be modeled
as Poisson process with arrival rate � [9]. The probability
for a successful transmission then results in the well known
equation pSucc,SA = e−�⋅Tp , whereas Tp denotes the slot
duration. This simple closed form expression is conveniently
suited to describe the throughput surfaces, which are used
for the stability investigation done e.g., by Kleinrock [10].
The preconditions in CRDSA are however different due to the
iterative SIC process. As was shown by Liva in [11] and [12],
the SIC process can be interpreted as an erasure decoding
process in a bipartite graph, such as for Low Density Parity
Check Codes (LDPC) codes. For this purpose, every slot in
a frame is represented as a sum node and every transmitted
burst by a burst node. The edges in the graph then connect
the burst nodes to the sum nodes. In [11] an expression
for the average erasure probabilities for every iteration are
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derived for the asymptotic case of in�nitely long frames,
resulting in an upper bound of the achievable throughput.
An expression for the exact average erasure probabilities in a
non-asymptotic case with �nite frame lengths however cannot
be expressed accurately by these bounds. For this reason the
stability analysis in this work relies on simulated CRDSA
packet success probabilities and throughput (see Fig. 2) for
the case of having one additional replica (degree d = 2), a
frame consisting of NS = 100 slots and a limitation of the
number of SIC iterations to Imax = 10.

C. Stability De�nition
The issue of stability in RA systems was already identi�ed

in the very early days of the ALOHA proposal. Abramson
[13] and Roberts [14] both addressed this issue for plain
ALOHA. After the evolution of ALOHA towards SA, many
publications have dealt with the investigation of the stability
behaviour of SA, for instance [1], [15] [9] and [10]. Stability
is commonly de�ned as the ability of a system to maintain
equilibrium or return to the initial state after experiencing a
distortion. In the context of RA, the term stability is used
in different ways in literature. In the de�nition given by
Abramson in [13], the ALOHA channel was de�ned unstable
if the average number of retransmissions becomes unbounded.
Within [1] a channel was de�ned stable if the expected delay
per packet is �nite. Kleinrock de�ned in [10] a channel as
stable if the SA equilibrium contour (i.e. throughput is equal
to the channel input rate) is nontangentially intersected by
the load line in exactly one place. In the strict mathematical
de�nition of stability of autonomous systems, this corresponds
to a suf�cient condition for a global equilibrium point. In the
terminology used by Kleinrock, a SA channel is instable if the
load line intersects the equilibrium contour in more than one
point. In the mathematical sense also then the system can have
a locally stable equilibrium point, so the de�nition of stability
by Kleinrock refers to the criterion of having a single globally
stable equilibrium point. In the remainder of this work, the
de�nitions given in [10] are followed also here, meaning that
a channel is denoted as stable if it has a single globally stable
equilibrium point and unstable otherwise.

III. STABILITY IN CRDSA
Within this section, the derivation of a Markov model for

a �nite user population is described and the mathematical
formulations for throughput and drift are derived, which form
the core of the stability framework presented afterwards. This
section concludes with a stability analysis for a representative
CRDSA con�guration.

A. Finite User Modeling Approach
Let the RA communication system under consideration

be populated by a total of M users. Every user resides
either in a so called fresh (F) state or the backlogged (B)
state. In the beginning all M users are in state F. Every
user in state F attempts a new transmission in the current
frame with probability p0. It is further assumed that all users

receive feedback about the success of their transmission at
the end of a frame. In case the transmission attempt was
successful, the user remains in state F. In case a packet is
lost, the user enters state B. A user in state B attempts a
retransmission of the lost packet with probability pr in the
current frame. In case the retransmission is successful the user
then returns to state F, otherwise the user remains in state
B. Let X l

� denote the number of users in state � ∈ {F,B}
in frame l, then the discrete-time Markov chain can be fully
described by either X l

B or X l
F , since both are connected

by X l
F = M − X l

B . In the following X l
B is chosen as the

Markov state variable. Given the initial state X0
B = 0 and the

state transition probability P (x′∣x), which is the probability
to move within one frame from backlog state x to state x′, the
Markov chain is then fully described. One major difference to
the SA analysis done by Kleinrock is that the backlog state
XB can decrease by more than 1 for CRDSA. While in SA
at maximum a single user can get un-backlogged per slot
(otherwise there would be a collision), in a CRDSA frame
also more than one backlogged user can get unbacklogged.
Since no closed form expression for the success probability
of a user in CRDSA is known in literature, the probability
qd,Ns,Imax(t, u) is introduced, which is the probability that out
of t users who attempt a transmission in the frame exactly u
users are successful. The success probability q is dependent on
the CRDSA con�guration, consisting of the repetition degree
d, the number of slots in the frame Ns and the maximum
number of iterations Imax. Here, this probability was derived
numerically by simulations and averaging over the results for
every offered load G. When changing state, let U be a random
variable denoting the number of successful transmissions in
frame l, S a random variable denoting the number of fresh
transmission attempts in the frame and T the number of
retransmission attempts in a frame. The change in number
of users in XF and XB for every state transition can then
be put into the following relation, which is convenient for the
further description of the state transition probabilities. Let FS
denote the number of fresh users, which transmit successfully
in frame l. Let FU be the number of fresh users who
attempted a transmission but were unsuccessful. In the same
way, BS denominates all backlogged users who attempt a
retransmission and were successful and BU those backlogged
users, whose retransmission attempt was unsuccessful. With
this the following equations (1)-(3) can be derived.

rl = FSl + FUl (1)
tl = BSl +BUl (2)
ul = FSl +BSl (3)

whereas (w.r.t. frame l) r equals the total number of fresh users
attempting transmission, t equals the total number of back-
logged users attempting transmission and u the total number
of users, which transmit successfully2. The joint probability
mass function, conditioned on state X l = xB is then given by

2It should be noted that idle users have no relevance here since they neither
change the size of the sets XF and XB nor do they generate load which
impacts the transmission performance.
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equation (4).

P (r, t, u∣xB) =

=

(
xF
r

)
pr0(1− p0)xF−r ⋅

(
xB
t

)
ptr(1− pr)xB−t

× qd,Ns,Imax(r + t, u) =

=

(
M − xB

r

)
pr0(1− p0)M−xB−r

×
(
xB
t

)
ptr(1− pr)xB−t

× qd,Ns,Imax(r + t, u). (4)

With equations (1)-(3) the change in number of backlogged
users ΔxB = x′B−xB = FU−BS can be easily reformulated
into

u = r + xB − x′B (5)

The state transition probability P (x′B ∣xB) can then be
formulated by combining (4) and (5) into (6),

P (x′B ∣xB) =

=
∑
r,t

P (r, t, r + xB − x′B ∣xB) =

=
∑
r,t

(
M − xB

r

)
pr0(1− p0)M−xB−r

×
(
xB
t

)
ptr(1− pr)xB−t

× qd,Ns,Imax(r + t, r + xB − x′B). (6)

With (6) in principle the entire Markov chain can be
described with all its transition probabilities. In practice the
computational cost of computing all transition probabilities
is however enormous, mainly due to the nested summations
over a large range of possible values for r and t. To avoid
this computational complexity, the stability analysis in the
following makes use of a drift analysis, in reminiscence of
[10] and [16]. The change behaviour of the backlog state
forms a differential equation, whereas the drift corresponds
to the change of the state variable dB = dxB

dt . For the drift
analysis the change in backlog xB over time is analyzed in
the following and the stability of the equilibrium points is
computed by using the tools known from differential calculus.
In the style of [17] and [16], the drift is here de�ned as the
expectation value of the change of the backlog state X l

B frame
by frame as given by

d(xB) = E
{
X l+1
B −X l

B ∣X l
B

}
=

=
∑

x′B

(x′B − xB) ⋅ P (x′B ∣xB). (7)

With (5) and following this with (6) this can be reformulated
into

d(xB) =
∑
r,t,u

(r − u) ⋅ P (x′B ∣xB) =

=
∑
r,t,u

(r − u) ⋅
∑
r,t

P (r, t, u ∣xB) =

=
∑
r,t,u

(r − u) ⋅ P (r, t, u ∣xB) =

= E {R} − E {U} . (8)

From (4) it is clear that R is binomial distributed so

E{R} = (M − xB) ⋅ p0. (9)

The second expectation value E{U} is related to the
throughput S(xB) of the system, i.e., the expected number
of successful packets per slot in frame l as is (10)

S(xB) =
1

NS
E{U} =

=
1

NS
⋅
∑
r,t,u

u ⋅ P (r, t, u ∣xB) =

=
1

NS
⋅
∑
r,t,u

(
M − xB

r

)
pr0(1− p0)M−xB−r

×
(
xB
t

)
ptr(1− pr)xB−t ⋅ qd,NS ,Imax(r + t, u). (10)

With (9) and (10) the drift dB = d(xB) gets

dB = (M − xB) ⋅ p0 −NS ⋅ S(xB) (11)

Since the exact computation of the throughput S(xB) is
computationally very expensive, the notion of drift is simpli-
�ed into the expected drift by averaging over S;

d̄B = (M − xB) ⋅ p0 −NS ⋅ S̄(xB), (12)

with

S̄(xB) = [(M − xB)p0 + xBpr] ⋅ P̄s((M − xB)p0 + xBpr)
(13)

and P̄s(x) the average number of successful transmissions
when attempting x transmissions, as explained above. With
(12) it is now possible to fully describe the stability of the
CRDSA system for the case of having a user population M ,
a probability p0 of fresh users generating new packets and
a retransmission trial probability of pr. Intuitively, the drift
represents the tendency of the system to change over time
and gives the direction of change of the backlog size. This
means that for positive drifts the size of the backlog tends to
increase by d̄B (i.e. more users experience lost packets and
get backlogged). For negative drifts, the length of backlog
decreases, which means that backlogged users successfully
retransmit and get fresh again. A drift of 0 corresponds to
a local equilibrium point, which may be locally stable or
instable. Figure 4 shows the drift-backlog surface for the
scenario M = 500, pr = 0.78 and for varying p0. This �gure
nicely shows the dynamic of the system. It can be seen that
for low traf�c generation probabilities p0 the drift dB remains
negative for all backlog states xB . In other words, the system
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Fig. 4. Drift backlog surface for M = 500, pr = 0.78
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Fig. 5. Backlog drift for a stable channel with M = 500, pr = 0.78
and p0 = 0.01 and an unstable channel with M = 500, pr = 0.78 and
p0 = 0.04

here shows always the tendency to return to the initial state
X0
B = 0. For increasing values of p0 (corresponding to an

increase of the offered load) the equilibrium is the intersection
of the drift-backlog surface with the zero plane, as shown. The
meaning of this equilibrium locus is that with the given system
parameters (i.e., pr, d, NS and Imax) the system is always
stable up to the load p0 where the straight line parallel to the
xB axis is for the �rst time tangent to the equilibrium locus.
Figure 5 shows the backlog drift for two particular values
of p0, i.e. the intersection of the drift-backlog surface from
Fig. 4 with the planes p0 = {0.01, 0.04}. As can be seen
here, the drift for the stable con�guration is always negative
independent of the backlog state xB , which means that the
system always shows the tendency to lower the current backlog
state until reaching the initial state. There is thus only one
equilibrium point (globally stable) close to the initial state.
For the unstable con�guration (p0 = 0.04) it can be seen
that after the initial equilibrium point (locally stable) and the

following area of negative drift (up to xB ≈ 209) a second,
locally instable equilibrium point is reached at xB = 209.
When reaching this point the system can either fall back into
the negative drift region for xB < 209 or enter the region of
positive drift xB > 209. In the latter case the positive drift
means that any movement to a higher backlog state (which is
a consequence of the positive drift) results in an accelerated
increase in number of backlogged users. This behavior then
persists until reaching the third and �nal equilibrium point
(locally stable) at xB ≈ 500 = M . In this third equilibrium
point now all M users are backlogged and the system has
reached the point of maximum load and minimum throughput.
From this observation the conclusion can be drawn that for a
given system con�guration Ω = {d,Ns, Imax} the maximum
traf�c generation probability p0 for which the system is still
always stable is the one resulting in a drift contour which
intersects the straight line dB = 0 at most once (Fig. 5),
resulting in a single equilibrium point, which is locally and
globally stable. For all other cases the channel is instable (e.g.,
unstable con�guration with p0 = 0.04 in Fig. 5), meaning that
earlier or later the backlog will increase into the total saturation
point.

IV. NUMERICAL RESULTS

For validation of the previously de�ned algebraic model of
stability, simulations have been performed, which are sum-
marized in the following section. To observe the behavior
of the CRDSA system, a simulator was implemented, which
implements the full CRDSA SIC mechanism. The imple-
mentation of the CRDSA-SIC assumes perfect interference
cancellation and channel estimation, i.e., any clean burst
allows the perfect suppression of its interference towards other
bursts. The simulator allows setting up a total population of
M users, whereas the system can be put into an arbitrary
initial state x0

B ∈ {0, . . . , M}. Since the de�ned system is a
Markov chain, the simulations can be started from different
initial states x0

B ∕= 0, which enables a fast observation of the
system drift in this state. The alternative approach of starting a
simulation with X0

B = 0 can require very long simulations to
reach all possible backlog states and (depending on the actual
con�guration) especially long to reach high backlog states
xB . In addition every state should be reached several times
in order to get statistically signi�cant results by averaging
the drift for every backlog state. In the simulations shown
hereafter, the system was set to every possible initial backlog
state X0

B = [0, . . . , M ] by putting xB users in backlog state.
The fresh users then attempt a transmission with probability
p0, whereas every backlogged user attempts a transmission
with probability pr. The transmission attempts and all packet
replicas are then assigned random locations (uniformly) dis-
tributed within the Ns slots of the frame. Afterwards the
SIC mechanism is applied, whereas only bursts with a single
transmission are considered clean. Since perfect Interference
Cancellation (IC) is assumed, every clean burst allows removal
of the packet replica. The IC is iterated Imax times for every
frame. The difference between the number of backlogged users
before and after the frame transmission is then used to compute
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the drift. For every backlog state xB the occurring drift was
averaged over 10000 simulation runs resulting in the expected
drift dB per backlog state. Figure 6 shows the results of the
expected drift as computed by the mathematical model derived
in section III and the collected results of the simulations for
the same scenarios Ω = {d = 2, Ns = 100, Imax = 10} and
M = 500, p0 = 0.09, pr ∈ [0.4, 0.5, 0.6]. The retransmission
probabilities pr were chosen for getting one stable (pr = 0.4,
only one equilibrium point) and two instable con�gurations
(pr = 0.5 and pr = 0.6). As can be seen the analytical
prediction matches very well with the analytical results. To
investigate the impact of the user population on the accuracy
of the prediction, another simulation was performed with a
reduced user population M = 250 and choosing p0 = 0.9
and pr = 0.2 to result in an instable channel. Also in
this case the comparison between the analytical prediction
and the simulation results show a very good match. Finally
Figure 6 shows two points for the steady state that the
system falls when started at zero backlog x0

B = 0 (simulated
steady state 1) and when started in an arbitrary point in the
unstable region, here x0

B = 300 (simulated steady state 2)
for M = 500, p0 = 0.09, pr = 0.5. The two simulated
steady states show the average steady state computed over
20 simulation runs each. As can be seen the reached steady
state matches again very well with the theoretical predictions.
Finally the initial state was set close to the instable equilibrium
point at x0

B = 117. In this case the simulations have shown
that the system falls in roughly 50% of the cases into steady
state 1 and in 50% of the cases into steady state 2. This is also
inline with the expectations and shows that the computation
of the instable equilibrium matches well with the simulations.

V. SUMMARY AND CONCLUSIONS

In this paper a model for the description of stability in a
CRDSA based SIC scheme was formulated. This model allows
not only drawing conclusions about the stability of a system
con�guration but is also able to predict up to which point

the system will remain stable. The derived formulation can
serve as a valuable tool when designing and dimensioning
a CRDSA system since it allows deriving the maximum
allowable offered traf�c load for a guaranteed stable system
with one global equilibrium point with given retransmission
probability. Alternatively the model allows for a given static
offered traf�c load the derivation of the maximum required
retransmission probability, which ensures that the system
remains stable. Finally the analytically derived drift curves
have been validated by numerical simulations. The simula-
tions, which implement the detailed CRDSA SIC mechanism
and retransmission strategy have shown that the analytically
predicted behavior matches very well with the observations
from the simulations, validating the found model.3
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