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Compared with traditional networked control systems, the sampling rates of the nodes are not the same in the multirate networked
control systems (NCSs). This paper presents a new stabilization method for multirate NCSs. A multirate NCSs with simultaneous
considering time-delay and packet-dropout ismodeled as a time-varying sampling systemwith time-delay.The proposed Lyapunov
function deceases at each input signal updating point, which is largely ignored in prior works. Sufficient condition for the stochastic
mean-square stability of the multirate NCSs is given, and the cost function value is less than a bound. Numerical examples are
presented to illustrate the effectiveness of the proposed control scheme.

1. Introduction

Feedback control systems where in the control loops are
closed through real-time network are called Networked
Control Systems (NCSs) [1]. Compared with the traditional
control architecture, NCSs have many advantages such as
high reliability, simple installation, and lower cost. Although
the NCSs havemany advantages, the applying of NCSsmakes
the system more complicated to analyze. Since the data is
transmitted via network, there are two major problems of
NCSs. Firstly, the network-induced delay occurs while trans-
ferring data between devices and shared medium. Secondly,
unreliable network transmission may lead to packet dropout.

For these reasons, it is vital to study NCSs with network-
induced delay and packet dropout. Up to now, many good
achievements have been investigated to deal with these prob-
lems. For the issue of time delay, the stability of NCSs with
short random time delay was studied in [1]. The achievement
in [1] was expanded for the situation of long time delay
in [2]. The system was modeled into switch systems to
investigate the stability of networked control systems in [3].
Packet dropout not only exists in time delay progress but
also in transmission loss. For the problem of packet dropout,

the stabilizing of controller was investigated in [4–18]. The
models of NCSs in prior papers were divided into three cases:
switch linear systems [6], asynchronous dynamical systems
[9], and jump linear systems [13]. It is more complex to deal
with the modeling and analysis for NCSs with both delay
and packet dropout, compared with separately considering
each other. In [15], the method of switched linear systems
was applied inmodeling for the NCSs of both packet dropout
and network-induce delay in NCSs. Sufficient conditions
for stochastic stability were discussed in [16]; what is more,
packet dropout on both sides of sensor-to-controller and
controller-to-sensor was modeled as two Markov chains.

It is important to ensure that the system possesses a
strong robust performance. The guaranteed cost control is
a good way to deal this problem, which guarantees the
system performance affected uncertainty bellow the given
performance index bound. The guaranteed cost control was
first mooted in [19]. These years it has been applied to
networked control system with time delay, and many issues
have been developed for this item in [20–25].

Unfortunately, most aforementioned conclusions are
under the following assumption: the sampling rates of each
node in NCSs are the same. This brings convenience for the
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Figure 1: The timing diagrams of multirate NCSs.

theoretical research of NCSs; however, the sampling rate of
each node is not identical in practical application. For the
multirate network, the rates are not the same, the sampling
period of sensor is 𝑇

𝑠
, and sampling period of the controller

is 𝑇
𝑐
, 𝑇
𝑠

̸= 𝑇
𝑐
. In recent years, the investigations of multirate

control system havemade a great progress [26–36].TheNCSs
are modeled as switched systems by using multirate method,
when sensor, controller, and actuator are all event-driven,
in [26], and the stability was analyzed. The exponential
stability of multirate NCSs was analyzed including three
cases of perfect transmission, delayed transmission, and
time-varying transmission, in [28]. In [32], the condition of
stabilizing controller of multirate NCSs was discussed by the
way of using a V-K iteration algorithm. Controllability and
observability of networked control systems with short time
delay are analyzed in [35, 36].

It is nice to see that the network control systems theory
has beenwidely applied to practical area. Two online schemes
based on the data-driven fault-tolerant control (FTC) systems
on the benchmark Tennessee Eastman process are presented
in [37]. A subspace-aided data-driven approach for batch
processes is proposed in [38]. A comparison between the
basic data-driven methods for process monitoring and fault
diagnosis (PM-FD) is provided in [39].

Published literature shows that many questions about
guaranteed cost control for multirate NCSs with both time
delay and packet dropout should be investigated. The main
contributions of this paper are as follows. (1) A multirate
NCSs with simultaneous consideration time delay and packet
dropout are modeled as a time-varying sampling system
with time delay. (2) The Lyapunov function deceases at each
input signal updating point, which is largely ignored in prior
works. Comparedwith traditionalNCSsmethods, it can yield
less conservative. (3) State feedback controller of multirate
NCSs, which render the multirate networked control systems
stochastic mean square stable, is proposed. And the cost
function value is less than a bound.

This paper is organized into four sections including the
Introduction. Problem formulations and main assumptions
were presented in Section 2. In Section 3, the guaranteed
cost control of NCSs was discussed. The controller is proved
to render the system stochastic mean square stable. An
illustrative example is provided in Section 4.

Notations. The superscript “𝑇” stands for the transpose of
a matrix. 𝑅𝑛 and 𝑅

𝑛×𝑚 denote the 𝑛 dimensional Euclidean
space and the set of all 𝑛 × 𝑚 real matrices, respectively. ‖ ⋅ ‖
stands for the Euclidean norm. 𝐼 and 0 stand for identified
matrices and zero matrices with appropriate dimensions,
respectively. The notation 𝑋 > 0 (𝑋 ≥ 0) means that the
matrix 𝑋 is positive definite (𝑋 is semipositive definite). 𝐼 is
the identity matrix of appropriate dimensions. [𝑋 𝑍

∗ 𝑌
] denotes

a symmetric matrix, where ∗ denotes the entries implied by
symmetry.

2. Problem Formulation

It is assumed that the controlled process is a linear time-
invariant system, which can be expressed as

�̇� (𝑡) = 𝐴
𝑐

𝑥 (𝑡) + 𝐵
𝑐

𝑢 (𝑡) + 𝐸
𝑐V (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐻V (𝑡) ,
(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛, 𝑢(𝑡) ∈ 𝑅

𝑚, V(𝑡) ∈ 𝑅
𝑞, and 𝐴

𝑐

, 𝐵
𝑐

, 𝐸
𝑐

, 𝐶,𝐻

are matrices of appropriate sizes and V(𝑡) is white noise with
zero mean. The sampling period of the sensor is noted as 𝑇

𝑠
,

and the sampling periods of controller and actuator are the
same, noted as 𝑇

𝑐
. 𝑇
𝑐
= 𝑇
𝑠
/𝑁 and 𝑁 are a positive integer

not less than 2. That is to say, the controller and actuator
have a higher sampling frequency than the sensor. In order to
facilitate the discussion, the delay of the system is considered
to be a constant short delay, in this paper. The information
transmission sequence of multirate NCSs is in Figure 1.

In convenience of investigation, we make the following
rational assumptions.

(A1) The sensor, the controller, and the actuator are all
time-driven, sensor-to-controller delay is denoted by
𝜏
𝑠𝑐
, and the delay of controller-to-actuator is denoted

by 𝜏
𝑐𝑎
. The time delay in the system is 𝜏 = 𝜏

𝑠𝑐
+ 𝜏
𝑐𝑎

=

ℎ𝑇
𝑐
, ℎ ≤ 𝑁, and ℎ is a positive integer.

(A2) The number of successive packet dropouts is upper
bounded, and the bound is denoted a known constant
𝑑.

(A3) The system adopts the Zero Order Hold (ZOH) stra-
tegy.
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In the multirate networked control systems, the inputs
of sampling interval are different from sampling interval to
interval.Themodel of multirate NCSs is described as follows.

Case 𝑆
(0)

𝑖
. There is no packet dropout which occurs in the

current sampling interval. Such as in the interval [(𝑘 +

5)𝑇
𝑠
, (𝑘 + 6)𝑇

𝑠
],

𝑥 [(𝑘 + 1) 𝑇
𝑠
] = 𝐴𝑥 (𝑘𝑇

𝑠
)

+ (∫

𝑘𝑇
𝑠
+ℎ𝑇
𝑐

𝑘𝑇
𝑠

𝑒
𝐴
𝑐

[(𝑘+1)𝑇
𝑠
−𝜂]

𝐵
𝑐

𝑑𝜂)

× 𝑢 [(𝑘 − 1) 𝑇
𝑠
]

+ (∫

(𝑘+1)𝑇
𝑠

𝑘𝑇
𝑠
+ℎ𝑇
𝑐

𝑒
𝐴
𝑐

[(𝑘+1)𝑇
𝑠
−𝜂]

𝐵
𝑐

𝑑𝜂)𝑢 (𝑘𝑇
𝑠
)

+ 𝐸
𝑐V (𝑘𝑇

𝑠
)

= 𝐴𝑥 (𝑘𝑇
𝑠
) + (∫

(𝑁−ℎ)𝑇
𝑐

0

𝑒
𝐴
𝑐

𝜂
1𝐵
𝑐

𝑑𝜂
1
)𝑢 (𝑘𝑇

𝑠
)

+ (∫

𝑁𝑇
𝑐

(𝑁−ℎ)𝑇
𝑐

𝑒
𝐴
𝑐

𝜂
1𝐵
𝑐

𝑑𝜂
1
)𝑢 [(𝑘 − 1) 𝑇

𝑠
]

+ 𝐸V (𝑘𝑇
𝑠
)

= 𝐴𝑥 (𝑘𝑇
𝑠
) + (𝐵

1
+ 𝐵
2
+ ⋅ ⋅ ⋅ + 𝐵

𝑁−ℎ
) 𝑢 (𝑘𝑇

𝑠
)

+ (𝐵
𝑁−ℎ+1

+ 𝐵
𝑁−ℎ+2

+ ⋅ ⋅ ⋅ + 𝐵
𝑁
)

× 𝑢 [(𝑘 − 1) 𝑇
𝑠
] + 𝐸V (𝑘𝑇

𝑠
) ,

(2)

where

𝐴 = 𝑒
𝐴
𝑐

𝑇
𝑠 , 𝐵

1
= ∫

𝑇
𝑐

0

𝑒
𝐴
𝑐

𝜂
1𝐵
𝑐

𝑑𝜂
1
,

𝐵
𝑘
= 𝐷
𝑘−1

𝐵
1
, 𝐷 = ∫

𝑇
𝑐

0

𝑒
𝐴
𝑐

𝜂
1𝑑𝜂
1
, 1 ≤ 𝑘 ≤ 𝑁,

𝐸 = ∫

𝑇
𝑠

0

𝑒
𝐴
𝑐

𝜂
1𝐸
𝑐

𝑑𝜂
1
.

(3)

Case 𝑆(1)
𝑖
.There are 𝑖 successive packet dropouts in the current

sampling interval. Such as in interval [(𝑘 + 2)𝑇
𝑠
, (𝑘 + 3)𝑇

𝑠
] to

interval [(𝑘 + 3)𝑇
𝑠
, (𝑘 + 4)𝑇

𝑠
]. The inputs of actuator in this

period are the latest effective inputs,

𝑥 [(𝑘 + 1) 𝑇
𝑠
] = 𝐴𝑥 (𝑘𝑇

𝑠
)

+ (∫

𝑘𝑇
𝑠
+𝑇
𝑠

𝑘𝑇
𝑠

𝑒
𝐴
𝑐

[(𝑘+1)𝑇
𝑠
−𝜂]

𝐵
𝑐

𝑑𝜂)

× 𝑢 [(𝑘 − 𝑖) 𝑇
𝑠
] + 𝐸V (𝑘𝑇

𝑠
)

= 𝐴𝑥 (𝑘𝑇
𝑠
) + (𝐵

1
+ 𝐵
2
+ ⋅ ⋅ ⋅ + 𝐵

𝑁
)

× 𝑢 [(𝑘 − 𝑖) 𝑇
𝑠
] + 𝐸V (𝑘𝑇

𝑠
) .

(4a)

Case 𝑆
(2)

𝑖
. There is no packet dropout within the current

sampling interval, but the last 𝑖 times sampling intervals
packet dropouts. Such as in the interval [(𝑘 + 3)𝑇

𝑠
, (𝑘 + 4)𝑇

𝑠
]

𝑥 [(𝑘 + 1) 𝑇
𝑠
] = 𝐴𝑥 (𝑘𝑇

𝑠
)

+ (∫

(𝑁−ℎ)𝑇
𝑐

0

𝑒
𝐴
𝑐

𝜂
1𝐵
𝑐

𝑑𝜂
1
)𝑢 (𝑘𝑇

𝑠
)

+ (∫

𝑁𝑇
𝑐

(𝑁−ℎ)𝑇
𝑐

𝑒
𝐴
𝑐

𝜂
1𝐵
𝑐

𝑑𝜂
1
)𝑢 [(𝑘 − 1) 𝑇

𝑠
]

+ 𝐸V (𝑘𝑇
𝑠
)

= 𝐴𝑥 (𝑘𝑇
𝑠
) + (𝐵

1
+ 𝐵
2
+ ⋅ ⋅ ⋅ + 𝐵

𝑁−ℎ
) 𝑢 (𝑘𝑇

𝑠
)

+ (𝐵
𝑁−ℎ+1

+ 𝐵
𝑁−ℎ+2

+ ⋅ ⋅ ⋅ + 𝐵
𝑁
)

× 𝑢 [(𝑘 − 𝑖 − 1) 𝑇
𝑠
] + 𝐸V (𝑘𝑇

𝑠
) .

(4b)

Definition 1. Let 𝜍 = (𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑘
} denote the point of each

input signal arrived,

𝜉
𝑘
= {𝑖
𝑘+1

− 𝑖
𝑘
} ∈ {1, 2, 3, . . . , 𝑑} , 𝑑 = max (𝑖

𝑘+1
− 𝑖
𝑘
) .

(5)

Definition 2. We assume the packet dropout progress on the
basis of a discrete-time Markova chain process, the mode of
transition probabilities:

𝑝
𝜉
𝑘

= Pr (𝑖
𝑘+1

= 𝑖 + 𝜉
𝑘
| 𝑖
𝑘
= 𝑖) > 0, 𝑖 ∈ 𝜍, (6)

where ∑𝑑
𝜉
𝑘
=1
𝑝
𝜉
𝑘

= 1.

The controlled process can be rewritten as

𝑥 (𝑖
𝑘+1

) = 𝐴
𝜉
𝑘𝑥 (𝑖
𝑘
) + Γ
0
(𝜏
𝑘
) 𝑢 (𝑖
𝑘
)

+ [Γ
1
(𝜏
𝑘
) + 𝛿
𝜉
𝑘

(

𝜉
𝑘

∑

0

𝐴
𝑖

)Γ
2
(𝜏
𝑘
)] 𝑢 (𝑖

𝑘
− 𝜉
𝑘−1

)

+ 𝐸V (𝑖
𝑘
) ,

(7)

where 𝛿
𝜉
𝑘

= 1 if 𝜉
𝑘

> 1, otherwise 𝛿
𝜉
𝑘

= 0. 𝐴𝜉𝑘 =

𝐴 ⋅ 𝐴 ⋅ 𝐴 ⋅ ⋅ ⋅ 𝐴⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜉
𝑘

, Γ
0
(𝜏
𝑘
) = ∑

𝑁−ℎ

𝑖=1
𝐵
𝑖
,

Γ
1
(𝜏
𝑘
) =

𝑁

∑

𝑖=𝑁−ℎ+1

𝐵
𝑖
, Γ

2
(𝜏
𝑘
) =

𝑁

∑

𝑖=1

𝐵
𝑖
. (8)

The state-based control scheme for the system (7) is
described by

𝑢 (𝑘) = 𝐾𝑥 (𝑘) , (9)
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where 𝐾 ∈ 𝑅
𝑚×𝑛 is the controller gain. Substituting (9) into

(7) results in the following system:

𝑥 (𝑖
𝑘+1

) = (𝐴
𝜉
𝑘 + Γ
0
𝐾)𝑥 (𝑖

𝑘
)

+ (Γ
1
(𝜏
𝑘
) + 𝛿
𝜉
𝑘

(

𝜉
𝑘

∑

0

𝐴
𝑖

)Γ
2
)𝐾𝑥 (𝑖

𝑘
− 𝜉
𝑘−1

)

+ 𝐸V (𝑖
𝑘
) ,

(10)

where 𝜏
𝑘
is omitted here.

3. Main Results and Proofs

Firstly, we introduce the following lemmas and definitions,
which will be cited for the proofs in this section.

Definition 3. The closed-loop networked control systems (10)
are stochasticmean-square stable if when V(𝑖

𝑘
) = 0, 𝑥

0
= 𝑥(0)

such that

𝐸(

∞

∑

0

𝑥 (𝑖𝑘)


2

) < ∞. (11)

Definition 4. Our object is to design a controller such that
the closed loop networked system with both packet dropout
and time delay is stochastic mean-square stable and satisfies
𝐻
∞

performance constraint 𝛾. That is to say (10) satisfies the
following three conditions simultaneously.

(N1) The closed loop networked control systems (10) are
stochastic mean-square stable.

(N2) For system (10), the defined cost function:

𝐽 = 𝐸{

∞

∑

𝑘=0

𝑥
𝑇

(𝑖
𝑘
) 𝑆𝑥 (𝑖

𝑘
) + 𝑢
𝑇

(𝑖
𝑘
) 𝑅𝑢 (𝑖

𝑘
)} (12)

satisfies 𝐽 ≤ 𝐽
∗. 𝐽∗ is a constant, where 𝑆 > 0, 𝑅 > 0.

(N3) Under the zero-initial condition, for all nonzero V(𝑖
𝑘
),

the controlled output 𝑧
𝑖
𝑘

satisfies

∞

∑

𝑘=0

𝐸 (𝑧
𝑇

𝑖
𝑘

𝑧
𝑖
𝑘

) − 𝛾
2V𝑇
𝑖
𝑘

V
𝑖
𝑘

< 0. (13)

Lemma 5 (Schur complement). For given a matrix 𝑆 =

[
𝑆
11
𝑆
12

𝑆
𝑇

12
𝑆
22

], where 𝑆
11
, 𝑆
12

are square matrices, the following
conditions are equivalent:

(1) 𝑆 < 0;

(2) 𝑆
11

< 0, 𝑆
22
− 𝑆
𝑇

12
𝑆
−1

11
𝑆
12

< 0;

(3) 𝑆
22

< 0, 𝑆
11
− 𝑆
12
𝑆
−1

22
𝑆
𝑇

12
< 0.

(14)

Theorem 6. For the system (10), if positive definite matrixes
exist 𝑃,𝑄 > 0, such that

(1) 2𝐺
𝑇

(𝑃 + 𝑄)𝐺 − 𝑃 + 𝑆 + 𝐾
𝑇

𝑅𝐾 < 0,

(2) 2𝐻
𝑇

𝜉
𝑘

(𝑃 + 𝑄)𝐻
𝜉
𝑘

− 𝑄 < 0,

(15)

where 𝐺 = 𝐴
𝜉
𝑘 + Γ
0
𝐾, 𝐻
𝜉
𝑘

= [Γ
1
+ 𝛿
𝜉
𝑘

(∑
𝜉
𝑘

𝑖=0
𝐴
𝑖

)Γ
2
]𝐾. Then

the system (10) with the controller (9) is stochastic mean-
square stable and the cost function value is less than a bound.
The corresponding cost function satisfies 𝐽 < 𝑥

𝑇

(𝑖
0
)𝑃𝑥(𝑖
0
) +

𝑥
𝑇

(𝑖
−1
)𝑄𝑥(𝑖

−1
).

Proof. Define a Lyapunov function as

𝑉
1
(𝑖
𝑘
) = 𝑥
𝑇

(𝑖
𝑘
) 𝑃𝑥 (𝑖

𝑘
) ,

𝑉
2
(𝑖
𝑘
) =

𝑖
𝑘
−1

∑

𝑠=𝜉
𝑘−1

𝑥
𝑇

(𝑖
𝑘
− 𝑠)𝑄𝑥 (𝑖

𝑘
− 𝑠) ,

𝑉 (𝑖
𝑘
) =

2

∑

𝑗=1

𝑉
𝑗
(𝑖
𝑘
) ,

(16)

where 𝑃 > 0, 𝑄 > 0

Δ𝑉 (𝑖
𝑘
) = 𝐸 [𝑉 (𝑖

𝑘+1
) − 𝑉 (𝑖

𝑘
)] =

2

∑

𝑗=1

𝐸 (Δ𝑉
𝑗
(𝑖
𝑘
)) . (17)

Along the solution of (9), 𝐸(Δ𝑉
1
(𝑖
𝑘
)), 𝐸(Δ𝑉

2
(𝑖
𝑘
)) takes the

form of

𝐸 (Δ𝑉
1
(𝑖
𝑘
)) =

𝑑

∑

𝜉
𝑘
=1

𝑝
𝜉
𝑖
𝑘

[𝐺𝑥 (𝑖
𝑘
) + 𝐻
𝜉
𝑘 𝑖

𝑥 (𝑖
𝑘
− 𝜉
𝑘−1

)]
𝑇

𝑃

× [𝐺𝑥 (𝑖
𝑘
) + 𝐻
𝜉
𝑘

𝑥 (𝑖
𝑘
− 𝜉
𝑘−1

)]

− 𝑥
𝑇

(𝑖
𝑘
) 𝑃𝑥 (𝑖

𝑘
) ,

𝐸 (Δ𝑉
2
(𝑖
𝑘
)) ≤

𝑑

∑

𝜉
𝑘
=1

𝑝
𝜉
𝑘

[𝐺𝑥 (𝑖
𝑘
) + 𝐻
𝜉
𝑘

𝑥 (𝑖
𝑘
− 𝜉
𝑘−1

)]
𝑇

𝑄

× [𝐺𝑥 (𝑖
𝑘
) + 𝐻
𝜉
𝑘

𝑥 (𝑖
𝑘
− 𝜉
𝑘−1

)]

−

𝑑

∑

𝜉
𝑘
=1

𝑝
𝜉
𝑘

𝑥
𝑇

(𝑖
𝑘
) 𝑄𝑥 (𝑖

𝑘
) .

(18)

By (17) we can obtain

Δ𝑉 (𝑖
𝑘
) ≤

𝑑

∑

𝜉
𝑘
=1

𝑝
𝜉
𝑘

[𝐺𝑥 (𝑖
𝑘
) + 𝐻
𝜉
𝑖
𝑘

𝑥 (𝑖
𝑘
− 𝜉
𝑘−1

)]

𝑇

(𝑃 + 𝑄)

× [𝐺𝑥 (𝑖
𝑘
) + 𝐻
𝜉
𝑘

𝑥 (𝑖
𝑘
− 𝜉
𝑘−1

)]

− 𝑥
𝑇

(𝑖
𝑘
) 𝑃𝑥 (𝑖

𝑘
)

−

𝑑

∑

𝜉
𝑘
=1

𝑝
𝜉
𝑘

𝑥
𝑇

(𝑖
𝑘
− 𝜉
𝑘−1

) 𝑄𝑥 (𝑖
𝑘
− 𝜉
𝑘−1

) .

(19)
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It is easy to obtain

𝑑

∑

𝜉
𝑘
=1

𝑝
𝜉
𝑘

[𝐺𝑥(𝑖
𝑘
) + 𝐻
𝜉
𝑘

𝑥 (𝑖
𝑘
− 𝜉
𝑘−1

)]
𝑇

(𝑃 + 𝑄)

× [𝐺𝑥 (𝑖
𝑘
) + 𝐻
𝜉
𝑘

𝑥 (𝑖
𝑘
− 𝜉
𝑘−1

)]

=

𝑑

∑

𝜉
𝑘
=1

𝑝
𝜉
𝑘

[𝑥
𝑇

(𝑖
𝑘
) 𝐺
𝑇

(𝑃 + 𝑄)𝐻
𝜉
𝑘

𝑥 (𝑖
𝑘
− 𝜉
𝑘−1

)]

+

𝑑

∑

𝜉
𝑘
=1

𝑝
𝜉
𝑘

[𝑥
𝑇

(𝑖
𝑘
− 𝜉
𝑘−1

)𝐻
𝑇

𝜉
𝑘

(𝑃 + 𝑄)𝐺𝑥 (𝑖
𝑘
)]

+

𝑑

∑

𝜉
𝑘
=1

𝑝
𝜉
𝑘

[𝑥
𝑇

(𝑖
𝑘
) 𝐺
𝑇

(𝑃 + 𝑄)𝐺𝑥 (𝑖
𝑘
)]

+

𝑑

∑

𝜉
𝑘
=1

𝑝
𝜉
𝑘

[𝑥
𝑇

(𝑖
𝑘
− 𝜉
𝑖
𝑘−1

)𝐻
𝑇

𝜉
𝑘

(𝑃 + 𝑄)𝐻
𝜉
𝑘

𝑥 (𝑖
𝑘
− 𝜉
𝑖
𝑘−1

)] .

(20)

By Lemma 5, [𝐺𝑥(𝑖
𝑘
),𝐻
𝜉
𝑘

𝑥(𝑖
𝑘
− 𝜉
𝑘−1

)]
𝑇

[
−𝑃−𝑄 𝑃+𝑄

𝑃+𝑄 −𝑃−𝑄
] [𝐺𝑥(𝑖

𝑘
),

𝐻
𝜉
𝑘

𝑥(𝑖
𝑘
− 𝜉
𝑘−1

)]
𝑇

≤ 0.
Therefore,

Δ𝑉 (𝑖
𝑘
) ≤ 2

𝑑

∑

𝜉
𝑘
=1

𝑝
𝜉
𝑘

[𝑥
𝑇

(𝑖
𝑘
) 𝐺
𝑇

(𝑃 + 𝑄)𝐺𝑥 (𝑖
𝑘
)]

+ 2

𝑑

∑

𝜉
𝑘
=1

𝑝
𝜉
𝑘

[𝑥
𝑇

(𝑖
𝑘
− 𝜉
𝑖
𝑘−1

)𝐻
𝑇

𝜉
𝑘

× (𝑃 + 𝑄)𝐻
𝜉
𝑘

𝑥 (𝑖
𝑘
− 𝜉
𝑖
𝑘−1

)] .

(21)

Corresponding to (20),

Δ𝑉 (𝑖
𝑘
) ≤

𝑑

∑

𝜉
𝑘
=1

𝑝
𝜉
𝑘

[𝑥
𝑇

(𝑖
𝑘
) [2𝐺
𝑇

(𝑃 + 𝑄)𝐺 − 𝑃] 𝑥 (𝑖
𝑘
)]

𝑑

∑

𝜉
𝑘
=1

[𝑝
𝜉
𝑘

𝑥
𝑇

(𝑖
𝑘
− 𝜉
𝑘−1

) [2𝐻
𝑇

𝜉
𝑘

(𝑃 + 𝑄)𝐻
𝜉
𝑘

− 𝑄]

× 𝑥 (𝑖
𝑘
− 𝜉
𝑘−1

) ] .

(22)

DenoteΦ
𝑖
= 2𝐺
𝑇

(𝑃 + 𝑄)𝐺 − 𝑃 + 𝑆 + 𝐾
𝑇

𝑅𝐾.
It is apparentlyΔ𝑉(𝑖

𝑘
) ≤ 0, when (1) Φ

𝑖
< 0, (2) 2𝐻𝑇

𝜉
𝑘

(𝑃+

𝑄)𝐻
𝜉
𝑘

− 𝑄 < 0.
Therefore, 𝐸(𝑉(𝑖

𝑘
)) ≤ −min{𝜆min(−Φ𝑖)}‖𝑥(𝑘)‖

2. Denote
𝜇 = min{𝜆min(−Φ𝑖)}

Ξ(

∞

∑

𝑘=0

𝑥 (𝑖𝑘)


2

) ≤
1

𝜇
Ξ (𝑉 (𝑥 (0) , 𝜉

0
)) < ∞. (23)

Then, the networked control systems (10) are stochastic
mean-square stable.

Due to (22),

∞

∑

𝑘=0

𝐸 (𝑉 (𝑖
𝑘+1

) − 𝑉 (𝑖
𝑘
)) ≤ −𝐽

⇒ 𝐽 ≤ 𝑉 (𝑖
0
) − 𝑉 (𝑖

∞
) < 𝑥
𝑇

(𝑖
0
) 𝑃𝑥 (𝑖

0
)

+ 𝑥
𝑇

(𝑖
−1
) 𝑄𝑥 (𝑖

−1
) .

(24)

Theorem 7. For given matrices 𝑅, 𝑆 if there exist matrix 𝑀

and positive definite matrices𝑋 = 𝑃
−1, 𝑌 = 𝑄

−1 such that

(1) [
Ξ
1
Ξ
2

∗ Ξ
3

] < 0; (2)
[
[

[

−
1

2
𝑌 ∗ ∗

Γ
1
𝑀+ �̄�𝑀 −𝑋 0

Γ
1
𝑀+ �̄�𝑀 0 −𝑌

]
]

]

< 0.

(25)

Then 𝐾 = 𝑀𝑋
−1 is a guaranteed cost controller gain for the

system (10) with disturbance V
𝑖
𝑘

= 0 and the corresponding
closed loop cost function satisfies

𝐽 < 𝜆max (𝑈
𝑇

𝑃𝑈) + 𝜆max (𝑈
𝑇

𝑄𝑈) , (26)

where

Ξ
1
=

[
[
[
[

[

−𝑋 ∗ ∗

𝐴
𝜉
𝑘𝑋 + Γ

0
𝑀 −

1

2
𝑋 0

𝐴
𝜉
𝑘𝑋 + Γ

0
𝑀 0 −

1

2
𝑌

]
]
]
]

]

,

Ξ
2
= [

[

𝑀
𝑇

0

0 0

0 0

]

]

, Ξ
3
= [

−𝑅
−1

0

∗ −𝑆
−1
] ,

�̄� = 𝛿
𝜉
𝑘

(

𝜉
𝑘

∑

𝑖=0

𝐴
𝑖

)Γ
2
.

(27)

Proof. By Lemma 5, (15)⇔(28),

(1) [
Ξ


1
Ξ


2

∗ Ξ
3

] < 0; (2)
[
[
[

[

−
1

2
𝑄 𝐻

𝑇

𝜉
𝑖
𝑘

𝐻
𝑇

𝜉
𝑖
𝑘

∗ −𝑃
−1

0

∗ ∗ −𝑄
−1

]
]
]

]

< 0,

(28)

where

Ξ


1
=

[
[
[
[

[

−𝑃 𝐺
𝑇

𝐺
𝑇

∗ −
1

2
𝑃
−1

0

∗ ∗ −
1

2
𝑄
−1

]
]
]
]

]

, Ξ


2
= [

[

𝐾
𝑇

0

0 0

0 0

]

]

. (29)

Pre- and postmultiplying (28)(1) by diag(𝑃−1, 𝐼, 𝐼, 𝐼, 𝐼,
𝐼, 𝐼), Pre- and postmultiplying (28)(2) by diag(𝑄−1, 𝐼, 𝐼).
Define𝑋 = 𝑃

−1, 𝑌 = 𝑄
−1; we obtain (25).
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The initial state of system is unknown; we suppose the
initial state of the system (10) is arbitrary and belongs to the
set 𝑆 = {𝑥(−𝑖

𝑘
) ∈ 𝑅

𝑛

: 𝑥(−𝑖
𝑘
) = 𝑈𝑉(𝑖

𝑘
), 𝑉
𝑇

(𝑖
𝑘
)𝑉(𝑖
𝑘
) <

1, 𝑘 = 0, 1}, where 𝑈 is a given matrix. Then, the cost bound
𝐽 < 𝑥
𝑇

(𝑖
0
)𝑃𝑥(𝑖
0
) + 𝑥
𝑇

(𝑖
−1
)𝑄𝑥(𝑖

−1
) leads to (26).

Remark 8. Denote the upper bound of the cost function 𝐽 as
𝐽
∗ and 𝐽

∗

= 𝜃
1
+ 𝜃
2
depends on matrices 𝑋, 𝑌. The optimal

guaranteed cost control gain of NCSs (10) can be solved by
existing LMI that

Minimize 𝜃
1
+ 𝜃
2

s.t (1) [
−𝜃
1
𝐼 𝑈
𝑇

𝑈 −𝑋
] ≤ 0

(2) [
−𝜃
2
𝐼 𝑈
𝑇

𝑈 −𝑌
] ≤ 0.

(30)

Theorem9. Take given scalar 𝛾 > 0, andmatrices𝑅, 𝑆, if there
exist matrix 𝑀 and positive definite matrices 𝑋 = 𝑃

−1, 𝑌 =

𝑄
−1 such that

(1) [

[

Ξ
1
Ξ
2
Ξ
4

∗ Ξ
3

0

∗ ∗ Ξ
5

]

]

< 0,

(2)
[
[

[

−
1

2
𝑌 ∗ ∗

Γ
1
𝑀+ �̄�𝑀 −𝑋 0

Γ
1
𝑀+ �̄�𝑀 0 −𝑌

]
]

]

< 0,

(31)

where Ξ
4
= [𝑋𝐶

𝑇

𝐻 (𝐶𝑋)
𝑇

0 0

], Ξ
5
= diag(𝐻𝑇𝐻 − 𝛾

2

𝐼, −𝐼), and
�̄� = 𝛿

𝜉
𝑘

(∑
𝜉
𝑘

𝑖=0
𝐴
𝑖

)Γ
2
.

Then𝐾 = 𝑀𝑋
−1 is a guaranteed cost controller gain for the

system (10) with 𝐻
∞

performance constraint (13) is achieved
for all nonzero V(𝑘) and the cost function value is less than a
bound:

𝐽 < 𝜆max (𝑈
𝑇

𝑃𝑈) + 𝜆max (𝑈
𝑇

𝑄𝑈) . (32)

Proof. Consider

∞

∑

𝑘=0

𝐸 (𝑧
𝑇

𝑘
𝑧
𝑘
) − 𝛾
2V𝑇
𝑘
V
𝑘
=

∞

∑

𝑘=0

𝐸 (𝑧
𝑇

𝑘
𝑧
𝑘
) − 𝛾
2V𝑇
𝑘
V
𝑘

+ Δ𝑉 (𝑘) − 𝑉
∞
+ 𝑉
0
,

(33)

𝑉
0

= 0, 𝑉
∞

> 0 can be obtained from the zero initial
conditions. Therefore,

∞

∑

𝑘=0

𝐸 (𝑧
𝑇

𝑖
𝑘

𝑧
𝑖
𝑘

) − 𝛾
2V𝑇
𝑖
𝑘

V
𝑖
𝑘

≤

∞

∑

𝑘=0

𝐸 (𝑧
𝑇

𝑖
𝑘

𝑧
𝑖
𝑘

) − 𝛾
2V𝑇
𝑖
𝑘

V
𝑖
𝑘

+ Δ𝑉 (𝑖
𝑘
)

𝑧
𝑇

𝑖
𝑘

𝑧
𝑖
𝑘

− 𝛾
2V𝑇
𝑖
𝑘

V
𝑖
𝑘

+ Δ𝑉 (𝑖
𝑘
)

≤

𝑑

∑

𝜉
𝑘
=1

𝑝
𝜉
𝑘

[𝑥
𝑇

(𝑖
𝑘
) [2𝐺
𝑇

(𝑃 + 𝑄)𝐺 − 𝑃 + 𝑆

+𝐾
𝑇

𝑅𝐾 + 𝐶
𝑇

𝐶] 𝑥 (𝑖
𝑘
)]

− 𝑥
𝑇

(𝑖
𝑘
) [𝑆 + 𝐾

𝑇

𝑅𝐾] 𝑥 (𝑖
𝑘
)

+ 𝑝
𝜉
𝑘

𝑑

∑

𝜉
𝑘
=1

[𝑥
𝑇

(𝑖
𝑘
) 𝐶
𝑇

𝐻V𝑇 (𝑖
𝑘
) + V𝑇 (𝑖

𝑘
)𝐻
𝑇

𝐶𝑥
𝑇

(𝑖
𝑘
)

+ V𝑇 (𝑖
𝑘
)𝐻
𝑇

𝐻V𝑇 (𝑖
𝑘
)]

+ 𝑝
𝜉
𝑘

𝑑

∑

𝜉
𝑘
=1

[𝑥
𝑇

(𝑖
𝑘
− 𝜉
𝑘−1

) [3𝐻
𝑇

𝜉
𝑘

(𝑃 + 𝑄)𝐻
𝜉
𝑘

− 𝑄]

× 𝑥 (𝑖
𝑘
− 𝜉
𝑘−1

) ] .

(34)

By the Schur complement (34) is equivalent to

(1) [

[

Ξ


1
Ξ


2
Ξ
4

∗ Ξ
3

0

∗ ∗ Ξ
5

]

]

< 0; (2)
[
[
[

[

−
1

2
𝑄 𝐻

𝑇

𝜉
𝑖
𝑘

𝐻
𝑇

𝜉
𝑖
𝑘

∗ −𝑃
−1

0

∗ ∗ −𝑄
−1

]
]
]

]

< 0.

(35)

Therefore, we can derive 𝑧
𝑇

𝑖
𝑘

𝑧
𝑖
𝑘

− 𝛾
2V𝑇
𝑖
𝑘

V
𝑖
𝑘

+ Δ𝑉(𝑖
𝑘
) < 0.

Similar toTheorem 6, the networked system (10) is stochastic
mean-square stable. Pre- and postmultiplying (35)(1) by
diag(𝑃−1, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼), pre- and postmultiplying (35) (2) by
diag(𝑄−1, 𝐼, 𝐼), and define 𝑋 = 𝑃

−1, 𝑌 = 𝑄
−1 we obtain (31).

Similar to Theorem 7, 𝐽 < 𝜆max(𝑈
𝑇

𝑃𝑈) + 𝜆max(𝑈
𝑇

𝑄𝑈).

Remark 10. The optimal guaranteed cost control gain (𝐽∗ =
𝜃
1
+ 𝜃
2
) in Theorem 9 can be solved by existing LMI that

Minimize 𝜃
1
+ 𝜃
2

s.t (1) [
−𝜃
1
𝐼 𝑈
𝑇

𝑈 −𝑋
] ≤ 0

(2) [
−𝜃
2
𝐼 𝑈
𝑇

𝑈 −𝑌
] ≤ 0.

(36)

4. Numerical Examples

Example 1. Consider the following system:

�̇� = [
−0.3 −1

0 −0.1
] 𝑥 (𝑡) + [

0.01

−0.01
] 𝑢 (𝑡) . (37)

The sampling period of controller is 𝑇
𝑐
= 0.01 s, and the

sampling period of sensor is 𝑇
𝑠
= 0.15 s. And the packet loss

upper bounds 𝑑 = 2, and the time delay 𝜏 = 0.03 s. Choose
𝑈 = [

2.366 1.6282

1.3025 −1.624
] , 𝑆 = [

1 0

0 1.1
] , 𝑅 = 10.
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By solving the LMIs given inTheorem 7, we can obtain

𝑋 = [
0.1978 0.0595

0.0595 0.1236
], 𝑀 = 1.0𝑒

−10

[0.6131 −0.9766].

(38)

Therefore, 𝐾 = 𝑀𝑋
−1

= 1.0𝑒
−008

[0.0640 −0.1098].
The state responses of closed loop system are shown in

Figure 2, where the initial condition is 𝑥(0) = (1, −1)
𝑇.

Solving the LMIs given in Remark 8, 𝐽∗ = 51.9179. The
simulation results show that the proposedmethod is effective.

Example 2. Consider the following system:

�̇� = [
−0.3 −1

0 −0.1
] 𝑥 (𝑡) + [

0.01

−0.01
] 𝑢 (𝑡) + [

0.1

−0.1
] V (𝑡) ,

𝑧 (𝑡) = [1 0] 𝑥 (𝑡) + 0.091V (𝑡) ,

V (𝑡) = {
0.1 sin (𝑡) , 90 ≤ 𝑡 ≤ 105,

0, otherwise.
(39)

The other parameters are the same with Example 1.
Solving the LMIs given inTheorem 9,

𝑋 = [
3.9836 0.8675

0.8675 3.9836
] ,

𝑀 = 1.0𝑒
−009

[0.5063 −0.4462] .

(40)

And we can obtain 𝐾 = 𝑀𝑋
−1

= 1.0𝑒
−009

[0.1353 −0.0375]. Solving the LMIs given in Remark 10, 𝐽∗ =
63.3589. The state responses of closed loop system are shown
in Figure 3, where the initial condition is 𝑥(0) = (1, −1)

𝑇.

Example 3. To illustrate the proposed method’s effectiveness,
which is obtained in this issue, we consider the following
system in [7, 14]:

�̇� = [
−1.84 −0.33

7.18 −1.14
] 𝑥 (𝑡) + [

2.43

−0.42
] 𝑢 (𝑡) + [

1.86

−0.76
] V (𝑡) ,

𝑧 (𝑡) = [0.57 0.78] 𝑥 (𝑡) − 0.56V (𝑡) .
(41)

We can see, [7, 14] supposed that the sampling period of
controller is 𝑇

𝑐
= 0.01 s, the sampling period of sensor is

𝑇
𝑠
= 0.1 s. And the packet loss upper bounds 𝑑 = 1, and the

time delay 𝜏 = 0.01s. Solving the LMIs given in Theorem 9,
𝐾 = [0.040, −0.051]. We can obtain the 𝐻

∞
bounds from

different methods in Table 1. Figure 4 illustrates the merits of
the proposed multirate control system both with time delay
and packet dropout.

5. Conclusions

For multirate NCSs, we mean that the sampling periods of
the nodes in the system are not the same. In this paper,
the guaranteed cost control for multirate networked control
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Figure 2: The state response of multirate NCSs.
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Figure 3: The state response of multirate NCSs with noise.

system with both time delay and packet dropout of multi-
rates networked control is discussed. A multirate NCS with
simultaneous consideration time delay and packet dropout
is modeled as a time-varying sampling system with time
delay, in which the newest control inputs are adopted and the
Lyapunov function deceasing at each input signal updating
point. Numerical examples are given to demonstrate the
effectiveness of the proposed method.

The proposed problems in this paper for the nonlinear
networked control systems [40, 41] have not fully been
investigated. The method of fuzzy control [42, 43] will be
adopted in the future work.
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Figure 4: The state response of closed loop systems.

Table 1:𝐻
∞
bounds.

Method Theorem 6 [14] Corollary 1 [7] Theorem 9
𝛾 2.4966 4.4967 3.8705
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