544,859 research outputs found

    Extremal problems in logic programming and stable model computation

    Get PDF
    We study the following problem: given a class of logic programs C, determine the maximum number of stable models of a program from C. We establish the maximum for the class of all logic programs with at most n clauses, and for the class of all logic programs of size at most n. We also characterize the programs for which the maxima are attained. We obtain similar results for the class of all disjunctive logic programs with at most n clauses, each of length at most m, and for the class of all disjunctive logic programs of size at most n. Our results on logic programs have direct implication for the design of algorithms to compute stable models. Several such algorithms, similar in spirit to the Davis-Putnam procedure, are described in the paper. Our results imply that there is an algorithm that finds all stable models of a program with n clauses after considering the search space of size O(3^{n/3}) in the worst case. Our results also provide some insights into the question of representability of families of sets as families of stable models of logic programs

    Logic Programming for Describing and Solving Planning Problems

    Full text link
    A logic programming paradigm which expresses solutions to problems as stable models has recently been promoted as a declarative approach to solving various combinatorial and search problems, including planning problems. In this paradigm, all program rules are considered as constraints and solutions are stable models of the rule set. This is a rather radical departure from the standard paradigm of logic programming. In this paper we revisit abductive logic programming and argue that it allows a programming style which is as declarative as programming based on stable models. However, within abductive logic programming, one has two kinds of rules. On the one hand predicate definitions (which may depend on the abducibles) which are nothing else than standard logic programs (with their non-monotonic semantics when containing with negation); on the other hand rules which constrain the models for the abducibles. In this sense abductive logic programming is a smooth extension of the standard paradigm of logic programming, not a radical departure.Comment: 8 pages, no figures, Eighth International Workshop on Nonmonotonic Reasoning, special track on Representing Actions and Plannin

    Stability and stable groups in continuous logic

    Full text link
    We develop several aspects of local and global stability in continuous first order logic. In particular, we study type-definable groups and genericity

    Tight Logic Programs

    Full text link
    This note is about the relationship between two theories of negation as failure -- one based on program completion, the other based on stable models, or answer sets. Francois Fages showed that if a logic program satisfies a certain syntactic condition, which is now called ``tightness,'' then its stable models can be characterized as the models of its completion. We extend the definition of tightness and Fages' theorem to programs with nested expressions in the bodies of rules, and study tight logic programs containing the definition of the transitive closure of a predicate.Comment: To appear in Special Issue of the Theory and Practice of Logic Programming Journal on Answer Set Programming, 200
    corecore