260 research outputs found

    Guaranteed Cost Control for Multirate Networked Control Systems with Both Time-Delay and Packet-Dropout

    Get PDF
    Compared with traditional networked control systems, the sampling rates of the nodes are not the same in the multirate networked control systems (NCSs). This paper presents a new stabilization method for multirate NCSs. A multirate NCSs with simultaneous considering time-delay and packet-dropout is modeled as a time-varying sampling system with time-delay. The proposed Lyapunov function deceases at each input signal updating point, which is largely ignored in prior works. Sufficient condition for the stochastic mean-square stability of the multirate NCSs is given, and the cost function value is less than a bound. Numerical examples are presented to illustrate the effectiveness of the proposed control scheme

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Sampled-data Networked Control Systems: A Lyapunov-Krasovskii Approach

    Get PDF
    The main goal of this thesis is to develop computationally efficient methods for stability analysis and controller synthesis of sampled-data networked control systems. In sampled-data networked control systems, the sensory information and feedback signals are exchanged among different components of the system (sensors, actuators, and controllers) through a communication network. Stabilization of sampled-data networked control systems is a challenging problem since the introduction of multirate sample and holds, time-delays, and packet losses into the system degrades its performance and can lead to instability. A diverse range of systems with linear, piecewise affine (PWA), and nonlinear vector fields are studied in this thesis. PWA systems are a class of state-based switched systems with affine vector field in each mode. Stabilization of PWA networked control systems are even more challenging since they simultaneously involve switches due to the hybrid vector fields (state-based switching) and switches due to the sample and hold devices in the network (event-based switching). The objectives of this thesis are: (a) to design controllers that guarantee exponential stability of the system for a desired sampling period; (b) to design observers that guarantee exponential convergence of the estimation error to the origin for a desired sampling period; and (c) given a controller, to find the maximum allowable network-induced delay that guarantees exponential stability of the sampled-data networked control system. Lyapunov-Krasovskii based approaches are used to propose sufficient stability and stabilization conditions for sampled-data networked control systems. Convex relaxation techniques are employed to cast the proposed stability analysis and controller synthesis criteria in terms of linear matrix inequalities that can be solved efficiently

    Networked Control System Design and Parameter Estimation

    Get PDF
    Networked control systems (NCSs) are a kind of distributed control systems in which the data between control components are exchanged via communication networks. Because of the attractive advantages of NCSs such as reduced system wiring, low weight, and ease of system diagnosis and maintenance, the research on NCSs has received much attention in recent years. The first part (Chapter 2 - Chapter 4) of the thesis is devoted to designing new controllers for NCSs by incorporating the network-induced delays. The thesis also conducts research on filtering of multirate systems and identification of Hammerstein systems in the second part (Chapter 5 - Chapter 6). Network-induced delays exist in both sensor-to-controller (S-C) and controller-to-actuator (C-A) links. A novel two-mode-dependent control scheme is proposed, in which the to-be-designed controller depends on both S-C and C-A delays. The resulting closed-loop system is a special jump linear system. Then, the conditions for stochastic stability are obtained in terms of a set of linear matrix inequalities (LMIs) with nonconvex constraints, which can be efficiently solved by a sequential LMI optimization algorithm. Further, the control synthesis problem for the NCSs is considered. The definitions of H₂ and H∞ norms for the special system are first proposed. Also, the plant uncertainties are considered in the design. Finally, the robust mixed H₂/H∞ control problem is solved under the framework of LMIs. To compensate for both S-C and C-A delays modeled by Markov chains, the generalized predictive control method is modified to choose certain predicted future control signal as the current control effort on the actuator node, whenever the control signal is delayed. Further, stability criteria in terms of LMIs are provided to check the system stability. The proposed method is also tested on an experimental hydraulic position control system. Multirate systems exist in many practical applications where different sampling rates co-exist in the same system. The l₂-l∞ filtering problem for multirate systems is considered in the thesis. By using the lifting technique, the system is first transformed to a linear time-invariant one, and then the filter design is formulated as an optimization problem which can be solved by using LMI techniques. Hammerstein model consists of a static nonlinear block followed in series by a linear dynamic system, which can find many applications in different areas. New switching sequences to handle the two-segment nonlinearities are proposed in this thesis. This leads to less parameters to be estimated and thus reduces the computational cost. Further, a stochastic gradient algorithm based on the idea of replacing the unmeasurable terms with their estimates is developed to identify the Hammerstein model with two-segment nonlinearities. Finally, several open problems are listed as the future research directions

    Control with communications constraints: measuring the instability in parametric linear systems

    Get PDF
    This paper investigates the instability measure of linear systems defined as the sum of the unstable eigenvalues in the continuous-time case and the product of the unstable eigenvalues in the discrete-time case. The problem consists of determining the largest instability measure in systems depending polynomially on parameters constrained in a semialgebraic set. It is shown that upper bounds of the sought measure can be established via linear matrix inequality feasibility tests. Moreover, a priori and a posteriori conditions for establishing nonconservatism are proposed. Finally, two special cases of the proposed methodology are investigated-the first one concerns systems with a single parameter, and the second one concerns the determination of the largest spectral abscissa and radius. Three applications in control with communications constraints are discussed.postprin

    Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays

    Full text link
    [EN] In this work, we consider a dual-rate scenario with slow input and fast output. Our objective is the maximization of the decay rate of the system through the suitable choice of the n-input signals between two measures (periodic sampling) and their times of application. The optimization algorithm is extended for time-varying delays in order to make possible its implementation in networked control systems. We provide experimental results in an air levitation system to verify the validity of the algorithm in a real plant.This work was supported in part by the Spanish Ministry of Economy and Competitiveness (MINECO) under the Projects DPI2012-31303 and DPI2014-55932-C2-2-R.Aranda-Escolástico, E.; Salt Llobregat, JJ.; Guinaldo, M.; Chacon, J.; Dormido, S. (2018). Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays. Sensors. 18(5):1-19. https://doi.org/10.3390/s18051491S119185Mansano, R., Godoy, E., & Porto, A. (2014). The Benefits of Soft Sensor and Multi-Rate Control for the Implementation of Wireless Networked Control Systems. Sensors, 14(12), 24441-24461. doi:10.3390/s141224441Shao, Q. M., & Cinar, A. (2015). System identification and distributed control for multi-rate sampled systems. Journal of Process Control, 34, 1-12. doi:10.1016/j.jprocont.2015.06.010Albertos, P., & Salt, J. (2011). Non-uniform sampled-data control of MIMO systems. Annual Reviews in Control, 35(1), 65-76. doi:10.1016/j.arcontrol.2011.03.004Cuenca, A., & Salt, J. (2012). RST controller design for a non-uniform multi-rate control system. Journal of Process Control, 22(10), 1865-1877. doi:10.1016/j.jprocont.2012.09.010Cuenca, Á., Ojha, U., Salt, J., & Chow, M.-Y. (2015). A non-uniform multi-rate control strategy for a Markov chain-driven Networked Control System. Information Sciences, 321, 31-47. doi:10.1016/j.ins.2015.05.035Kalman, R. E., & Bertram, J. E. (1959). General synthesis procedure for computer control of single-loop and multiloop linear systems (an optimal sampling system). Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry, 77(6), 602-609. doi:10.1109/tai.1959.6371508Khargonekar, P., Poolla, K., & Tannenbaum, A. (1985). Robust control of linear time-invariant plants using periodic compensation. IEEE Transactions on Automatic Control, 30(11), 1088-1096. doi:10.1109/tac.1985.1103841Bamieh, B., Pearson, J. B., Francis, B. A., & Tannenbaum, A. (1991). A lifting technique for linear periodic systems with applications to sampled-data control. Systems & Control Letters, 17(2), 79-88. doi:10.1016/0167-6911(91)90033-bLi, D., Shah, S. L., Chen, T., & Qi, K. Z. (2001). Application of dual-rate modeling to CCR octane quality inferential control. IFAC Proceedings Volumes, 34(25), 353-357. doi:10.1016/s1474-6670(17)33849-1Salt, J., & Albertos, P. (2005). Model-based multirate controllers design. IEEE Transactions on Control Systems Technology, 13(6), 988-997. doi:10.1109/tcst.2005.857410Nemani, M., Tsao, T.-C., & Hutchinson, S. (1994). Multi-Rate Analysis and Design of Visual Feedback Digital Servo-Control System. Journal of Dynamic Systems, Measurement, and Control, 116(1), 45-55. doi:10.1115/1.2900680Sim, T. P., Lim, K. B., & Hong, G. S. (2002). Multirate predictor control scheme for visual servo control. IEE Proceedings - Control Theory and Applications, 149(2), 117-124. doi:10.1049/ip-cta:20020238Xinghui Huang, Nagamune, R., & Horowitz, R. (2006). A comparison of multirate robust track-following control synthesis techniques for dual-stage and multisensing servo systems in hard disk drives. IEEE Transactions on Magnetics, 42(7), 1896-1904. doi:10.1109/tmag.2006.875353Wu, Y., Liu, Y., & Zhang, W. (2013). A Discrete-Time Chattering Free Sliding Mode Control with Multirate Sampling Method for Flight Simulator. Mathematical Problems in Engineering, 2013, 1-8. doi:10.1155/2013/865493Salt, J., & Tomizuka, M. (2014). Hard disk drive control by model based dual-rate controller. Computation saving by interlacing. Mechatronics, 24(6), 691-700. doi:10.1016/j.mechatronics.2013.12.003Salt, J., Casanova, V., Cuenca, A., & Pizá, R. (2013). Multirate control with incomplete information over Profibus-DP network. International Journal of Systems Science, 45(7), 1589-1605. doi:10.1080/00207721.2013.844286Liu, F., Gao, H., Qiu, J., Yin, S., Fan, J., & Chai, T. (2014). Networked Multirate Output Feedback Control for Setpoints Compensation and Its Application to Rougher Flotation Process. IEEE Transactions on Industrial Electronics, 61(1), 460-468. doi:10.1109/tie.2013.2240640Khargonekar, P. P., & Sivashankar, N. (1991). 2 optimal control for sampled-data systems. Systems & Control Letters, 17(6), 425-436. doi:10.1016/0167-6911(91)90082-pTornero, J., Albertos, P., & Salt, J. (2001). Periodic Optimal Control of Multirate Sampled Data Systems. IFAC Proceedings Volumes, 34(12), 195-200. doi:10.1016/s1474-6670(17)34084-3Kim, C. H., Park, H. J., Lee, J., Lee, H. W., & Lee, K. D. (2015). Multi-rate optimal controller design for electromagnetic suspension systems via linear matrix inequality optimization. Journal of Applied Physics, 117(17), 17B506. doi:10.1063/1.4906588LEE, J. H., GELORMINO, M. S., & MORARIH, M. (1992). Model predictive control of multi-rate sampled-data systems: a state-space approach. International Journal of Control, 55(1), 153-191. doi:10.1080/00207179208934231Mizumoto, I., Ikejiri, M., & Takagi, T. (2015). Stable Adaptive Predictive Control System Design via Adaptive Output Predictor for Multi-rate Sampled Systems∗∗This work was partially supported by KAKENHI, the Grant-in-Aid for Scientific Research (C) 25420444, from the Japan Society for the Promotion of Science (JSPS). IFAC-PapersOnLine, 48(8), 1039-1044. doi:10.1016/j.ifacol.2015.09.105Carpiuc, S., & Lazar, C. (2016). Real-Time Multi-Rate Predictive Cascade Speed Control of Synchronous Machines in Automotive Electrical Traction Drives. IEEE Transactions on Industrial Electronics, 1-1. doi:10.1109/tie.2016.2561881Roshany-Yamchi, S., Cychowski, M., Negenborn, R. R., De Schutter, B., Delaney, K., & Connell, J. (2013). Kalman Filter-Based Distributed Predictive Control of Large-Scale Multi-Rate Systems: Application to Power Networks. IEEE Transactions on Control Systems Technology, 21(1), 27-39. doi:10.1109/tcst.2011.2172444Donkers, M. C. F., Tabuada, P., & Heemels, W. P. M. H. (2012). Minimum attention control for linear systems. Discrete Event Dynamic Systems, 24(2), 199-218. doi:10.1007/s10626-012-0155-xQuevedo, D. E., Ma, W.-J., & Gupta, V. (2015). Anytime Control Using Input Sequences With Markovian Processor Availability. IEEE Transactions on Automatic Control, 60(2), 515-521. doi:10.1109/tac.2014.2335311Aranda Escolastico, E., Guinaldo, M., Cuenca, A., Salt, J., & Dormido, S. (2017). Anytime Optimal Control Strategy for Multi-Rate Systems. IEEE Access, 5, 2790-2797. doi:10.1109/access.2017.2671906Guinaldo, M., Sánchez, J., & Dormido, S. (2017). Control en red basado en eventos: de lo centralizado a lo distribuido. Revista Iberoamericana de Automática e Informática Industrial RIAI, 14(1), 16-30. doi:10.1016/j.riai.2016.09.007Van Loan, C. (1977). The Sensitivity of the Matrix Exponential. SIAM Journal on Numerical Analysis, 14(6), 971-981. doi:10.1137/0714065Hazan, E. (2016). Introduction to Online Convex Optimization. Foundations and Trends® in Optimization, 2(3-4), 157-325. doi:10.1561/2400000013Sala, A., Cuenca, Á., & Salt, J. (2009). A retunable PID multi-rate controller for a networked control system. Information Sciences, 179(14), 2390-2402. doi:10.1016/j.ins.2009.02.017Chacon, J., Saenz, J., Torre, L., Diaz, J., & Esquembre, F. (2017). Design of a Low-Cost Air Levitation System for Teaching Control Engineering. Sensors, 17(10), 2321. doi:10.3390/s1710232
    corecore