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Abstract

This paper investigates the instability measure of linear systems defined as the sum of the unstable

eigenvalues in the continuous-time (CT) case and the product of the unstable eigenvalues in the discrete-

time (DT) case. The problem consists of determining the largest instability measure in systems depending

polynomially on parameters constrained in a semialgebraicset. It is shown that upper bounds of the

sought measure can be established via linear matrix inequality (LMI) feasibility tests. Moreover, a priori

and a posteriori conditions for establishing nonconservatism are proposed. Lastly, two special cases of

the proposed methodology are investigated, the first one concerning systems with a single parameter,

and the second one concerning the determination of the largest spectral abscissa and radius. Three

applications in control with communications constraints are discussed.

I. INTRODUCTION

Measuring the instability, in particular the sum of the unstable eigenvalues (CT case) and

the product of the unstable eigenvalues (DT case), is important for establishing whether a

stabilizing controller can be designed in a number of frameworks in control with communications

constraints. Indeed, [1] considers stochastic systems andderives that a stabilizing controller can

be designed if and only if the data rate of the channel exceedsa certain function of the instability

measure. Analogous results are proposed in [2] which considers the case of multiple sensors

that partially observe the system, in [3] which addresses the design of controllers to achieve
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different control objectives, in [4] which describes a virtual system approach for digital finite

communication bandwidth control, and in [5] where the channel is modeled as a finite logarithmic

quantizer. Moreover, in [6], [7] it is shown that the lowest quantization density for stabilizability

can be computed from the instability measure. See also [8] for a review of the instability measure.

As it always happens when dealing with physical systems, themathematical model of the

plant to be controlled is not exactly known in general. Indeed, the coefficients of such a model

depend on some parameters, which represent physical quantities that cannot be measured exactly

or that are subject to changes. These parameters are unknown, and typically one addresses the

case where the available information is that the parametersbelong to a set of interest. This

means that the instability should be measured not just for one model but, instead, for a family

of models. This problem is studied in [9] for the case of sets of parameters with known points

by exploiting determinants, and in [10] for the case of DT polytopic systems by exploiting

generalized eigenvalue problems.

This paper addresses the determination of the largest instability measure in linear systems

depending polynomially on parameters constrained in a semialgebraic set. It is shown that a

sufficient condition for establishing upper bounds of the sought measure can be obtained in

terms of an LMI feasibility test based on polynomially parameter-dependent quadratic Lyapunov

functions and sums-of-squares (SOS) matrix polynomials. Moreover, a sufficient condition is

proposed for establishing nonconservatism of a computed upper bound. These conditions are also

necessary under mild assumptions on the semialgebraic set.Hence, it is shown that a sufficient

and necessary LMI condition with upper bounds on the degree of the Lyapunov functions can

be obtained in the case of a single parameter constrained in an interval. The paper is concluded

by explaining that the proposed methodology can also be usedto determine the largest value

of the spectral abscissa and radius. Three applications of the proposed methodology in control

with communications constraints are discussed, namely signal-to-noise ratio (SNR) constrained

feedback stabilization, quantized feedback stabilization, and stabilization with multirate sampling.

The paper is organized as follows. Section II provides the preliminaries. Section III describes

the determination of the upper bounds. Section IV studies the nonconservatism of the upper

bounds. Section V investigates the special cases. Section VI presents the examples. Lastly, Section

VII concludes the paper with some final remarks.
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II. PRELIMINARIES

A. Problem Formulation

Notation:R, C: sets of real and complex numbers;I: identity matrix;A′: conjugate transpose;

A > 0, A ≥ 0: symmetric positive definite and semidefinite matrix;ℜ(A), ℑ(A): real and imag-

inary parts;|a|: magnitude;(A)i,j: (i, j)-entry; det(A): determinant;trace(A): trace;adj(A):

adjoint; ker(A): right null space;spec(A): set of eigenvalues;λi(A): i-th eigenvalue;λmin(A):

minimum real eigenvalue;diag(A,B, . . .): block diagonal matrix with blocksA, B, . . .; E(A):

statistical expectation;deg(A(p)): degree ofA(p), i.e., largest degree among the entries ofA(p);

Hurwitz/Schur matrix: a matrix whose eigenvalues have negative real parts/magnitude less than

one.

Let us define the instability measure ofX ∈ Rn×n in the CT and DT cases as

φa(X) =























n
∑

i=1

max {0,ℜ (λi(X))} if a = CT

n
∏

i=1

max {1, |λi(X)|} if a = DT.

(1)

whereλi(X) is the i-th eigenvalue ofX. In the DT case, this measure is known as Mahler

measure [11].

Let A : Rq → Rn×n be a matrix polynomial (i.e., a matrix where each entry is a polynomial),

and let us define the semialgebraic set

P = {p ∈ R
q : ri(p) ≥ 0, ∀i = 1, . . . , nr} , (2)

wherer1, . . . , rnr
: Rq → R are polynomials.

Problem 1. Determine the largest instability measure ofA(p) overP, i.e.,

φ∗

a = sup
p∈P

φa(A(p)), a ∈ {CT,DT}. (3)

�

Solving (3) is challenging sinceφCT (A(p)) andφDT (A(p)) can be non-concave functions of

p even whenA(p) is linear. This is shown by Figure 1 for the matrices

A1(p) =





−1 p1

p2 1



 , A2(p) =





p1 1

−1 p2



 . (4)
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Fig. 1. Instability measuresφCT (A1(p)) (a) andφDT (A2(p)) (b).

Remark 1. Problem 1 considers systems depending polynomially on parameters constrained

into a semialgebraic set. The first reason for considering such systems is that they include classical

models typically adopted to describe parametric systems such as interval models and polytopic

models. The second reason is that the methodology proposed in this paper can be applied to

such classical models as well as to all the models whereA(p) andri(p) are polynomial. �

B. Motivation

Determiningφ∗
CT and φ∗

DT is important for a number of problems related to control with

communications constraints. Hereafter we provide three examples, namely 1) SNR constrained

feedback stabilization, 2) quantized feedback stabilization, and 3) stabilization with multirate

sampling.

1) SNR Constrained Feedback Stabilization:Consider

ẋ(t) = Ax(t) +Bur(t)

ur(t) = us(t) + h(t)

us(t) = −Kx(t),
(5)
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wherex ∈ R
n is the state of the plant,ur ∈ R is the received input,us ∈ R is the sent input,

andh ∈ R is a zero-mean white Gaussian noise with power spectral density N .

Theorem 1 ( [12], Theorem II.1):Suppose that(A,B) is stabilizable. There existsK such

thatA−BK is Hurwitz and the sent inputus(t) = −Kx(t) satisfies the power constraint

‖us‖POW = E
(

us(t)
2
)

< M, (6)

for someM ∈ R, if and only if
M

N
> 2φCT (A). (7)

Whenever the matricesA and B are affected by parameters, Theorem 1 can be used to

investigate stabilizability over the set of admissible parameters. Specifically, the following corol-

lary provides a sufficient and necessary condition for the existence of a parameter-dependent

controller (the proof is a direct consequence of Theorem 1 and the definition ofφ∗
CT ).

Corollary 1: Suppose that(A(p), B(p)) is stabilizable for allp ∈ P. There existsK(p) such

that A(p) − B(p)K(p) is Hurwitz and the sent inputus(t) = −K(p)x(t) satisfies the power

constraint (6) for allp ∈ P if and only if

M

N
> 2φ∗

CT . (8)

Corollary 1 provides a sufficient and necessary condition based only onφ∗
CT for the existence

of a parameter-dependent controller that stabilizes the system and satisfies the power constraint.

An interesting question is whether one can find a common controller with such properties.

However, the existence of such a common controller cannot beestablished throughφ∗
CT only as

shown in the following example.

Example 1. For ζ0, ζ1 ∈ R let us consider

A(p) = 2p2 − 1

B(p) = ζ0 + ζ1p

p ∈ P = [−1, 1].
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The largest instability measure is independent onζ0 and ζ1:

φ∗

CT = 1.

Hereafter we consider two cases. The first case is

ζ0 = 1, ζ1 = 0.

One has that(A(p), B(p)) is stabilizable for allp ∈ P, and there exists a common controller

K such thatA(p)−B(p)K is Hurwitz for all p ∈ P (indeed, anyK ∈ (−∞,−1) satisfies this

property). Next, let us consider the second case with

ζ0 = 0, ζ1 = 1.

One has that(A(p), B(p)) is stabilizable for allp ∈ P, however there does not exist any common

controllerK such thatA(p)−B(p)K is Hurwitz for allp ∈ P. Indeed, forp = −1,A(p)−B(p)K

is Hurwitz if and only if K > 1, while, for p = 1, A(p) − B(p)K is Hurwitz if and only if

K < −1. �

Remark 2. Example 1 shows that the existence of a common controllerK cannot be es-

tablished throughφ∗
CT only. Clearly, φ∗

CT can be used to provide a necessary condition for

the existence of such a common controller, since a requirement for this is the existence of

a parameter-dependent controller, which can be investigated with the sufficient and necessary

condition provided by Corollary 1. �

2) Quantized Feedback Stabilization: Consider

x(t+ 1) = Ax(t) +Bu(t)

u(t) = f(v(t))

v(t) = Kx(t),

(9)

wherex ∈ Rn is the state of the plant,u ∈ R is the quantized input,v ∈ R is the unquantized

input, f(·) is the logarithmic quantizer

f(v) =



















u if (1 + δ)−1u < v ≤ (1− δ)−1u, v > 0

0 if v = 0

−f(−v) if v < 0,

(10)
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whereδ > 0 defines the quantization level.

Theorem 2 ( [7], Theorem 2.1):Suppose that(A,B) is stabilizable. There existsK such that

(9) is stable if and only if

δ ≤ 1

φDT (A)
. (11)

Whenever the matricesA andB are affected by parameters, Theorem 2 can be used to provide

conditions for the existence of a parameter-dependent controller similarly to Corollary 1.

3) Stabilization with Multirate Sampling: Consider

ẋ(t) = Ax(t) +Bu(t)

xd(k) = x(kT )

u(t) = HT (u1(k), . . . , um(k)),

(12)

wherex ∈ R
n is the state of the plant,u ∈ R is the input,xd(k) ∈ R

n is the sampled state at

stepk, T is the sampling interval,HT (·) is the zero-order hold with periodT , andui(k) is the

output of thei-th channel. The channels are modeled as either signal-to-error ratio (SER) model

ui(k) = HKi
(ũi(k))

ũi(k) = vi(Kik) + ∆i(vi(Kik)),
(13)

or received signal-to-error ratio (R-SER), i.e.,

ui(k) = HKi
(ũi(k))

ũi(k) = vi(Kik) + ∆i(ũi(k)),
(14)

where vi(k) is the input,Ki is the downsampling rate, and∆i(·) is an uncertain nonlinear,

time-varying system withL2 gain δi. Let us define the total network capacity as

C =
m
∑

i=1

Ci, (15)

whereCi is the capacity of thei-th channel given by

Ci =
1

KiT
ln δ−1

i . (16)

DRAFT



8

Theorem 3 ( [13], Theorems 4.1–4.2):Suppose that(A,B) is stabilizable. The multirate

networked control system (12) with either SER channel modelor R-SER channel model is

stabilizable by state feedback if and only if

C > φCT (A). (17)

Conditions for the existence of a parameter-dependent controller can be obtained similarly to

Corollary 1 whenever the matricesA andB are affected by parameters.

C. SOS Matrix Polynomials

A symmetric matrix polynomialV : Rq → R
u×u is said to be SOS if there exist matrix

polynomialsV1, . . . , Vk : Rq → Ru×u such that

V (p) =
k
∑

i=1

Vi(p)
′Vi(p). (18)

One can establish whetherV (p) is SOS via an LMI feasibility test, see [14]–[19]. Specifically,

let d be a nonnegative integer such thatdeg(V (p)) ≤ 2d. Then,V (p) can be expressed via the

square matricial representation (SMR) (also known as Gram matrix method in the caseu = 1)

as

V (p) = (b(p)⊗ I)′ (W + L(α)) (b(p)⊗ I) , (19)

whereb : Rq → R
σ(q,d) is a vector of monomials of degree not greater thand in p and

σ(q, d) =
(q + d)!

q!d!
, (20)

W ∈ Ruσ(q,d)×uσ(q,d) is a symmetric matrix satisfying

V (p) = (b(p)⊗ I)′W (b(p)⊗ I) , (21)

L : Rτ(q,2d,u) → Ruσ(q,d)×uσ(q,d) is a linear parametrization of the linear subspace

L =
{

L̃ = L̃′ : (b(q)⊗ I)′ L̃ (b(q)⊗ I) = 0
}

, (22)

where

τ(q, 2d, u) =
u

2
(σ(q, d) (uσ(q, d) + 1)− (u+ 1)σ(q, 2d)) , (23)
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and α ∈ R
τ(q,2d,u) is a free vector. It follows thatV (p) is SOS if and only if there existsα

satisfying the LMI

W + L(α) ≥ 0. (24)

SOS matrix polynomials are useful in order to investigate positive semidefiniteness of matrix

polynomials. Indeed, for the unconstrained case,V (p) SOS ensures that

V (p) ≥ 0 ∀p ∈ R
q. (25)

The conservatism of this sufficient condition can be decreased by multiplyingV (p) times a SOS

polynomial, indeed it is known from Artin’s theorem [20], [21] that any nonnegative polynomial

is the ratio of two SOS polynomials. For the constrained case, SOS matrix polynomials can be

useful to establish whether

V (p) ≥ 0 ∀p ∈ P, (26)

whereP is the semialgebraic set in (2). In the caseu = 1, this can be done by exploiting the

Positivstellensatz [22], [23], which consists of introducing SOS polynomial multipliers in order

to take into account the constraintp ∈ P. In the caseu ≥ 1, SOS matrix polynomials can be

used by adopting an extension of this technique as proposed in [24].

There have been numerous applications of SOS matrix polynomials in control systems, see for

instance [19]. In particular, SOS matrix polynomials have been used in the context of nonlinear

systems for establishing whether an equilibrium point is stable and for estimating its domain of

attraction, in the context of uncertain systems for establishing whether an equilibrium point is

robustly stable, and in several other contexts including hybrid systems, game theory, and systems

biology.

III. ESTABLISHING UPPERBOUNDS

GivenX ∈ Rn×n and k ∈ {1, . . . , n}, let ΩCT,k(X) andΩDT,k(X) be square matrices with

the property that their eigenvalues are all the sums and products ofk distinct eigenvalues ofX,

i.e.,

spec(Ωa(X)) =























{

∑

i∈z

λi(X), z ∈ Ik
}

if a = CT

{

∏

i∈z

λi(X), z ∈ Ik
}

if a = DT,

(27)
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whereIk is the set ofk-tuples in{1, . . . , n}, i.e.,

Ik = {(z1, . . . , zk) : zi ∈ {1, . . . , n}, zi < zi+1

∀i = 1, . . . , k − 1}.
(28)

The matrix functionsΩCT,k(X) and ΩDT,k(X) can be built as follows. Let us define the

number ofk-tuples inIk as

ck =
n!

(n− k)!k! , (29)

and denote thek-tuples inIk asz(1), . . . , z(ck), where the numeration is made according to the

lexicographical order. Then,ΩCT,k(X) is theck × ck matrix whose(i, j)-th entry is

(ΩCT,k(X))
i,j

=



















if i = j, trace(Y1)

else if Y2 ∈ R, (−1)y3Y2
else, 0,

(30)

where

• Y1 ∈ Rk×k is the submatrix ofX built with the rows indexed byz(i) and the columns

indexed byz(j);

• Y2 is the submatrix ofX built similarly to Y1 by removing fromz(i) andz(j) the common

entries;

• y3 is the difference between the sum of the indexes of the commonentries inz(j) and the

same sum inz(i).

Also, ΩDT,k(X) is theck × ck matrix whose(i, j)-th entry is

(ΩDT,k(X))
i,j

= det(Y1). (31)

Example 2. In order to clarify the construction ofΩCT,k(X) andΩDT,k(X), let us consider

n = 3 and

X =











x1 x4 x7

x2 x5 x8

x3 x6 x9











.

One has
I1 = {z(1) = 1, z(2) = 2, z(3) = 3}

I2 = {z(1) = (1, 2), z(2) = (1, 3), z(3) = (2, 3)}

I3 = {z(1) = (1, 2, 3)} .
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Consequently, from (30) it follows that

ΩCT,1(X) = X

ΩCT,2(X) =











x1 + x5 x8 −x7
x6 x1 + x9 x4

−x3 x2 x5 + x9











ΩCT,3(X) = trace(X),

and, from (31),

ΩDT,1(X) = X

ΩDT,2(X) =











x1x5 − x2x4 x1x8 − x2x7 x4x8 − x5x7
x1x6 − x3x4 x1x9 − x3x7 x4x9 − x6x7
x2x6 − x3x5 x2x9 − x3x8 x5x9 − x6x8











ΩDT,3(X) = det(X).

�

Let us define the quantities

γa =







0 if a = CT

1 if a = DT
(32)

and

K = {1, . . . , n}. (33)

Theorem 4:Let a ∈ {CT,DT} andX ∈ R
n×n. Then,

φa(X) = max
k∈K

max {γa, ψa (Ωa,k(X))} , (34)

whereΩa,k(X) is defined by (27), and

ψa(Y ) =











max
i=1,...,m

ℜ(λi(Y )) if a = CT

max
i=1,...,m

|λi(Y )| if a = DT
(35)

is the spectral abscissa (CT case) or radius (DT case) ofY ∈ Rm×m.

Proof. Considera = CT . If the number of eigenvalues ofX with nonnegative real part is different

from k, from (27) it follows thatmax{0, ψCT (Ωa,k(X))} ≤ φCT (X). Moreover, if the number

of eigenvalues ofX with nonnegative real part is equal tok, one hasmax{0, ψCT (Ωa,k(X))} =
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φCT (X). Hence, (34) holds witha = CT , and similarly one proves that (34) holds witha = DT .

�

Theorem 4 states that the instability measure (1) can be expressed through the spectral abscissa

(CT case) and radius (DT case) of a family of matrices.

Theorem 5:Let a ∈ {CT,DT} andw ∈ (γa,∞). Then,

φ∗

a < w (36)

if and only if, for all k ∈ K, there exists a symmetric matrix polynomialFk : Rq → Rck×ck such

that

∀p ∈ P







Fk(p) > 0

Ga,k(p) > 0
(37)

and

deg(Fk(p)) ≤ d∗a,k, (38)

where

d∗a,k =







2−1
(

c2k + ck − 2
)

deg(A(p)) if a = CT

k
(

c2k + ck − 2
)

deg(A(p)) if a = DT,
(39)

andGa,k : R
q → Rck×ck is the matrix polynomial

Ga,k(p) =






2wFk(p)− Fk(p)Ba,k(p)− Ba,k(p)
′Fk(p) if a = CT

w2Fk(p)− Ba,k(p)
′Fk(p)Ba,k(p) if a = DT,

(40)

with Ba,k : Rq → Rck×ck given by

Ba,k(p) = Ωa,k(A(p)). (41)

Proof. “⇒” Considera = CT . Suppose thatφ∗
a < w. From the definition ofφ∗

CT in (3) and by

exploiting Theorem 4, it follows that

w > sup
p∈P

φCT (A(p))

= sup
p∈P

max
k=1,...,n

max{0, ψCT,k(A(p))},
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which means that

w > sup
p∈P

max
k=1,...,n

ψCT,k(A(p)),

and, hence,

BCT,k(p)− wI is Hurwitz ∀k = 1, . . . , n ∀p ∈ P.

From the Lyapunov stability theory, it follows that, for allk ∈ K, the equation

Fk(p) (BCT,k(p)− wI) + (BCT,k(p)− wI)′ Fk(p) = −I

admits a unique solutionFk(p) satisfying

Fk(p) > 0 ∀p ∈ P.

This equation can be rewritten as

ECT,k(p)fk(p) = g,

where the vectorsfk(p) and g gather the free coefficients ofFk(p) and−I, in number equal

to ck(ck + 1)/2, andECT,k(p) is a square matrix polynomial. Since the solution forFk(p) is

unique, it follows that

det(ECT,k(p)) 6= 0 ∀p ∈ P,

and, hence, thatfk(p) is a rational function given by

fk(p) =
adj(ECT,k(p))

det(ECT,k(p))
g.

Let Fk(p) be the matrix function corresponding to the foundfk(p). Let us observe thatFk(p)

is a matrix rational function, and can be transformed into a matrix polynomial by multiplying

it times det(ECT,k(p)), which is the denominator in the previous equation. Hence, we redefine

Fk(p) as

Fk(p)← Fk(p) det(ECT,k(p)) det(ECT,k(p0)),

wherep0 is any vector inP. It follows that the newFk(p) is a matrix polynomial satisfying

(37) since

det(ECT,k(p)) det(ECT,k(p0)) > 0 ∀p ∈ P,

and
GCT,k(p) = −Fk(p) (BCT,k(p)− wI)

− (BCT,k(p)− wI)′ Fk(p)

= det(ECT,k(p)) det(ECT,k(p0))I.
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Moreover, sincedeg(ECT,k(p)) = deg(A(p)), it follows thatdeg(Fk(p)) = deg(adj(ECT,k(p))g).

Since the size ofECT,k(p) is ck(ck + 1)/2 × ck(ck + 1)/2, and since the entries of the adjoint

of a ck(ck + 1)/2 × ck(ck + 1)/2 matrix are sums of products ofck(ck + 1)/2 − 1 entries

of that matrix, it follows thatdeg(Fk(p)) = deg(adj(ECT,k(p))g) ≤ deg(adj(ECT,k(p))) ≤
(ck(ck + 1)/2− 1) deg(A(p)) = d∗CT,k.

Similarly, in the casea = DT , one has

w > sup
p∈P

max
k=1,...,n

ψDT,k(A(p)),

i.e.,

w−1BDT,k(p) is Schur∀k ∈ K ∀p ∈ P.

Hence, for allk = 1, . . . , n the equation

w−1BDT,k(p)
′Fk(p)w

−1BDT,k(p)− Fk(p) = −I

admits a unique matrix rational functionFk(p) which is positive definite overP. Let EDT,k(p)

be the matrix analogous toECT,k(p) for the DT case. Multiplying this matrix rational function

timesdet(EDT,k(p)) det(EDT,k(p0)), a matrix polynomialFk(p) satisfying (37) can be obtained

since

GDT,k(p) = −w2
(

w−2BDT,k(p)
′Fk(p)BDT,k(p)− Fk(p)

)

.

Moreover, sincedeg(EDT,k(p)) = 2k deg(A(p)), one hasdeg(Fk(p)) = deg(adj(EDT,k(p))g) ≤
deg(adj(EDT,k(p))) ≤ 2k(ck(ck + 1)/2− 1) deg(A(p)) = d∗DT,k.

“⇐” Suppose that, for allk = 1, . . . , n, there exists a matrix polynomialFk(p) satisfying

(37). For the casea = CT this implies that

BCT,k(p)− wI is Hurwitz ∀k ∈ K ∀p ∈ P,

and, hence,

w > sup
p∈P

max
k∈K

ψCT,k(A(p)).

Sincew ≥ 0, it follows that

w > sup
p∈P

max
k∈K

max{0, ψCT,k(A(p))}

= φ∗
CT .

Similarly, for the casea = DT , (37) implies that

w−1BDT,k(p) is Schur∀k ∈ K ∀p ∈ P,
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and, hence,

w > sup
p∈P

max
k∈K

ψDT,k(A(p)).

Sincew ≥ 1, it follows that

w > sup
p∈P

max
k∈K

max{1, ψDT,k(A(p))}

= φ∗
DT .

�

Theorem 5 provides a sufficient and necessary condition for establishing whetherw is an

upper bound ofφ∗
CT andφ∗

DT based on the existence of a symmetric matrix polynomialFk(p)

satisfying the inequalities in (37). An upper bound on the degree ofFk(p) is also provided in

Theorem 5.

Let us observe thatFk(p) defines a polynomially parameter-dependent quadratic Lyapunov

function candidate of the form

ṽk(x) = x̃′kFk(p)x̃k, (42)

wherex̃k ∈ Rck , for the CT system

˙̃xk(t) =
(

BCT,k(p)−
w

2
I
)

x̃k(t), (43)

or for the DT system

x̃k(t+ 1) =
1√
w
BDT,k(p)x̃k(t). (44)

Theorem 6:Let a ∈ {CT,DT} andw ∈ (γa,∞). Then,

φ∗

a < w (45)

if, for all k ∈ K, there exist symmetric matrix polynomialsFk, Qi,k, Si,k : Rq → Rck×ck , i =

1, . . . , nr, andε ∈ R satisfying the LMI condition

Hk(p)− I is SOS

Ja,k(p)− εI is SOS

Qi,k(p) is SOS∀i = 1, . . . , nr

Si,k(p) is SOS∀i = 1, . . . , nr

ε > 0,

(46)

DRAFT



16

where

Hk(p) = Fk(p)−
nr
∑

i=1

ri(p)Qi,k(p)

Ja,k(p) = Ga,k(p)−
nr
∑

i=1

ri(p)Si,k(p),

(47)

with Ga,k(p) defined as in Theorem 5.

Proof. Suppose that (46) holds. The first and third conditions in (46) imply that

∀p ∈ R
q







Hk(p) ≥ I

Qi,k(p) ≥ 0.

Let p ∈ P. Sinceri(p) ≥ 0, it follows that

I < Fk(p)−
nr
∑

i=1

ri(p)Qi,k(p)

≤ Fk(p).

Similarly, one gets thatGa,k(p) ≥ εI by exploiting the second and fourth conditions in (46).

Sinceε > 0 from the fifth condition in (46), it follows that (37) holds. Moreover, from Theorem

5 we conclude thatφ∗
a < w. �

Theorem 6 provides a sufficient condition for establishing upper bounds ofφ∗
CT and φ∗

DT .

The matrix polynomialsFk(p), Qi,k(p), Si,k(p) and the scalarε are the decision variables of this

condition.

The condition provided by Theorem 6 is based on SOS matrix polynomials and is equivalent

to an LMI feasibility test as explained in Section II-C sinceHk(p)− I andJa,k(p)− εI depend

linearly on the decision variablesFk(p), Qi,k(p), Si,k(p) andε.

The search for the decision variablesFk(p),Qi,k(p), Si,k(p) andε satisfying (46) can be directly

performed with software for SOS programming such as SOSTOOLS [25], which converts the

SOS conditions into LMIs and then exploit software for semidefinite programming such as

SeDuMi [26] in order to solve the obtained LMIs.

The condition provided by Theorem 6 is sufficient for any degree of the matrix polynomials

Fk(p), Qi,k(p) andSi,k(p). As it will be shown in Theorem 8, this condition is also necessary

by using matrix polynomials with degree sufficiently large under mild assumptions onP.
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Let us define the upper bound ofφ∗
a, a ∈ {CT,DT}, provided by Theorem 6 as

φ̂a = max
k∈K

φ̂a,k, (48)

where
φ̂a,k = inf

w
w

s.t.







































w > γa

∃Fk(p), Qi,k(p), Si,k(p), ε : (46) holds

deg(Fk(p)) ≤ dk

deg(Qi,k(p)) ≤ ei,k

deg(Si,k(p)) ≤ fi,k

(49)

and dk, ei,k and fi,k are any chosen bounds on the degrees of the matrix polynomials Fk(p),

Qi,k(p) and Si,k(p). Let us observe that, wheneverw is variable, the condition (46) involves

either bilinear matrix inequalities (BMIs) in the CT case ornonlinear matrix inequalities (NMIs)

in the DT case because eitherw or w2 multipliesFk(p). Nevertheless, (49) can be simply solved

through a bisection algorithm onw where the LMI condition (46) is tested for fixed values of

w at each step.

Remark 3. The computational burden of the LMI condition (46) grows with the dimension

of the problem and the degree of the decision variables. Unfortunately, this growth is faster than

linear due to its combinatorial nature. �

IV. ESTABLISHING NONCONSERVATISM

This section investigates the nonconservatism of the methodology introduced in Section III.

Theorem 7:Let a ∈ {CT,DT}. Without loss of generality, suppose thatφ̂a > γa. Then,

φ̂a = φ∗

a (50)

if there existsk∗ ∈ K andp∗ ∈ R
q such that

λmin

(

J∗
a,k∗(p

∗)
)

= 0

φa(A(p
∗)) = φ̂a

p∗ ∈ P,
(51)
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whereλmin(·) denotes the minimum eigenvalue, andJ∗
a,k(p) is Ja,k(p) evaluated for the optimal

values ofw, Fk(p), Si,k(p) andε in (49). Moreover, ifP is compact, this condition is not only

sufficient but also necessary.

Proof. “⇐” Suppose that (51) holds for somek∗ ∈ K and p∗ ∈ R
q. Then, since Theorem 6

ensures that̂φa ≥ φ∗
a, and since the second condition in (51) ensures thatφ̂a ≤ φ∗

a, it follows

that φ̂a = φ∗
a.

“⇒” Suppose that̂φa = φ∗
a and thatP is compact. Sinceφa(A(p)) is continuous, it follows

that there exists a global maximizer in the optimization problem (3), i.e.,p∗ ∈ P such that

φ(A(p∗)) = φ∗
a. Sinceφ̂a > γa, it follows from Theorem 4 that there existsk∗ ∈ {1, . . . , n} such

that

ψk∗(A(p
∗)) = φ∗

a.

Let us considerBa,k∗(p
∗). This matrix has an eigenvalueλ∗ ∈ C such thatℜ(λ∗) = φ∗

a in the CT

case, and|λ∗| = φ∗
a in the DT case. Let̃x∗ ∈ Cc∗

k be an eigenvector ofBa,k∗(p
∗) corresponding

to λ∗. Let us denote withw∗, F ∗
k (p), G

∗
a,k(p), S

∗
i,k(p) and ε∗ the optimal values ofw, Fk(p),

Ga,k(p), Si,k(p) andε in (49). Observe thatw∗ = φ∗
a. Moreover, ifa = CT ,

x̃∗
′

G∗
a,k∗(p

∗)x̃∗

= x̃∗
′

(2w∗Fk∗(p
∗)− Fk∗(p

∗)BCT,k∗(p
∗)

−BCT,k∗(p
∗)′Fk∗(p

∗)) x̃∗

= 2φ∗
ax̃

∗′Fk∗(p
∗)x̃∗ − 2φ∗

ax̃
∗′Fk∗(p

∗)x̃∗

= 0,

and, if a = DT ,

x̃∗
′

G∗
a,k∗(p

∗)x̃∗

= x̃∗
′

((w∗)2Fk∗(p
∗)− BDT,k∗(p

∗)′Fk∗(p
∗)BDT,k∗(p

∗)) x̃∗

= (φ∗
a)

2x̃∗
′

Fk∗(p
∗)x̃∗ − (φ∗

a)
2x̃∗

′

Fk∗(p
∗)x̃∗

= 0.

Hence,
0 ≤ x̃∗

′

J∗
a,k∗(p

∗)x̃∗

= x̃∗
′

(

G∗

a,k∗(p
∗)−

nr
∑

i=1

ri(p
∗)S∗

i,k∗(p
∗)

)

x̃∗

= −x̃∗′
(

nr
∑

i=1

ri(p
∗)S∗

i,k∗(p
∗)

)

x̃∗.
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SinceJ∗
a,k∗(p

∗) ≥ 0 andS∗
i,k∗(p

∗) ≥ 0, this implies that̃x∗
′

J∗
a,k∗(p

∗)x̃∗ = 0, and, hence,

λmin

(

J∗

a,k∗(p
∗)
)

= 0,

i.e., (51) holds. �

Theorem 7 provides a sufficient condition for establishing whether the computed upper bounds

φ̂CT and φ̂DT are tight. This is important because, if one can establish that the computed upper

bounds are tight, then the search for less conservative upper bounds ofφ∗
CT and φ∗

DT can be

terminated.

Observe that there is no loss of generality in supposing that, for a ∈ {CT,DT}, one has

φ̂a > γa. Indeed, sinceφ∗
a ≥ γa for definition, it follows that

φ̂a = γa ⇒ φ̂a = φ∗

a. (52)

The condition provided by Theorem 7 is also necessary whenever P is compact. Let us

observe that this assumption onP is a mild one since the parameters are typically bounded

when representing physical quantities.

The condition (51) consists of a numerical test, namely establishing whetherφa(A(p
∗)) = φ̂a

for somep∗ ∈ P satisfyingλmin

(

J∗
a,k∗(p

∗)
)

= 0 for somek∗ ∈ K. SinceJ∗
a,k∗(p) is a SOS

matrix polynomial due to the second condition in (46), computing such a pointp∗ amounts to

looking for vectorsp∗ ∈ Rq andx∗ ∈ Cc∗
k such that

p∗ ⊗ x∗ ∈ ker (Ka,k∗) , (53)

whereKa,k∗ is the matrixW + L(α) in (19), obtained by replacingV (p) with J∗
a,k∗(p), and

evaluated for anyα such thatW + L(α) ≥ 0. As explained for instance in [19], the vectors

p∗ ∈ Rq andx∗ ∈ Cck satisfying (53) can be searched for through linear algebra operations.

In order to present the next result, let us introduce the following definition.

Definition 1. The semialgebraic setP in (2) is said to be strongly compact ifP is compact

and the polynomialsri(p), i = 1, . . . , nr, have even degree and their highest degree forms have

no common roots except zero.

Theorem 8:Let a ∈ {CT,DT}. Suppose thatP is strongly compact. Then:
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• the sufficient condition provided by Theorem 6 is also necessary;

• there exist sufficiently large degree boundsdk, ei,k and fi,k such that the upper bound̂φa

is tight, i.e.,φ̂a = φ∗
a.

Proof. Suppose thatφ∗
a < w. Then, from Theorem 5 it follows that there exists a matrix

polynomial Fk(p) with deg(Fk(p)) ≤ d∗a,k satisfying (37). Such a matrix polynomial can be

scaled in order to satisfy

∀p ∈ P



















Fk(p)− I ≥ 0

Ga,k(p)− εI ≥ 0

ε > 0.

This can be rewritten as

∀(x̃k, p) ∈ Sk ×P



















fk(x̃k, p)− ‖x̃k‖2 ≥ 0

ga,k(x̃k, p)− ε‖x̃k‖2 ≥ 0

ε > 0,

wherex̃k ∈ Rck ,
fk(x̃k, p) = x̃′kFk(p)x̃k

ga,k(x̃k, p) = x̃′kGa,k(p)x̃k,

and

Sk = {x̃k ∈ R
ck : ‖x̃k‖ = 1} .

SinceP is strongly compact, it follows from [23] that there exist polynomials qi,k(x̃k, p) and

si,k(x̃k, p), i = 1, . . . , nr, such that

hk(x̃k, p)− ‖x̃k‖2 is SOS

ja,k(x̃k, p)− ε‖x̃k‖2 is SOS

qi,k(x̃k, p) is SOS∀i = 1, . . . , nr

si,k(x̃k, p) is SOS∀i = 1, . . . , nr

ε > 0,

where

hk(x̃k, p) = fk(x̃k, p)−
nr
∑

i=1

ri(p)qi,k(x̃k, p)

ja,k(x̃k, p) = ga,k(x̃k, p)−
nr
∑

i=1

ri(p)si,k(x̃k, p).

Sincefk(x̃k, p) and ga,k(x̃k, p) are homogeneous quadratic inx̃k, and x̃k is constrained on the

unitary sphere, the polynomialsqi,k(x̃k, p) andsi,k(x̃k, p) can be chosen homogeneous quadratic

DRAFT



21

in x̃k as well. Hence, such polynomials can be expressed similarlyto fk(x̃k, p) and ga,k(x̃k, p)

for symmetric matrix polynomialsQi,k(p) andSi,k(p). This implies that the previous condition

coincides with (46) by observing that alsohk(x̃k, p) andja,k(x̃k, p) are homogeneous quadratic

in x̃k and can be expressed similarly tofk(x̃k, p) and ga,k(x̃k, p) for the symmetric matrix

polynomialsHk(p) andJa,k(p) in (47). �

Theorem 8 guarantees that the upper boundsφ∗
CT and φ∗

DT are tight for sufficiently large

degree of the matrix polynomialsFk(p), Qi,k(p) and Si,k(p) under the assumption thatP is

strongly compact. This is a mild assumption. Indeed, the parameters are typically bounded when

representing physical quantities. Moreover, the constraints on the polynomialsri(p) are typically

satisfied wheneverP is bounded, for instance this is the case of hyper-cubes and hyper-spheres.

V. SPECIAL CASES

This section investigates two special cases of the proposedmethodology, the first one con-

cerning systems with a single parameter, and the second one concerning the determination of

the largest spectral abscissa and radius.

A. Single Parameter

Here we investigate the case of a single parameter (i.e.,q = 1). In particular, we consider

P = [0, 1]. (54)

Theorem 9:Let a ∈ {CT,DT} andw ∈ (γa,∞). Let P be defined as in (54). Then,

φ∗

a < w (55)

if and only if, for all k ∈ K, there exist a symmetric matrix polynomialFk : R → R
ck×ck and

ε ∈ R satisfying the LMI condition


















Tk(p
2)− (1 + p2)deg(Fk(p))I is SOS

Ua,k(p
2)− ε(1 + p2)deg(Ga,k(p))I is SOS

ε > 0

(56)

and

deg(Fk(p)) ≤ d∗a,k, (57)
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whered∗a,k is given by (39),Tk, Ua,k : R→ R
ck×ck are the matrix polynomials







Tk(p
2) = (1 + p2)deg(Fk(p))Fk(θ(p

2))

Ua,k(p
2) = (1 + p2)deg(Ga,k(p))Ga,k(θ(p

2)),
(58)

andθ : R→ R is the rational function defined by

θ(p2) =
p2

1 + p2
. (59)

Proof. “⇒” Suppose that (56) holds. By proceeding analogously to the proof of Theorem 6 and

exploiting the definition ofTk(p2) andUa,k(p
2) in (58), one gets that

∀p ∈ R







Fk(θ(p
2)) ≥ I

Ga,k(θ(p
2)) ≥ εI.

Let us observe that

P =
{

θ(p2), p ∈ R
}

.

By expressing the previous inequalities in terms ofp̃ = θ(p2), one can write

∀p̃ ∈ P







Fk(p̃) ≥ I

Ga,k(p̃) ≥ εI.

Therefore, (37) holds, and from Theorem 5 we conclude thatφ∗
a < w.

“⇐” Suppose thatφ∗
a < w holds. From Theorem 5, this implies that, for allk ∈ K, there

exists a matrix polynomialFk : R→ Rck×ck with deg(Fk(p)) ≤ d∗a,k such that (37) holds. Since

P is bounded, it follows thatFk(p) can be scaled in order to satisfy

∀p ∈ P







Fk(p) ≥ I

Ga,k(p) ≥ εI,

for someε > 0. Since the image ofR through the functionθ(p2) is P, one can also write that

∀p ∈ R







Fk(θ(p
2)) ≥ I

Gk(θ(p
2)) ≥ εI.

Moreover, since1 + p2 is positive, this implies that

∀p ∈ R







Tk(p
2) ≥ (1 + p2)deg(Fk(p))I

Ua,k(p
2) ≥ ε(1 + p2)deg(Ga,k(p))I.
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The proof is concluded by observing that univariate matrix polynomials are positive semidefinite

if and only if they are SOS [19]. �

Theorem 9 provides a sufficient and necessary LMI condition with an upper bound on the

degree of the Lyapunov function for establishing upper bounds of φ∗
CT andφ∗

DT in the case of

a single parameter.

Let us observe that the condition of Theorem 9 does not require the introduction of multipliers

as done in Theorems 6 and 8. Also, the matrix polynomials in the LMI condition (56) contain

only even powers ofp and, hence, the number of LMI scalar variables required for testing this

condition can be reduced as explained in [27].

Let us define the upper bound ofφ∗
a, a ∈ {CT,DT}, provided by Theorem 9 as

φ̃a = max
k∈K

φ̃a,k, (60)

where
φ̃a,k = inf

w
w

s.t.



















w > γa

∃Fk(p), ε : (56) holds

deg(Fk(p)) ≤ dk

(61)

anddk is any chosen bound on the degree of the matrix polynomialFk(p). The nonconservatism

of these upper bounds can be established as done in Theorem 7 for the upper boundŝφCT and

φ̂DT , and the details are omitted for brevity.

B. Largest Spectral Abscisa and Radius

The methodology proposed in this paper can also be used to determine the largest spectral

abscissa and radius ofA(p) overP, i.e.,

ψ∗

a = sup
p∈P

ψa(A(p)), a ∈ {CT,DT} (62)

whereψa is given by (35). Indeed, sinceΩa,1(X) = X from (27), it follows thatψ∗
a can be

studied with Theorems 5–9 by simply redefiningγa andK in (32)–(33) as

γa =







−∞ if a = CT

0 if a = DT
(63)

and

K = {1}. (64)
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VI. EXAMPLES

In this section we present some illustrative examples. The LMI feasibility tests (46) and (56)

are solved in Matlab on a personal computer with Windows 8, Intel Core i7, 3.4 GHz, 8 GB

RAM. We denote with NuVa the number of LMI scalar variables minus one (since these tests are

defined up to a positive scale factor). Moreover, we denote with CoTi the average computational

time in the bisection algorithm.

A. Example 3 (SNR Constrained Feedback Stabilization)

Consider an example in the framework of the SNR constrained feedback stabilization intro-

duced in Section II-B1. The matricesA andB in (5) are chosen as










































A(p) =











0 1 + p1 −1
2− p2 0 1

−1 1 p1 + p2











B(p) =
(

1 0 0
)′

p ∈ P = {p ∈ R2 : p21 + p22 ≤ 1}.

The power spectral density of the zero-mean white Gaussian noise is chosen asN = 1, while

the bound in the power constraint is chosen asM = 8.

Let us compute the upper bound̂φCT in (48)–(49) ofφ∗
CT . We expressP as in (2) by defining

r1(p) = 1 − p21 − p22. We choose the degree boundsdk = ei,k = fi,k = 0 for all k = 1, 2, 3. We

find 

















φ̂CT,1 = 2.154 (NuVa=21, CoTi=0.2 s)

φ̂CT,2 = 3.628 (NuVa=21, CoTi=0.4 s)

φ̂CT,3 = 1.414 (NuVa=2, CoTi=0.1 s),

which provideφ̂CT = 3.628.

Let us establish whether the found upper bound is tight by using Theorem 7. We have that

φ̂CT = φ̂CT,k∗ for k∗ = 1. By using (53) we find that (51) holds withp∗ = (0.953, 0.303)′, hence

implying that φ̂CT is tight, i.e.,φ∗
CT = 3.628.

Therefore, sinceM/N > 2φ∗
CT , from Corollary 1 it follows that, for allp ∈ P, there exists a

controllerK(p) such thatA(p) − B(p)K(p) is Hurwitz and the sent inputus(t) = −K(p)x(t)

satisfies the power constraint (6).
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B. Example 4 (Stabilization with Multirate Sampling)

Here we consider an example in the framework of the stabilization with multirate sampling

introduced in Section II-B3. The matricesA andB in (12) are chosen as






















































































A(p) =



























0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−3 2 + 3p −1 2 −3 2 + p



























B(p) =





1 0 0 0 0 0

0 0 0 0 0 1





′

p ∈ P = [−1, 1].

The sampling intervalT , downsampling ratesK1, K2, andL2 gainsδ1, δ2 are chosen asT = 0.5,

K1 = 1, K2 = 2, δ1 = 0.3 andδ2 = 0.2.

Since we are in the case of a single parameter, let us compute the upper bound̃φCT in (60)–

(61) of φ∗
CT . To this end, we replacep with (p+ 1)/2 in order to haveP as in (54). Moreover,

we reduce the number of LMI scalar variables in (56) as explained in [27]. We choose the degree

bounddk = 0 for all k = 1, . . . , 6. We find


















































φ̃CT,1 = 2.101 (NuVa=21 CoTi=0.2 s)

φ̃CT,2 = 2.916 (NuVa=120, CoTi=0.4 s)

φ̃CT,3 = 3.730 (NuVa=210, CoTi=0.4 s)

φ̃CT,4 = 4.357 (NuVa=120, CoTi=0.3 s)

φ̃CT,5 = 3.679 (NuVa=21, CoTi=0.3 s)

φ̃CT,6 = 3.000 (NuVa=1, CoTi=0.1 s),

which provideφ̃CT = 4.357.

Let us establish whether the found upper bound is tight. Similarly to the previous example, we

find thatφCT (A(p
∗)) = φ̃CT for p∗ = 1.000, hence implying that̃φCT is tight, i.e.,φ∗

CT = 4.357.

Therefore, sinceC 6> φ∗
CT whereC = 4.017 is the total network capacity given by (15), from

Theorem 3 it follows that for somep ∈ P there does not exist a stabilizing state feedbackK(p)

for the networked control system with multirate sampling (12) with either SER channel model

or R-SER channel model.
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VII. CONCLUSIONS

It has been shown that upper bounds of the largest instability measure in linear systems

depending polynomially on parameters constrained in a semialgebraic set can be established via

LMI feasibility tests. Moreover, the conservatism of theseupper bounds has been investigated

by proposing a priori and a posteriori conditions. Lastly, two special cases of the proposed

methodology have been investigated, the first one concerning systems with a single parameter,

and the second one concerning the determination of the largest spectral abscissa and radius.

Future work will explore the possibility of using the proposed methodology in the design of

linear systems for reducing the instability.

REFERENCES

[1] G. Nair and R. J. Evans, “Stabilizability of stochastic linear systems with finite feedback data rates,”SIAM Journal on

Control and Optimization, vol. 43, no. 2, pp. 413–436, 2004.

[2] A. Matveev and A. Savkin, “Multirate stabilization of multiple sensor systems via limited capacity communication

channels,”SIAM Journal on Control and Optimization, vol. 44, no. 2, pp. 584–617, 2005.

[3] S. Tatikonda and S. K. Mitter, “Control under communication constraints,”IEEE Transactions on Automatic Control,

vol. 49, no. 7, pp. 1056–1068, 2004.

[4] K. Li and J. Baillieul, “Robust and efficient quantization and coding for control of multidimensional linear systemsunder

data rate constraints,”International Journal of Robust and Nonlinear Control, vol. 17, no. 10-11, pp. 898–920, 2007.

[5] S. Wan and L. Qiu, “Stabilization of networked control systems with finite data rate,” inAsian Control Conference, Hong

Kong, China, 2009, pp. 1067–1073.

[6] N. Elia and S. K. Mitter, “Stabilization of linear systems with limited information,” IEEE Transactions on Automatic

Control, vol. 46, no. 9, pp. 1384–1400, 2001.

[7] M. Fu and L. Xie, “The sector bound approach to quantized feedback control,”IEEE Transactions on Automatic Control,

vol. 50, no. 11, pp. 1698–1711, 2005.

[8] L. Qiu, “Quantify the unstable (semiplenary lecture),”in International Symposium on Mathematical Theory of Networks

and Systems, Budapest, Hungary, 2010.

[9] G. Chesi, “Instability analysis of uncertain systems via determinants and LMIs,”IEEE Transactions on Automatic Control,

vol. 60, no. 9, pp. 2548–2563, 2015.

[10] ——, “Worst-case Mahler measure in polytopic uncertainsystems,”IEEE Transactions on Automatic Control, vol. 57,

no. 12, pp. 3208–3213, 2012.

[11] K. Mahler, “An application of Jensen’s formula to polynomials,” Mathematika, vol. 7, pp. 98–100, 1960.

[12] J. H. Braslavsky, R. H. Middleton, and J. S. Freudenberg, “Feedback stabilization over signal-to-noise ratio constrained

channels,”IEEE Transactions on Automatic Control, vol. 52, no. 8, pp. 1391–1403, 2007.

[13] W. Chen and L. Qiu, “Stabilization of networked controlsystems with multirate sampling,”Automatica, vol. 49, no. 6,

pp. 1528–1537, 2013.

[14] G. Chesi, A. Tesi, A. Vicino, and R. Genesio, “On convexification of some minimum distance problems,” inEuropean

Control Conference, Karlsruhe, Germany, 1999.

DRAFT



27

[15] P. A. Parrilo, “Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization,”

Ph.D. dissertation, California Institute of Technology, 2000.

[16] J.-B. Lasserre, “Global optimization with polynomials and the problem of moments,”SIAM Journal of Optimization,

vol. 11, no. 3, pp. 796–817, 2001.

[17] S. Prajna, A. Papachristodoulou, and F. Wu, “Nonlinearcontrol synthesis by sum of squares optimization: a Lyapunov-based

approach,” inAsian Control Conference, 2004.

[18] C. W. J. Hol and C. W. Scherer, “Computing optimal fixed orderH∞-synthesis values by matrix sum of squares relaxations,”

in IEEE Conference on Decision and Control, Paradise Island, Bahamas, 2004, pp. 3147–3153.

[19] G. Chesi, “LMI techniques for optimization over polynomials in control: a survey,”IEEE Transactions on Automatic

Control, vol. 55, no. 11, pp. 2500–2510, 2010.

[20] B. Reznick, “Some concrete aspects of Hilbert’s 17th problem,” Contemporary Mathematics, vol. 253, pp. 251–272, 2000.

[21] G. Chesi, “On the gap between positive polynomials and SOS of polynomials,”IEEE Transactions on Automatic Control,

vol. 52, no. 6, pp. 1066–1072, 2007.

[22] G. Stengle, “A nullstellensatz and a positivstellensatz in semialgebraic geometry,”Math. Ann., vol. 207, pp. 87–97, 1974.

[23] M. Putinar, “Positive polynomials on compact semi-algebraic sets,”Indian Univeristy Mathematics Journal, vol. 42, no. 3,

pp. 969–984, 1993.

[24] C. W. Scherer and C. W. J. Hol, “Matrix sum-of-squares relaxations for robust semi-definite programs,”Mathematical

Programming Series B, vol. 107, no. 1-2, pp. 189–211, 2006.

[25] S. Prajna, A. Papachristodoulou, and P. A. Parrilo, “SOSTOOLS: a general purpose sum of squares programming solver,”

in IEEE Conference on Decision and Control, Las Vegas, Nevada, 2002.

[26] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,”Optimization Methods

and Software, vol. 11-12, pp. 625–653, 1999.

[27] G. Chesi, “Establishing robust stability of discrete-time systems with time-varying uncertainty: the Gram-SOS approach,”

Automatica, vol. 50, no. 11, pp. 2813–2821, 2014.

DRAFT


