FHE OURNAL OF
LOGIC PROGRAMMING

The Journal of Logic Programming 38 (1999) 219-242 =

Extremal problems in logic programming and
stable modei computation

Pawel Cholewinski ®!, Mirosiaw Truszczynski 2

2 Computer Science Department, University of Kentucky, Lexington, KY 40506-0046, USA
® HyBrithris Corporation, 10632 NE 37th Circle. Blgd. #23, Kirklund, WA 98933, USA

Received 25 September 1997; accepted 2 June 1998

Abstract

We study the following problem: given a class of logic programs %, determine the maximum
number of stable models of a program from %. We establish the maximum for the class of all
logic programs with at most n clauses, and for the class of ali logic programs of size at most n.
We alsc characterize the programs for which the maxima are attained. We obtain similar
results for the class of all disjunctive logic programs with at most n clauses, each of length at
most m. and for the class of all disjunctive logic programs of size at most #. Our results on logic
programs have direct implication for the design of algorithms to compute stable models.
Several such algorithms, similar in spirit to the Davis—Putnam prccedure, are described in the
paper. Our results imply that there is an algorithm that finds all stable models of a program
with n clauses after considering the search space of size O(3"/?) in the worst case. Our results
also provide some insights into the question of representability of families of sets as families of
stable models of logic programs. © 1999 Elsevizr Science Inc. All rights reserved.

Keywords: Stable models; Answer sets; Extremal problems; Disjunctive programs

1. Introduction

In this paper we study extremal problems appearing in the context of finite
propositional logic programs. Specifically, we coasider the following problem: given
a class of logic programs ¥, detennine the maximum number of stable models a
program in ¥ may have. Extrem=z} problems have been studied in other disciplines,
especially in combinatorics and graph theory [1]. However, no such results for logic
programming have been known so far.

We will consider finite propositional disjunctive logic programs built of clauses
(rules) of the form

" Corresponding author. Tel.: +1 606 257 3961; tax: +1 606 323 1971: ¢-mail: mirek@ cs.engr.uky.edu.
! pch@hybrithms.com.

0743-1066/99/$ — see front matte: € 1999 Elsevier Science Inc. Al rights reserved.
PII: S0743-1066(98)10020-1

220 P. Cholewinski, M. Truszczynski ! J. Logic Programming 38 (1999) 219-242

ag V-V ap «— b.‘...,b,,,,not(c,),....not(c,,),

where a,, b; and ¢; are atoms. In an etfort to establish a semantics for disjunctive logic
programming, Gelfond and Lifschitz [2] introduced the notion of an answer ser of a
disjunctive program. It is well known that for normal logic programs (each clause has
exactly otie literal in the head), answer sets coincide with stable modect= [2,3]. We will
denote the set of answer sets of a disjunctive program P (stable models, if P is
normal) by S7{P) and we will set

s(P) = |ST(P)|.
Given a class 6 of disjunctive programs, our goal will be to determine thc value of
max{s(P): P € %}.

We will also study the structure of extremal programs in ¢, that is, those programs in
% for which the maximum is attained.
We will focus our considerations on the following classes of programs:
1. 2,, — the class of disjunctive programs with at most » clauses and with the
length of each clause bounded by m.
2. #, — the class of normal logic programs with at most » clauses.
We will establish the values

s(n) = max{s(P):P € ¥2,}
and

d(n.m) = max{s(P): P € & Ppn}.

We will show that s(n) = @(3"/*) (an exact formula will be given) and d(n,m) = m",
and we will characterize the corresponding extremal programs.

We will also show that the bound for logic programs can be improved if addi-
tional restriction on the length of a clause is imposed. We will study the class #2 of
logic programs with n clauses such that each clause has at most one literal in its
body. We will show that if P is in &}, then s(P) = O(274).

We will also study classes of programs defined by imposing restrictions on the
total size of programs. By the size of 2 program P, we mean the total number of atom
occurrences in P. We will investigate the following classes of programs:

1. &« %, — the class of disjunctive programs with size at most n,
2. 2.7, — the class of normal logic programs wiikh size at most #,
and obta:r similar resuits to those listed above.

The motivation for this work comes irom several sources. First of all, this work
has been motivated by our efforts to develop fast algorithms for computing stable
models of logic programs. It turns out that Sounding the number of stable models
and search for extremal logic programis are intimately connected to some recursive
algorithms for computing stable models. Two results given in Section 2 (Corofiaries
2.1 and 2.2) imply both the bounds on the number of stable models, and a whole
spectrum of algorithms to compute stable models. These algorithms share some
common features with the Davis—Putnam procedure for testing satisfiability of CTNF
formulas. One of these algorithms is similar to the algorithms recently described and
studied in Refs. [4-6]. The corollaries also imply the worst-case bounds on the size of
the search space traversed by those algoritams.

P. Cholewinski, M. Truszczynski I J. Logic Programming 38 (1999) 219-242 221

Let us note here that in order to lead to implemented systems for computing
stable models, several research issues remain to be resolved. In particular, heuristics
for checosing atoms and rules in the algorithms presented in Section 3 must be
studied. Similarly, the effects of using -vell founded semantics as a preprocessing
mechanism, which is known to be critic «* for the pcformance of the s-models system
[7]1, has to be investigated. Finally, in order to gain actuz] insights into the quality of
the algorithms proposed here and compare them to other systems (such as s-models),
extensive experimental studies is necessary. All these issues are the subject of our
current studies.

Additional motivation for our work presented here comes from considerations of
expressive power of logic programming and of representability issues. Both concepts
help understand the scope of applicability of logic programming as a knowledge
representation tool. Disjunctive logic programs with answer set semantics (logic
programs with stable model semantics) can be viewed as encodings of families of
sets, namely, of the families of their answer sets {(stable mod=!s). A family of sets F is
representable if there is a (disjunctive) logic program P such that

ST(P) = 7.

Important problems are: (1) to find properties of representable families of sets, and
(2) given a representable family of sets .#, to find possibly con-ise logic program
representations of .% . Related problems in default logic have bec.a studied in Ref. [8].
It is well known [2] that every representable family of sets must be an antichain. Our
strdy of extremal problems in logic programming provide additional conditions.
Namely, every family of sets representable by a program from £#,, must have
cardinality bounded by m" and every family of sets representable by a logic program
from ¥%, must have size bounded by 3"/>. The best bound known previously for
families of scts representable by logic programs from £, was =~ 0.8 x 2"/\/n.

In addition, the results of this paper allow some comparison of the expressive
power of different classes of programs. For example, there is a disjunctive logic
program of size n with ©(2"/?) answer sets while the largest cardinality of a family of
sets representable by a logic program of size n is only &(2*/?). This observation
might perhaps be interpreted as evidence of stronger expressive power of disjunctive
logic programs. A formal definition of the appropriaie notion of expressiveness and
its properties are open areas of research.

To make the paper self-contained we will now recall the definitions of a stable
model and an answer set {2,3]). Let P be a (disjunctive) propositional logic p- .gram
built of atoms in the set Ar. Let M C At. By the Gelfond-Lifschitz reduct of P with
respect to M, denoted by P, we mean the program obtained from P by:

1. removing from P all rules with a literal not(a) in the body, for some a € M,
2. removing all negative literals from all other rules in P.

If P is a normal logic program (no disjunctions), Y is a Horn program. Con-
sequently, this logic program has its least model LAM{P*). A set of atoms M is a
stable model of P if M = LM (P").

If P is a disjunctive logic program, instead of the notion of a least model of P¥
(which may not exist), we will use the concept of a minimal model. A set of atoms M
is an answer set for P if M is a minima! model tor PY.

The paper is organized as follows. In the next section, we present our main results
on normal logic programs. In particalar, we determine s{n) and characterize the class

222 P. Cholewinski, M. Truszccynski | J. Logic Programmiing 38 (1999) 219-242

of extremal logic programs. The following section discusses the implications of these
results for the design and analysis of algorithms to compuie stable models. In Sec-
tion 4. we study disjunctive logic programs and the Section 5 contains conclusions.

2. Normal logic programs

In this section we study extremal problems for normal (nondisjunctive) logic
programs. We will determine the value of the function s(n) and we will provide a
characterization of all programs in the class %22, which have s(n) stable models. No
bounds on the length of a clause are needed in this case. It is well known that each
stable model of a program P is a subset of the set of heads of P. Consequently,
s(n) < 2”. This bound can easily be improved. Siable models of a program form an
antichain. Since the size of the largest antichain in the algebra of subsets of an n-
element set is

(Ln';2J) ~ 08 x 2/

it ctearly follows that, s(n) < 0.8 x 27/,/n. We will still improve on this bound by
showing that s(n) = @(3"?) =~ @(205%") « 0.8 x 2"/ /n. We obtain similar results
for the class .#.# of logic programs with nr clauses each of which has at most one
literal in the body, and for the class .#.#Z, of all lcgic programs with at mo3t n atom
occurrences.

Our approach is based on the following version of the notion of reduct first de-
scribed in Ref. [9] and, independently. in Ref. [4). Let P be a logic program and let 7
and F be two sets of atoms such that TN F = 0. By simp(P, T, F) we mean a logic
program obtained from P by
1. removing all clauses with the head in TU F,

2. removing all clauses thai contain an atom from F in the body,

3. removing all clauses that contain literal not(a). where a € T, in the body.

4 removing all atoms a. a € T and literals not(a), a € F, from the bodies of all re-
maining rules.

The simplified program contains all information necessary to reconsiruct stable

models of P that contain all atoms from 7 (‘“make them true’) and that do not

contain any atoms from ~ (““‘make them false™). The following result was obtained in

Ref. [9] (see also Ref. [4]). We provide its proof due to the key role this result plays in

our considerations.

Lemma 2.1. Let P be a logic program and let T and F be disjoint sets of atoms. If M is a
stable model of P such that T C M and MNF =0, then M\ T is a stabie model of
simp(P. T, F).

Proof. Lzt us define a partition of P into five disjoint programs P;..... P; (some of
them may be empty):

I. P, consists of all clauses in P with the head in T,

2. P> consists of all clauses in 2 with the head in F,

3. P; consists of all the remaining clauses in P that have an atom a, where a € F in
the body,

P. Cholewinski, M. Truszccynski ! J. Logic Progrumming 38 (1999) 219-242 223

4. P, consists of all the remaining clauses in P that have a literal not(a), wherea e T
in the body,
5. Ps consists of all remaining clauses in P.
It is clear that simp(P,T,F) = simp(Ps, T, F).
Let M be a stable model for P such that T C M and M N F = {). Since M is the
feast model of PM, M is a model of PY. Define M’ = M \ T. We will show that Af'isa
model of simp(Ps, T, F)"'. Consider a clause

a*_blv--'sbk

from simp(Ps, T,F)" such that {b;,....5} C M’. By the definition of Gelfond-
Lifschitz reduct, there is a clause

a<-—b.....,b;‘,not(cl)...,not(c,)

in simp(Ps, T,F) such that ¢; € M, 1<i<r. Furthermore, by the definition of
simp{Ps, T, F), there is & clause

a «— b|, e ,b&, bk+|, e ,b,,not(c.). .. ,not(c,).not(c,-;) llot(.(’,«)

in Pssuch that b, €T, k+1<i<!,and ¢, € F, r+1<i<s. Since FNM =0, it
follows that the clause

a*——bl,.. b,(b;u_] bl

belongs to P}. Moreover, since T C M, {b).....b;} C M. Since M is a model of P,
a € M. By the definition of programs P, a &€ T. Hence, a € M’ and. consequently, A/
is a model of simp(Ps, T, F)".

Consider a model M” of simp(Ps. T, F)". Assum: that M” C M’. Observe that
M”"UTisamodel of PY. Since FN(M"UT) =6, M UT is amodel of P}/. 1 is aiso
clear (T € M) that PY = 0.

Consider a rule

a «— bl,....,bk
from P¥. Since M is a model of P and since a Z M (recall that a € F aad
MNF =@, thereis i, 1 <i<k,such that b, M. Sirce M"UT C M, b, gM"'UT.
Thus, any rule in P} is satisfied by M” U T.
Finally, consider a rule

a+—b,...,b
from P}. Assume that {b,,...,5;} T M” UT. Wuttout loss of generality, we may
assume that {b;.s, ..., b} are the only b;s that belong to 7. Then, {&.....,x} C M”
and .

a «— b|, cesn b‘

is in simp(P;, T, F)¥. Since M” is a model of simp{P;. T F)", a € M".

Thus, it follows that M” U T is a model of P} and. taking into account the ob-
servations made earlier, also of P¥. Since AM” U T C M and since M is the least model
of PY it follows that M"UT =M. Since M"NT = »L it follows that M” =M'.
Consequently, M’ is the least model of sxmp(Ps, 7.F)". By the definition of Ps, it
follows that simp(Ps,T,.F Y = simp(Ps, T, F ». More.,-ver, since simp(P.T.F) =
simp(Ps, T, F), we have that simp(Fs, T, F YW = simp(P, 1. F)" . Therefore. M’ is the
least model of simp(P, T, F)¥ and, consequently, a stable model of simp(P,T.F). O

224 P. Cholewinski. M. Truszczynski |l J. Logic Programming 38 (1999) 219-242

In general, the implication in this result cannot be reversed. However, it is well
known {4] that if T and F are the sets of atoms respectively true and false under the
well-founded semantics for P, then the converse result holds, tvo. That is, for every
stable model M’ of simp(P.T.F). M’ U T is a stable model oi P.

Let P be a propositional logic program and let ¢ be an atom. W¢ define
1. P{(q") = simp(P. {q}.0),

2. P(qg™) = simp(P.0.{q}).

Programs P(¢~) and P(q~} are referred to as positive and negative reducts of P with
respect to q, respectively. Intuitively, P(g™) and P(g~) are the programs implied by P
and sufficient to determine all stable models of P. Those stable models of P that
contain g can be determined from P{q’). and those stable models of P that do not
contain g, from P(q). Formally, we have the following result.

Cerollary 2.1. Let P be a logic program and q be an atom in P.

1. Let M be a stable model of P. If g € M then M \ {q} is a stable model of P(q*). If
q & M then M is a stable model of P(q™).

2. s(P)<s(P(q”)) +s(P(qg))-

Similarly. we will define now positive and negative reducts of P with respect to a
clause r. Assume that r =g — a,,.... a;.n0t(by).not(b;). Then, define

1. P(r-) = simp(P.{q.a)....,ax}.{b\.....b;}), and

2. P(r)=P\{r}.

We say that a logic program clause - is generating for a set of atoms .5 if every
atom occurring positively in the body of » is in S and every atom occurring negated
in ris not in S. Using the concept of a generating clause, the intuition behind the
definitions of P(r~) and P(r") is as follows. The reduct P(r*) allows us to compute
all those stable models of P for which r i5 a generating clause. The reduct P{r-), on
the other hand. allows us to compute ali those stiible models of P for which r is not
generating. More formally, we have the following lemma.

Corollary 2.2. Let P be a logic programandr = g — ay....,a;,not(b1}. ..., not(b;) be
a clause of P.
1. Let M be a stable model of P. If {a,..... a:} CMand {b,.....5;)} "M = @ then
MA\{q.a..... a.} is a stable model of P(r-}. Otherwise M is a stahle mudel of P(r-).
2. s(P)<s{P(r)) +s(P(r)).

Also in the case of this result, the implication ip its statement cannot be replaced
by equivalence. That is, not every stable model of the reduct (#(r*) or P(r~)) gives
sise to a stable model of P.

It should be clear that Corollaries 2.1 and 2.2 imply recursive algorithms to
compute stable models of a logic program. We will discuss these algori*hms in the
next section. In the remainder of this section, we will investigate the problem of the
maximum number of stable models of logic programs in classes ¥.#,, £#° and

To this end. we will introduce the class of canonical logic programs and determine
for them the number of their stable mcdels. We will use canonical programs to
characterize extremal logic programs in the class ¥.2,.

P. Cholewinski, M. Truszczynskil J. Logic Pregramming 38 (1999) 2]19-242 225

Definition 2.1. Let 4 = {a,.az,....a:} be a set of atoms. By c(a;) we denote the
clause

c(a;) = a; — not(a,),....not{a;_). not(a;,)..... not(a;).

A canonical logic program over 4, denoied by CPid], is the logic program con-
taining exactly & clauses ¢(a;),.... c(az). that is

CP[4] = L__J{c(az)}-

Intuitively, the program CP[4] ‘““works™ by selecting exactly one atom from 4.
Formally, CP[4] has cxactly & stable models of the form M, = {a,}. fori=1..._,k.

Definition 2.2. Let P be a logic program and 4 be the set of atoms which appear in P.
Program 2 is a 2,3.4-program if 4 can be partitioned into pairwise disjoint sets
Ay, ...,Arsuch that 2< |4, <4 fori=1,.... I, and

P= UCP[A,],
=

Rougily speaking, a 2. 3,4-program is a program which arises as a union of in-
dependint canonical programs of sizes 2. 3 or 4. A 2,3.4-program is stratificd in the
sense of Ref. [10] and the canonical programs are its strata. Stabic models of a 2,3.4-
program can be obtained by selecting (arbitrarily) stable models for each stratum
independently and, then, forming their unions.

By the signature of a 2.3.4-program £ we mean the tripie (4., .43, 2;), where 4,
i = 2,3,4, is the number of canonical programs over an i-element set appearing in P.

Up to isomorphism, a 2,3, 4-program is uniquely determined by its signature.
Other basic properties of 2.3.4-programs are gathered in the following proposition
(its proof is straightforward and is omitted).

Proposition 2.1. Let P be a 2.3 4-program with n clauses and with tie signature
(42, %3.74). Then:

l.n= 2/:3 + 3;'.3 + 4;.4,

2. s(P) = 24:354%,

As a direct corollary to Proposition 2.1, we obtain a result describing 2,3.4-pro-
grams with 7 clauses and maximum possible number of stalle models. For k = 1, let
us define 4(k) to be the unique (up to isomorphism) 2,3 4-program with the signature
{0,£,0), and C(k) and C’{~) to be the unique (up to isomorphism) 2.3.4-programs
with the signatures (2,4 - 1,0} and (0, % — 1. I), respectively. Finally, for £ = 0, let
us define B{k) to be the unique (up to isomorphism) 2, 3, 4-program with the sig-
nature (1, k.0).

Corollary 2.3. Let P be a 2,3, 4-progrem with n clauses and maximum numéer of stable
muodels. Ther:,

1. if n = 3k for some k > 1, P = A(k).

2.ifn=3k— 1 for some k =1, P= C(k) or C'(k),

-

226 P. Cholewinski, M. Truszczynski i J. Logic Programming 38 (1939) 219-242

3.if n =3k +2 for some k = 0, P = B(k).
Consequently, the maxinuen number of stable models of an 2,3.4-programs with n
clauses is given by

3+ 335 for n =0 mod 3,
so(n) = ¢ 4«33t for n =1 mod3,
6 31"%-L for n =2 mod3.

Coroilary 2.3 implies that so{#) = @(3"/?) and that
s(n) = so(n) = 373, (2.1)
We will show that s(»#) = s;{n). We will also determine the class of all extremal
programs.

We call an atom ¢ occurring in P redundant if g is not the head of a clause in P.
Let P be a logic program. By P we denote the logic program obtained from P by
removing all negated occurrences of redundant atoms. We define the class &, to
consist of all programs P such that
1. Pis A(K), if n =3k (k = 1),
2.Pis Blk),ifn=3k+2(k=0). or
3. PisCitlor C'(k). ifn=3k+1(k = 1).

Theorem 2.1. If F is an extremal logic program with n = 2 clauses. then P has so(n)
siable models. That is. for any n = 2

s(n) = so(n).

In addizion, the extremal programs in &2, are exactly the programs in &,.

Theorem 2.1 can be proved by induction on n. The proof relies on Corollaries 2.1
and 2.2 that establish recursive dependencies between the number of stable models of
P and of its reducts. It is rather lengthy and, therefore, we provide it in the Ap-
pendix A. ‘

The general bound of Theorem 2.1 can still be slightly improved (lowered) if the
class of programs is further restricted. Since there are extremal programs for the
whole class ¥, with no more than 2 literals in the body of each clause, the only
reasonable restriction is to limit the number of literal occurrences in the body to at
most 1. The class of programs with 7 clauses and satisfying this restriction will be
denoted by ¥.27:.

Denote by P(k) a 2.3.4-program with signature (k,0,0). Clearly, P(k) € f?ﬁ.
We have the following result. The proof uses similar techniques as the proof of
Theorem 2.1 and is omitted.

Theorem 2.2. For cvery program P e L.22, s(P)<2"/2, Moreove:, there are
progranis in Yﬁ Jor which this bound is attained. Program P{k) is a unique (up to
isomorphism) extremal program with n = 2k clauses, and every extremal programn with
n = 2k + 1 cluuses can be obtained by adding one inore clausz to P(R) of one of the
Sfollowing forms: p — a. a —, and a — not(F), where p is an arbitrary atom (may or
may not occur in P(k)). and a and b are atoms not occurring in P{k}.

P. Cholewinski, M. Truszczynski ! J. Logic Programniing 38 (1999) 219-242 227

Next, we will consider the class %, of all logic programs with the total size
(number of literal occurrences in the bodies and heads) at most n. Let s'(n) be defined
as the maximum number of stable models for a program in ¥2,. We have the
following resilt.

Theorem 2.3. For every integer n = 1,5 (n) = @(27/4).

Proof. We will show that for every n = 1, and for every logic program of size at most
n, s(P) < 2"/4. We will proceed by induction. Consider a logic program P such that
the size of P is at miost 4. If P has one rule, then it has at most one stable model. If P
has two rules and one of them is a fact (rule with empty body), then P has at most
one stable model. Otherwise, P € #22 and s(P) < 2*/* follows from Thneorem 2.2. If
P has thrze rules, then at least two of thesc rules are facts and P has at most one
stable model. If P has four rules, it is a Horn pro_ram and has exactly one stable
model. Hence, in all these cases, s{P) < 2"*. Since P has size 4, it has at most four
rules and the basis of induction is established.

Consider now a logic program P of size n > 4. Assume that P has a rule, r, with at
least two elements in its body. Let @ b= the head of r. If 4 and not(a) do not occur in
the body of any rule in P\ {r}, then s(P) < s(P\ {r}) and the result follows by the
induction hypothesis. So, assume that there is a rule in P\ {r} such that a or not(a)
occurs in its body. Then, both P(a™) and P(a~)} have sizes at most n — 4. By Cor-
ohiary 2.1, s(P} < s(P(a*)) + s(P{a”)). Consequently, by the induction hypothesis,
s(P) < 274,

Thus, assume that each rule in P has at most one literal in its body. If at least one
of these rules, say r, has empty body, then every stable model of P contains the head
of r (say a). Thus, s(P) < P(a*) (Corollary 2.1) and the resuit follows by the in-
duction hypothesis.

Hence, assume that each rule in P has nonempty body. Let p be the
number of rules in P. Then, p< |n/2|. Moreover, P < y?f, By Theorem 2.2,
s(P) 22 274 O

Finally, let us observe that every antichain .# of sets of atoms is representable by a
fogic program.

Theorem 2.4. For every antickain .7 of finite sets there is a logic program P such that
ST(P) = F. Moreover, there exists such P with at most }_g_ 5 |B| clauses and total
size at most | F| x 3 g 5 |8].

Proof. Consider a finite antichain # of finite sets. Let 8 € #. For every C € .#,
B # C, denote by xzc an element from C\ B (it is poscible as .7 is an antichain).
Now, for each element b € B, define

ry = b — mt(xgic.), ceny mt(.\'.'g,c‘),

where C},...,C; are all elements of # other than B. Next, define a program P, to
consist of all rules r,, for b € B. Finally, define

Py = | JPs.
BEF
It is easy 1o verify that ST(£;) = # aund that the size of Ps is | F| x>y , 1B. O

228 P. Cholewinski, M. Truszczynski |l J. Logic Programming 38 (1999) 219-242

On one hand this theorem states that logic programs can encode any antichain #.
On the other, the encoding that is guaranteed by this result is quite large (in fact,
larger than the explicit encoding of .#). In the same time, our earlier results show
that often substantial compression can be achieved. In particular, there are anti-
chains of the total size of @(n3"’?) that can be encoded by logic programs of size
&(n). More in-depth understanding of applicability of logic programming as a tool
to concisely represent antichains of sets remains an open area of investigation.

3. Applications in siable model ccmputation

In this section we will describe algorithms for computing stable models of logic
programs. These algorithms are recursive and are implied by Corollaries 2.1 and 2.2.
They select an atom (or a clause. in the case of Corollary 2.2) and compute the
corresponding, reducts. According to Corollaries 2.1 and 2.2, stable models of P can
be reconstructed from stable models of the reducts. However, it is not, in general, the
case that every stable inodel of a reduct implies a stable model of P (see the com-
ments after Corollary 2.2). Therefore. all candidates for stable models for P, that are
produced out of the stable mode!s of the reduct, must be tested for stuability for P. To
this end, an auxiliary procedure 1s_sTABLE is used. Callirg 1s_STABLE ‘or a set of
atoms Af and a logic program P returns frue if M is a stable model of P, and it returns
Jaise, otherwise.

In our algorithms we use yet another auxiliary procedure, impLIED_SET. This
procedure takes one input parameter, a logic program P, and outputs a set of atoms
M and a logic program F, (modified P) with the following properties:

i. M is a subset of every stable model of P, and

2. stable models of P are exactly the evnions of M and stable models of 7.

There are several specific choices for the procedure IMPLIED_SET. A trivial option is
to return M = @ and F, = P. Another possibility is implied by our comments fol-
lowing the proof of Lemma 2.1. Let 7 and F be sets of atoms that are true and false,
respectively, under the well-founded semantics for P. The procedure iMPLIED_SET
might return T as M. the program simp(P,T.F) as Py. This choice turned out to be
critical to the performance of the s-models system [7] and. we expect, it will lead to
significant speedups once our algorithms are impienicnted. However, in general,
there are many other, intermediate. ways to compute M and £ in polynomial time so
that conditions (!) and (2) above are satisfied. Experimental studies arc necessary to
compare these different choices among each other (this is a subject of an ongoing
work).

We will now describe the algorithms. We adopt the following notation. For a logic
program clause r, by kead(r) we denote the head of r and by positivebody(r). the sei
of atoms occurring positively in the body of r.

First, we will discuss an algorithm based on splitting the original program (that is,
computing tiic reducts) with respect to a selected atom. This idea and the resulting
algorithm appeared first in Ref. [4]. The correctness of this method is guaranteed by
Lemma 2.1 (or. more specifically, by Cecerollary 2.1). We call this algorithm sTA-
BLE_MODELS_A.

In this algorithm, to compute stable models for an input program P we first
simplifv it to a program AR, by executing the procedure IMPLIED_SET. A set of atoms

P. Cholewinski, M. Truszczynski 1 J. Logic Programming 38 (1999) 219-242 229

M contained in all stable models of P is alsc computed. Due to our requirements on
the IMPLIED_SET procedure, at this point. to compute all models of P, we need to
compute all models of P, and expand each by M. To this end, we select an atom
occurring in £, say g, by calling a procedure seLecT_aAToMm. Then. we compute the
reducts P(g*) and Py{g~). For both reducts we compute their stable models. Each of
these stable models gives rise to a set of atoms {g} U N (in the case of stable models
for Py(g*)) or N (in the case of stable models for P(¢~)). Each of these scts is a
candidate for a stable model for Py. Calls to the procedure is_STABLE determine
those that are. These sets, expanded by M, are returned as the stable models of P, We
present the pseudocode for this algorithm in Fig. 1.

The second algorithm, STABLE_MODELS_R, is simtiar. It is based on Corollary
2.2. That is, instead of trying to find stable models of P among the sets of atoms
implied by the stable models of P(¢*) and P(g~), we search for stable models of P
using stable modeils of F{(r*) and P(r "), where r is a clause of P. The correctness of
this approach follows by Corollary 2.2. The pseudocode is given in Fig. 2.

Algorithins STABLE_MODELS_A and STABLE_MODELS_R can easily be merged
together into a hybrid method, which we call stasBLE_MODELS_H (see Fig. 3). Here,
in each recursive cal: to STABLE_MODELS_H we start by deciding whether the
splitting (reduct computation) will be performed with respect to an atom or to a
clause. The function SELECT_MODE(""atom™,“clause’”) makes this decision. Then,
depending on the outcome, the algorithm follows the approach of either sTA-
BLE_MODELS_A oOr STABLE_MODELS_R. That is, either an atom or a clause is se-
lected, the corresponding reducts are computed and recursive calls to
STABLE_MODELS_H are made.

All three algorithms provide a convenient framework for experimentation with
different heuristics for pruning the search space of all subsets of the set of atoms.

STABLE_MODELS_A(P)
Input: a finite logic program P;
Returns: family Q of all stable models of P;

IMPLIED SET (P, M, P);
if (JPo} = 0) then return {M}
else

Q:=0;

¢ := SELECT_ATOM(P»);

Py == Po(g*);
L := STABLE_MODELS_A(Py); :
for all N € L do if1S_STABLE(P), {g} UN) then Q@ := QU {MU{q} UN};

Pz = Po(g™);
L := STABLE_MODELS _A(FP2);
for all N € L do if 1S STABLE(Fp, N} then Q .= QU {M U N},

return Q;

Fig. 1. Algorithm for computing stable models by splitting on atoms.

230 P. Cholewinski, M. Truscczynski | J. Logic Programming 38 (1999) 219-242

STABLE_MODELS_R(P)
Input: a finite logic program P;
Returns: family Q of all stable models of P;

IMPLIED _SET(P, M, Pp);
if {|Po}] = 0) then return {M}
else

Q=9

r := SELECT-CLAUSE(Pp);

Py = Po(rt);

L := STABLE_MODELS_R{P);

for all N € L do if IS STABLE(Py, N U positivebody(r) U {head(r)})
then Q := QU {M U N U positivzbody(r) U {head(r)}};

Py := Py(r™);
L := STABLE_MODELS_R(Pz);
for all N € L do if1s STABLE(FPy, N) then Q := QU {M UN};

return Q;

Fig. 2. Algorithm for computing stable models by splitting on clauses.

In general, the performance of these algorithms depends heavily on how the
selection routines SELECT_ATOM, SELECT_CLAUSE and SELECT_MODE are im-
plemented. Although any selection strategy yields a correct algorithm, some
approaches are more efficient than others. In particular, the proof of Theorem
2.1 implies selecting techniques for the algorithm STABLE_MODELS_H guaran-
teeing tha! the algorithm terminates after the total of at most O(3%/3) recursive
calls.

Let us also observe that the recursive dependencies given in Corollaries 2.1 and 2.2
indicate that in order to keep the search space (number of recursive calls) small,
selection heuristics shouid attempt to keep the total size of P{g*)UP(q) or
P(rv) U P(r~) as small as possible.

The presented algorithms compute all stable models for the input program F.
They can be easily modified to handle other tasks associated with logic
programming. That is, they can be tailored to compute one stable modet,
determine whether a stable model for P exists, as well as answer whether an
atom is true or false in all stable models of P (cautious reasoning), or in one
model of P (brave reasoning). All these tisks can be accomplished by adding a
suitable stop function and by halting the algorithm as soon as the query cau be
answered.

The general structure of our algorithms is similar io well-known Davis-Putnam
method for satisfiability problem. The impLIED_SET procedure corresponds to the,
so called, unit-propagation phase of Davis—Putnam algorithm. In this phase neces-
sary and easy-to-compute conclusions of the current state are drawn to reduce the
search space. If the answer is still unknown then a guess is needed and two recursive

P. Cholewinski, M. Truszczynski | J. Logic Programming 38 (1999; 219-242 231

STABLE_MODELS_H{ P)
Input: a finite logic program P;
Returns: family @ of all stable models of P;

IMPLIED.SET(P, M, Po);
if (|Po] = 0} then return {M}
else

Q:=9;

split_mode := SELECT_-MODE(“atom”,“clause™);

if (split_mode = “atom™) then

begin
g := SELECT-ATOM{);
Py := Po(g*);

L := STABLE_MODELS_H{FP);

for all N € L do if 1S STABLE(Ps, {q} U N) then @ :=QC {MuU {qg} UN)};
P := Po(q™);

L := STABLE_-MODELS_H({P2);

for all N € L do if 15s_STABLE(Fo, N) then Q= QuU {M U N}

end
else (» split_mode = “clause™ =)
begin
r := SELECT.CLAUSE(Fs);
P, = Py(r);

L := STABLE_MODELS_H(P,);
for all N € L do if 1IS_.STABLE(P, IV U positivebody(r) U {head(r)})
then Q := Q U {M U N U positivebody(r) U {head(r)}};
Py := Po(r™);
L := STABLE_MODELS_H(P);
for all N € L do i715_STABLE(Ps, M) then Q := QU {M U N};
end
return Q;

Fig. 3. Hybrid algorithm for computing stable models.

calls are performed to try both possibilities. But there are also differences. First, in
our case, splitting can also be done with respect to a clause. The second difference is
due to nonmonotonicity of stable semantics for logic programs. When a recursive
call in Davis—Putnam procedure returns an answer, this answer is guaranteed to be
correct. There is no such guarantee in the case of stable models. Each answer (stable
model) returned by a recursive call in our algorithms must be additionally tested (by
IS_STABLE procedure) to see whether it is a stable model for the original program.

4. Disjunctive logic programs

In this seciin, we will focus on the class of disjunctive logic programs ##, ... For
a set of atoms {a,,...,an}, let us denote by d(ay, - .., a,) the disjunctive clause of the
tform

232 P. Cholewinski. M. Truszczynski ! J. Logic Programming 38 (1999) 219-242

ayV...vVag —.

By D(n, m), we will denote the disjunctive logic program consisting of n clauses:

d(aii.....a1m)

with all atoms g, ; - distinct. It is clear that every set of the form

{a;;:i=1,....n, ¥ < j<m}
is an answer set for D(n.m), and that all answer sets for D(n,m) are of this form.
Hence,

IST(D(n,m))| = m".

Consequ >ntly. general upper bounds or. the number of answer sets for disjunctive
programs in such classes that allow clauses of arbitrary length do not exist.
Turning attention to the class &.#, ... it is now clear that, since D(n,m) € 72, n,

d(n,m) = m".
The main result of this section shows that. in fact,
d(n,m) =m"
and the program D{z,m) is the only (up to isomorphism) extremal program in this
class
Consider a clause 4 of the form
ayV...Vai— by,....bp,n0t(cy)....,not{c,).

By d* we will denote the clause obtained from 4 by moving all negated atoms to the
head. That is, d~ is of the form:

V- -Var Ve v---Ve, = b,.... b,
Lect D be a disjunctive program. Definz
D™ = {d :d € D}.

Lemma 4.1. For every disjunctive logic program D, ST(D) C ST(D*).

Proof. Let M € ST(D). Then, M is a minimal model of the Gelfond--Lifschitz reduct
D and. as is well known. M is a modei of D. It follows that M is a model of D*. To
show that M € ST(D%), we need to show that M is a minimal model of D*.
Consider a model M’ of D™ aud assume that M’ C M. Take a clausc
aV---Vay, — by,....b,
from DY. Then, there is a rule

aV---Vag — b.,....b,.,,not{c;).....not(c,.)

inDsuchthatrn >0andc;,....c, €M.Since M’ C M, c;,...,c, & M’. Assume that
{by,....bn} C M’ Then, since M’ is a model of D (recall that it is a model of D*),

P. Cholewinski, M. Truszczynski | J. Logic Programming 38 (i999) 219-242 233

thereis i. 1 < i<k, such that a; € M’. It follows that M’ is a model of DV. Since M is a
minimal model of DY, M = M’. Hence, M is a minimal model of D-. O

Lemma 4.1 allows us to restrict our search tor disjuactive programs with the
largest number of answer sets to those programs that do not contain negated oc-
currences of atoms.

Lemma 4.2. Ler D be a disjunctive program with n rules dy. d. Assume ikar for
each i | <i< n, d; has empty body and exactly h; differen: disjunces in the siead. Then
D has at most hy, x --- x h, answer sets. Mm'emer if D has exactly h; x --- X R,

different answer sets, then no two rules have the saume atom in their heads.

Proof. Clearly, for each program wiicse every rule has empty body. answer sets are
exactly minimal models. So. we have to prove that D has at most - x --- X A,
minimal models. We will proceed by induction on the size of D (total number of
literal occurrences in D). If the size of D is 1. the assertion holds. Consider now a
disjunctive logic program D of size £ > 1, whose each rule has empty body. Assume
D has n rules 4,,...,d, and that for each i, 1 <i<n, d; has exactly h; different
disjuncts in the head.

Coas*der a minimal model M of D. Let a be any atom appearing iu: the head of 4.
Let M be a minimal model of D. Assume that a € M. Then, M is a minimal model of
a program Y obtained from D by removing a from the head of each rule in which it
appears. By induction thypothesis applied to 0¥, there are at most

(hy — 1) x ha x --- x h, minimal models M of D that do not contain a. Moreover,
this number equals (#, — 1) x h2 x --- x h, precisely if the heads of rules of D’ have
hy — 1, ha, ..., h, disjuncts in their heads, and if no atom appears in D’ more than

once. This happens precisely when no at.m appears more than once in D.

The other possibility for A is that a € M. In this case, define Y to be a program
obtained from D by removing all clauses with a in the head (in particular, 4, is re-
moved). Assume that D' = {d,,.....d, }. Since d, is removed, p < n. Clearly, M \ {a}
is a minimal model of I. If IV # @, by induction hypothesis, it follows that there are
at most &;, x --- x b, < hz x .- - x h, minimal model of D that contain a. Moreover.
this number equals 4> x --- x &, occurs precisely when g occuss only in &; and if no
atom appears more than once in d-..... d,.

It follows that the total number of minimal models of D is at most
(fy— D) xhrx--xh,+hr x---xXh,=h X hy x---xHh,.
It also follows that the number of minimal models of D is ; x --- x A, if and only if
no atom appears in 2 more than once. O

Theorem 4.1. For ever;y integers m = 1 and n = 1, and for every program D € &Py o,
|ST(D)| € m". Moreover, the program D(n.mj is the only program in the class .
Jor which the bound of in" is reached. In particular, d(n.m) = m".

Proof. We will proceed by induction on #. The theorem clearly holds it n = L. a is
also true if m = 1. So, assume that m > 2 and » > 2. '

We will first focus on disjunctive programs in &.#,, ihat do not contain negated
occurrences of atoms. Let D € ¢.#,, be such a program, say D = {d,.....d,}. As-
sume that the rule 4; has A; atoms in its head.

234 P. Cholewinski, M. Truszczynski i J. Logic Frogramming 38 (1999} 219-242

If each clause in D has a nonempty body, D has exactly one answer set model, the
empty set. Since m = 2, s(D) < m" (the inequality holds and D is not extremal).
Next, assume that at least one rule in D has empty body. Let 7Y be a subset of D
consisting of all the clauses with the empty body. Let »’ denote the number of clauses
in I’. Hence, #»’ > 0. Each minimal model for D can be obtained by the following
procedure:
1. Pick a minimal model A’ of Y. If D = D/, output M’ and stop.
2. Otherwise, reduce D \ D' by removing clauses satisfied by M’ as well as atoms from
the bodies of the remaining rules that belong to M’. Call the resulting program D”.
3. Pick a minimal model M” of D".
4. Output M’ U M” as a minimal model of D.
Clearly, Lemma 4.2 applies to [Y. Hence, [S7(D’)| < m", with equality if and only if
D’ = D(n’,m). If D” = @, then there is only one possibility for M, namely M"” = 0. If
Dr#£9, D'e<x2?Pr,, for some n"<n-n <n By induction hypothesis,
IST(D")| < m™ . Moreover, equality holds if and only if D’ = D(n”, m). Consequently,
IST(D) < m" x m™ < m", with equality holding if and only if D = D(n, m).
Consider now an arbitrary program D € 2#,,,. Assume that D is extremal. It
foilows from Lemma 4.1 that D~ is also extremal. Hence, D* = D(n, m). Assume that
D # D*_ Then, there is a rule in D that contains at least one negated atom, say a. It
follows from the definitions of D~ and D(n,m), and from the equality D" = D(n,m)
that:
1. there is an answer set M of D* such that a € M, and
2. no answer set for D contains a.
Since ST{D) C ST{D™). and since 2" is exiremal, it follows that D is not extremal, a
contradiction. Hence, D = D* = D{n,m). O]

Finally, we will consider the class Z.#, of all logic programs with the total size
{numuer of literal occurrences in the bodies and heads) at most n. Let 4'{n) be de-
fined as the maximum number of answer sets for a disjunctive program in .#,. We
have the following result.

‘Theorem 4.2. For every n = 2. d'(a) = ©(27/?).

Proof. Assume that D has size n and that it has & rules. By Theorem 4.1 it follows
that |ST(D)| < m*, where m == [n/k]. The value n*, under the constraint m = [n/k],
assumes its maximum for & = [#/2]. Hence, for every disjunctive logic program D of
size n, |ST(D)| = O(2%/2). In the came time, program D{|n/2!,2) demonstrates that
there is a disjunctive program D cf size &t most n such that |ST (D)} = 2(2"/2). Hence,
the assertion follows 1

Compared with the estimate from Theorem 2.3 for the function s’(n), the function
d’(n) is much larger (it is, roughly the square of s'(n#). Consequently, there are an-
tichains representable by disjunctive logic programs with the cardinality of the order
of the square of the cardinality of largest antichains representabie by logic programs
of the same total size. This may be an additional argument for disjunctive logic
programs as a knowledge representation mechanism.

P. Cholewinski, M. Truszczynski | J. Logic Programming 38 (1999) 219-242 235
S. Conclusions

In this paper, we studied extremal problems appearing in the area of logic pro-
gramming. Specifically, we were interested in the maximum number of stable models
(answer sets) a program ¢{disivactive program) from a given class may have. We have
studied several classes in w2tail. We determined the maximum number of stable
models for logic programs with n clauses. Similarly, this maximum was also estab-
lished for logic programs with n clauses, each of length at most 2, and for logic
programs of total size at most ». In some of these cases we also characterized the
extremal programs, that is, the programs for which the maxima aie attained. Similar
results were obtained for digjunctive logic progiams. Cur results have interesting
algorithmic implications. Several algorithms, having a flavor of Davis-Putnam
procedure, for computing stable model semantics are presented in the paper.

Extremal problems for logic programming have not been studied so far. This
paper shows that they deserve more attention. They are interesting in their own right
and have interesting computational and knowledge representation applications.

Appendix A. Proof of the main result

First, we prove auxiliary lemmas which will be used in the proof of Theorem 2.1.

Lemma 6.1. For any n< 1, s(n) < s(n+ 1).

Proof. Let P be a program with n rules and s(P) stable models. To complete the
proof it is enough to show that there is a logic program P’ with =+ | rules and
s(P) < s(P’). Assume first that s(P) < L. Then, as P/ we can take any program with
n + 1 rules and 2 or more stable modeis (since 72 + 1 = 2, such programs exist).

Suppouse now, that P has at least 2 stable models. Let M, , M->,... M, be the all
stable models of P. We construct P’ as follows. Since stable models of a logic pro-
gram formn an antichain, every model M;, | <i<k, is not empty. Let & be a prop-
ositional atom not occurring in P. Let 4 = {a;,az,...,a;} be any set of atoms such
that for all i, 1 <i<k, AN M, # 8. Finally, let

P = {head(r) — body(r),mot{b):r € P}
U {b - m‘(al)v m(GZ)y s m(a:")}

it is easy to see that M, , M, ... , M;, {b} are stable models for 7. Thus, the proof of
the lemma is complete. O

A clause r of P is called redundant if the head of r occurs (negated or not) in the
body of r, or if there is an atom ¢ such that both q and mot(g) occur in the body of r.

Lemma 6.2. If P is an extremal program with n = 2 rules then:
1. P contains no positive redundant literals.
2. P contains no redundant rules,
3. P coniains no facts (i.e. rules with empty body),
4. every head of a rule in P appears in the body of another rule ir P.

236 P. Cholewinski, M. Truszczynski ! J. Logic Programming 38 (1999) 219-242

Prooi. If P contains a positive redundant litzral ¢ in the body of a rule r then every
stable model for £ is a stable model for P(r). Hence ST(P) C ST(P(r")). So, from
Lemma 6.1, we have that

s(PY<s(P(r)) ss(n— 1) < s(n)-
This means that P is not extremal.

If P contains a redundant rule » then stable models of P are exactly the stable
models of P(»7). Again, P is not extremal. If P contains a fact g — then g must
belong to every stable modcl of P. That is,

s(P) <s(P(gh)) <s(n - 1) < s(n),
and P is not extremal.

Assume that P contains a rule r with head g and g does not appear negatively or
positively in the body of any other rule. For any set of atoms A, M is a stable
model for P if and only if M\ {¢g} is a stabie model for P(g¢'). Hence, again
s(P)<s(P(q”)) < s(n) and P is not an extremal program. [

Lemma 6.3. Letr n be a positive integer andn = 3m + I, where 0< 1 <2. Foranyn =3

so(n) = 2sg(n — 2). (A.1)

Moreover, if | = 0 then sp(n) > 2s5¢0(n — 2). otherwise so(n) = 2s¢(n — 2). For any
two integers x,v, such that x,y = 2 and < max(x,y) < n,

So{n) > so{n — x) + so(n — ¥). (A.2)
Foranyn=5
so(n) = so(n — 1Y + so(n — 4). (A.3)

Moreover, if I =1 then so(n) = so(n — 1) + so(n — 4). otherwise so(n) > so(n — 1)
+so(n — 4).
For any integer x, such that 4 < x < n,

so(n) > so(n — 1) + so(n — x). (A4)

Proof. Straightforward arithmetic for inequalities (A.1) and (A.3). Inequalitics (A.2)
and (A.4) are implied by (A.1) and (A.3) and mononicity of sp. O

Lemyma 6.4. Let P be a logic program with n rules with pairwise distinct heads
ai.....a,. If the family of all stable models of P is {{ai}.... . {an}}. then
P=CPla..... a.}]-

Proof. Consider the program P. Assume that it consists of rules ry..... r.. Without
loss of generality we will assume that the head of r; is g;, I <i<n.

Observe that since ry is generating for {a,}, the only positive lneral it may contain
is a;. So, assume that a, appears posmvel y in the body of r,. Then, P! contains the
rule a; — a;. Since all other rules in 7 h have atoms different from a; in their heads,
a. does not belong to the least model of P! a contradiction. Hence, r; has no
positit = “terals. By symmetry. all rules », have no positive literals in their bodies.

Next, observe that r; is generating for {a,} but not icr any other stable model {a;}
(i # 1). Hence, all literals mot(a;), 2 < i < n, aust appear in the body of r; and not/a;)
does not. Since r; has no redundant negative literals,

P. Cholewinski. M. Truszczynski | J. Logic Programming 38 (1999} 219-242 237

By symmetry, it follows that P = CP{{qa,..... w,}. O

To prove Theorem 2.1, we establish the basis of induction in Lernma 6.5 and the
induction step in Lemma 6.6.

Lemma 6.5. Let P be an extremal program swith n, 2 < n < 4 clauses. Tien. for saome
atoms a. b, ¢ and d:

1. if n = 2, P = CP[{a.b}] (= B(D)).

2. ifn=3,P=CP{a.b.c}] (= A(1)).

3. n=4,P=CPlla.b.c.d}] (= C'(1}). or P= CP[{a.b}| U CP[{c.d}] (= C(1)).

Proof. Let P be an extremal program with n clauses, 2 < n < 4. Since P is extremal, P
has at least n stable models (note that B{(0) has 2 stable modcdis, (1) has 3 stable
models, and C(1) and C’(1) have 4 stable models each).

Let H be the set of heads of the rules in P. Then, each stable model of £ is a subset
of H, and all stable models of P form an antichain. If {H| = |, the largest antichain of
subsets of H has one element. Thus, |H| = 2.

Observe also that since P is extremal. its rules contain no positive redundant
literals in their bodies (Lemma 6.2). Additionally, by the construction of P, iis rules
contain no redundant negative literals, either. Hence, the rules of P are built of atoms
in H only.

Assume first that » = 2. Then. |H| = 2. say H = {a.b}. There is only one anti-
chain of subsets of A that has two elements: {{«}. {#}}. Hence. P has two stable
models: {a} and {#}. The assertion follows by Lemma 6.4.

Assume next that n = 3. If |H| = 2, then the largest antichain of subsets of A has
two clements, a contradiction (recall that P has at least three stable models). Hence,
{H| = 3. say # = {a.b.c}. The program P has three rules, say r, s and ¢, with heads a,
b and c, respectively.

There are only two anticr:zins of subsets of H with three elements:

(1) {{a.b}.{a.c}.{b.c}}. and

2) {{a}.{b}.{c}}. _

Hence, the family of stable models of P (and. hence, also of P) is either {{.:. b},
{a.c}. {b.c}} or {{a}. {h}.{c}}.

Consider the first possibility. Assume that rule r contains a negative literal.
Clearly, rules r and s are generating for {«.bp}. Thus, the ouly negative literal that
they may contain is not(c). Reasoning in the same way, we find that the only negative
literal that may be contained in the rules r and 7 is not{b), a contradiction. Hence. »
and. by symmetry, s and ¢ have no negative literals. Thus, 2 is a Horn program and
has exactly one stable model, a contradiction.

It follows that the family of stable models of P is {{a}.{b}. {c¢}}. Now, the as-
sertion follows by Lemma 6.4.

Finally, assume that # = 4_ If |H| < 3, the size of any anticha’n of subsets of H is at
most 3. Since P has at least 4 stable models, [H| = 4. Assume that H = {a.b.c,d}
and that P consists of rules r, v, ¢, and « with heads a, b, ¢ and d, respectively.

238 P. Cholewinski. M. Truszczynski | J. Logic Programming 38 (1999) 219-242

Let of be an anti<hain consisting of 4 or more subsets of H. Clearly, .«# contains
neither @ nor H. Assume that .o/ contains a one-element subset oi H, say {a}. Then,
there are exactly two possibilities for .o/:

(1} o = {{a}. {b}.{c}. {d}}. and

{2) = {{a}.{b.c}.{b.d}.{c.d}}.

In the first case, the assertion follows from Lemma 6.4. So, let us consider the second
case. In this case, rule r is not generating for any of the stable models {b,c}. {5, d}
and {c.d}. Hence. {b.c}. {b,d} and {c.d} are the stable modeis of P\ {r}. Thisisa
contradiction. We proved above that no 3-rule program can have the antichain
{{b.c}.{b.d}.{c.d}} as its family of stable models.

Next, assume that .« contains a set with three elements, say {a, b, c}. Then, there
are exactly two possibilities for .o/:

() o = {{a.b,c}.{a.b.d},{a.c,d}. {b,c,d}}, and

@) o = {{a.b.c}. {a.d}. {b.d}. {c.d}}. _

Assume the first case. Assume that at least one rule in P, say r, has a negative
literal. Since r. s and ¢ are generating for {a. b, c}, it follows that r has exactly one
negative literal, mot(d). But then, r is not generating for {a.b,d}, a contradiction.
Hence, r and, by symmetry, all the rules in P have no negative literals in their
bodies. Conscguently, P is a Horm program and has only one stable model. a
contradiction.

Thus, assume that o/ = {{a.b,c}, {a,d},{D,d},{c.d}}. Assumc that r has a
negative literal. Reasoning as before, it follows that r has exactly one negative literal,
wot{d). But then, r is not generating for the stable mode! {a,d}, a contradiction.
Hence, r and, by symmetry, s and ¢ have no negative literals in their bodies. Assume
that u has a negative literal in its body. say not(x). Then, since « is generating for
{a.d}, {b.d} and {c.d}. x & {a,d} U {b.d} U {<,d}, which is impossible. Hence, as
before, P is a Horn program and has only one stable model, a contradiction.

The last case to consider is when =/ contains only sets consisting of two elements.
First, assume that some three sets in .o/ contain the same element, say a. Then {a. b},
{fa.c} and {a.d} are all in =/. Since r is a generating rule for all three stable medels, it
contains no negative literals and the only positive literal it may contain in its body is
a. Since facts do not belong to extremal programs (Lemma 6.2), g is in the bod {y of r.
Consequently, a — a is in P“® Hence. a is not in the least model of P
coentradiction.

The only remaining possibiiities for .o/ are

(M .o/ = {{a.c}.{a.d}.{b,c}. {b.d}},

(2) of = {{a.b}.{a,d}.{b,c}.{c,d}},

3) o = {{a.b},{a,c}.{c,d}.{b.d}}.

They are isomorphic, s0 it is enough to consider one of them only, say the first one.

Assume that » has a positive literal in its body. Since r is a generating rule for
{a.c} and {a. d } it follows that r has exactly one such literal, namely a. Hence, rule
a—aisin P . Since no other fule in P has a as its head, a is not m the least
model of P'“}_ a contradiction. Hence, » and, by symmetry, all rules in 7"’ have no
positive literals in their bodies.

Next observe that r is generating for {a,c} and {a,d} and it is not generating for
{b.c} and {b.d}. Since it has no positive literals in the body, it follows that
r = a — mot{h). By symimetry, clauses 5 — mot(a), ¢ — not{d) and 4 — not{c) are all
in P. Hence, P = CP{{a.b} U CP[{c.d}]. O

P. Cholewinski, M. Truszczynski | J. Logic Programming 38 (1999) 219-242 239

Now, we will establish the induction siep.

Lemma 6.6. Let n be an integer, n = 5. Assume thuai every extremal program with
2< o < n rules and nu redundant atoms is a 2,3,4-program. If P is an extremal
prograri with n = 5 rules and no redundant atoms then:

1. P contains no two rules with the same head

2. P contains no atoms the: appear only positively in the bodies of the rules in P

3. P contains no rules of the form q — p

4. Pis a 2,3,4-program

Proof. Our assumption that every extrema! program with 2 <»’ < n rules and no
redundant atoms is a 2 3,4-program implies that for every o/, 2<n# <5,
s(n’) = so(r).

(I) Letr =q — ay,....a;,not{b;),...,not(h;) be a rule in P. Assume that there is
another rulc » with hcad ¢. From Lemma 6.2 it follows that k>0 or [> 0.
Moreover, from Lemma 6.2 we have that there is a rule »” such that g appears in the
body of . Also, since there are no redundant rules in P, /' is different than r and 7.

If g appears positively in the body of r’ then |P(¢™)| < n — 3. Since |[P(q"){<n - 2,
the inequality (A.2) in Lemma 6.2 and the inductive assumption imply that

s(P)<s(P(q*)) +s(P(q™)) <so(n — 2) + so(n — 3) < so(n).

So, P is 5ot extremal.

Assume then that ¢ appears negatively in the body of »*. Now, |P(g7)j<n -2,
[P(g*)| < n — 3 and we can show that s(P) < sp(n) in the same way as before. Hence,
P contains no two rules with same head and (1) follows.

Therefore, for every atom g which appears as a head in P, there is exactly one ruke
with head ¢. We will denote this rule by r(g).

(2) Assume that P contains an atom g which appears only positively in bodies of
rules of P. There is a unique rule »(q). Let

rig) =q—a,....,a;,not(h), ... not(h,)
and P be the program obtained from P by replacing every premise g by the sequence
ay,...,a;, not(b;),mot(b,). Then |P| = IF’! and the programs P and P have the same

stable models. Also, P’ contains an atom which never appears in a body of a rule in
P. So, from Lemma 6.2 it follows that P’ is not extremal. Hence, s(P) < s(n), a
contradiction.

(3) Assume that P contains a rule of the form r = g — p. Since there is only one
rule in P with head g, for every stable model M of P, g € M ifand only if p € M. Let
P be the program obtained from P by replacing every premise mot{q) by the premise
not(p). Clearly, P and P’ have the same stable models. In addition, P contains an
atom which does not appear negated in P’. From part (2) of this proof, it follows that
P’ is not extremal. Conssquently, since P and P’ have the same number of rules and
the sarae number of stable models, £ is nct extremal, contrary to the assumption.

(4) Assume first that P contains a rule r of the form ¢ — mot(p). Let M € ST(P). If
g € M, then M\ {q} € ST(P(r*)). If ¢ € M, then, M < ST(P(r-)) and p € M. Hence,
M\ {p} € ST((P(r~))(r(p)")) (recall that r(p) is the unique rule in P with p as its
head, cf. part (1) of the proof). Hence,

240 P. Cholewinski, M. Truszczynski { J. Logic Programming 38 (1999) 21v-242

s(P) < s(P(r*)) + s((P(r™))(r(p) "))
Observe now that |P(r"}{<n — 2 — 3, where J is the number of rules different
from r(p) and containing not(g) in the body.
Next, observe that {(P(r~))(r(p) "} <n — 2 — e, where ¢ is the nvmber of literals in
the body of r(p) different than g and not(q). Therefore,

s(n) = s(P) <s{P(r)) +s((Pr N(r(p)))<s(n —2 —3) +s(n -2 —¢).

‘M 5 >0 or ¢ >0 then the inequality (A.2) of Lemma 6.3 and the equality
s(n'} = so(n'). for 2 < ' < n, imply that s(n) < so(n). It follows that =0, ¢ = 0 and
both P(r7) and P(r~)(r(p)~) are extremal. Moreover, since € = 0, r(p) = p «— not(q)
(P does not contain redundant rules and rules of the form p — g).

Let 7 = P\ {r.r(p)}. Since é = 0, it also follows that there are no rules in 7 with
not(g) in the body. By symmetry, it follows that no rule of P’ contains not{p).

Assume now that there is a rule in P, say //, containing ¢ in its body. Again, let
M e ST(P). 1V g € M, ihen M \ {¢} is a stable mode! of {P(g~))(»"). Otherwise, M is
a stable model of P(p~)(g). Since |[(P(g" N)i<n—2and |{(Fp)Ny)j<a--3.

s(P)Y<s(P(qg")p) +s(P(p) g™)) <s(n—2) +5(n—~3)
= so{n — 2) 4+ so{m — 3) < sy(n) < s(an).
a contradiction. Hence, neither ¢ nor (by symmectry) p appear in P. It is easy to see
that P = P(r"). Since P(r~) is extremal, P is extremal. 1t follows by induction that
P’ and. consequently. P are both {2.3.4}-programs.

From now on. we will assume that every rule in P has at least _ literals in the
body. Assume that there is a rule » in P with a positive literal, say a,. in its body. Since
the body of r(a) has at least two literals. |[P(a”)| < n — 3. Since r has a in its body.
[Pla)i<n—2. It follows that s(P)<s(n— 3)+s(n—2) =spln —3) + sp(n —2)
< sg(n) < s(n), a contradiction. Hence. every rule in P has only negative literals in its
body.

Assume next that there is a rule r in P with &£ = 4 literals in the body. Let ¢
be the head of r. Then |P(¢)| <n —~ 5 and |P(¢)] <n — 1. Hence, s(P) <s(n — 5)
+s(n — 1) = so{r — 5) + so{n — 1) < so(n) < s(n). a contradiction. It follows that ev-
ery rule in P has 2 or 3 literals in its bedy.

We will show now that Pis a {2.3.4}-program. To this end. we will consider two
cases. First. we will assume that all rules in P have exactly 3 negative literals in their
bodies. Consider a rule r from P, say r is of the form:

o — mot(b). not(c). not(d).
Assumec that the rules r(b), r(c). and r(d; are of the following respective forms (by
our assumption, each must have exactly 3 regative literals in the body):

b — not(x).not(y).not(c).
¢ — not(xX').net(3").mot(Z).

d — mot{x").not(3"}. not(="}.
Assume that at least one of the atoms x, vy, =. X, v/, 2, X", V' and =" is not in {a.b.c.d}.
Without the loss of generality, we may assume that x’ & {a,b,c.d}.
For a stable model M of P, let G, denote the set of generating rules for M. Then,
we have the following four mutually exclusive cases for A

P. Cholewinski, M. Truszczynski l J. Logic Programming 38 (1999} 219-242 241

(i) r(a) € Gy,

(ii) r(a) € Gy and r(b) € Gy,.

(iit) r(a) € Gu, r(b) & Gy and r(c) € Gy, and

(iV) r(a) Q Gys. r(b) f Gayr, r(c) i Gy and l'(d) € Gy
If r(a) € Gy then by Corollary 2.2 M\ {a} is a stable model of P(r(a)*). Since
{P(r(a)?)| < n — 4 the number of stable models for which (i) holds is bounded by
s(n — 4).

Similarly, by considering P(r(b) ") and P{r(c)"} we have that the number of stable
models for which (ii) or (iii) hold is bounded, in each case, by s(n — 4).

Consider P{»(d})"). Since x" & {a, b, c,d}, the number of stable models for which
(iv) holds is bounded by s(#n — 5). Hence, s(P) <3s(n—4) + s(n — 5). Lemma 6.1
implies that s(P) < 4s(n — 4). Using the inductive assumption and. twice, the in-
equality (A.1) of Lemma 6.3 we have that ds(n —~ 4) = 4so(n — 4) < s0(n). So,
s{P) < so(r) < s(a). This is a contradiction. Consequently, all atoms appearing in the
negaied form in the bodies of the rules r(5), r(c) and r(d) belong to {a.b,c,d}.
Hence, {r(a).r{b).r(c),r(d)} = CP[{a,b,c.d}].

Let us now observe that none of not(a), sot(d), not{c) and not{H) appears in

P\ {r(a),r(b),r(c),r(d)}.
Indeed, if, say mot(.«). appears in the body of a rule r(q), where g € {a.b,c.d}, then
one can show that s(P) < s{n — 5) +s(n — 1) = so(n — 5) + so(n ~ 1) < sp(n) <s(nm),a
contradiciion.

Since s(P)<s(P@a™))+s(Pla))<s(n—4 +s(n—1)=sa(n—4) +s50{n— 1)<
so(n) <s(n), it follows that P(a*) is extremal and that P(a*) = P\ {r{a),r(d),
r{c), r(d)}. Consequently, P\ {r(a),s+b).r(c),r(d)} is 2 {2,3,4}-program. Thus, P is
a {2,3,4}-program.

To complete the proof we need to consider ocne more case when P contains a rule,
say r(a), with exactly 2 negative literals in the body. Let us assume that

r{a) = a — not(H), not(c).

Lzt us also assume that ~(5) has literals not(x) and met(y) in its body (and, possibly,
one more) and that r(c) has literals not(x’) and mot(3)’) (and. possibly, one more) in its
body. If r(b) or r(c) has three negai- < literals in ts body or if at keast one of x, v, X’
and y is not in {a,b,c;, reasoning as in the previous case we can show that
s(P) €2s(n — 3) +s(n — 4) = 2sp(n — 3) + so(n — 4) < 3so{n — 3). Corollary 2.3 im-
plies that 3so(m — 3) < so(n) <s(n). Hence, s(P) < s(n). This is a contradiction.
Hence, {r{a),r(b),r(c)} = CP[{a,b,c}]. Moreover, again reasoning similarly as be-
fore, we can show that none of pot(a), wet(b) and mot(c) occurs in
P\ {r(a),r(b),r(c)}. Hence, s(P)<s{P(a"))+s(P(a™))<s(P(a"))+2s(n—3)<
3sp(nm — 3) <so(n) <s(n). It follows that P(a*}) is extremal. Morcover,
P(a*) = P\ {r(a),r(b),r(c)}. Consequently, P\ {r{a),r(b),r(c}} is a {2, 3,4}-pro-
gram and, thus, sois P. (O

We can now complete the proof of Theorem 2.1. Let P be an extremal program.
Then, by Lemmas 6.5 and 6.6, P is a 2,3.4-program. Thus, by Corollary 2.3, P € &£,.
Consequenily, s{(n) = so(n).

242 P. Cholewinski, M. Truszczynski ! J. Logic Programming 38 (1999} 219-242

References

[1} B. Bollobds, Extremai Graph Theory. Academic Press, New York, 1978.

{2} M. Gelfond. V. Lifschitz. Classical negation in logic programs and disjunctive databases, New
Giencration Computing 9 (1991) 365-385.

3] M. Gelfond. V. Lifschitz, The stable semantics for logic programs, in: R. Kowalski. K. Bowen (Eds.).
Proceedings of the Fifth International Symposium on Logic Programming, MIT Press, Cambridge.
MA, 1988, pp. 1070-1080.

{3} V.S. Subrahmanian. D. Nau. C. Vago. Wfs + branch bound = stable models. IEEE Transactions on
Knowledge and Data Engineering 7 (1995) 362-377.

{5} 1. Niemeld. Towards efficient default reasoning. in: Proceedings of 1JCAI-95, Morgan Kaufmann, Los
Altos. CA. 1995, pp. 312-318.

{6] 1. Niemeld. P. Simons. Evaluating an algorithm for default reasoning. in: Proceedings of the LICAI-95
Workshop on Applications and Implementations of Nonmonotomic Reasonigs Systems, 1995,

[7] 1. Niemela. P. Simons, Efficient implementation of the well-founded and stable model semantics, in:
Proceedings of JICSLP-96, MIT Press. Cambridge, MA, 1996.

[8] W. Marek. !. Treur. M. Truszczynski. Representability by default theories. in: Proceedings of the
rourth International Symposium on Artificial Intelligence and Mathematics. Ft. Lauderdale Florida.
199¢.

i9] 1. Dix. A classification theory of semantics of normal logic programs: Il. weak properties,
Fundamenta Informaticae 22 (1994) 257-28x.

[10] P. Cholewinski. Reasoning with stratified default theories. in: Proccedings of LPNMR™95. Spninger.
Berlin. 1995 (Lecture i~otes in Computer Science. vol. 928).

