8 research outputs found

    Control digital super-twisting adaptable de alto orden para la actitud de un planeador espacial

    Get PDF
    En trabajos previos se abordó la problemática del control de actitud de un planeador espacial mediante un enfoque lineal (regulador óptimo cuadrático) y por modos deslizantes super-twisting clásico. El primero sentó un punto de referencia par a el desempeño del lazo cerrado. Con el segundo se logró una significativa reducción en los errores de seguimiento para la actitud, pero a expensas de un cierto nivel de “chattering”, mitigado parcialmente mediante un esquema de adaptación de ganancias. En este trabajo se presenta un nuevo control de actitud basado en modos deslizantes de orden superior con un nuevo esquema de adaptación de ganancias que supera claramente los planteos precedentes en cuanto a precisión en el seguimiento de referencias de actitud y reducción de chattering. La propuesta se evalúa mediante una simulación de alta fidelidad.Facultad de IngenieríaCentro Tecnológico AeroespacialInstituto de Investigaciones en Electrónica, Control y Procesamiento de Señale

    The Robust Exact Differentiator Toolbox: Improved Discrete-Time Realization

    Get PDF
    This paper presents a new release of A Robust Exact Differentiator Toolbox for Matlab®/Simulink® proposed in [1]. This release features a new discrete-time realization of the continuous-time robust exact differentiator. The implemented discretization scheme is less sensitive to gain overestimation and does not suffer from the discretization chattering effect. Hence, the single tuning parameter of the new version of the implemented differentiator is more intuitive to tune. Furthermore, it shows superior estimation performance in the case of large sampling times in comparison to the previous release. This is confirmed by the presented results obtained by numerical simulations and a real world application

    Guaranteeing Disturbance Rejection and Control Signal Continuity for the Saturated Super-Twisting Algorithm

    Get PDF

    An Analysis of Convergence Properties of Finite-Time Homogeneous Controllers Through Its Implementation in a Flexible-Joint Robot

    Get PDF
    International audienceA study of the stability of interconnected homogeneous systems, affected by singular perturbations, is presented by means of the implementation of finite-time composite control in a single-link flexible-joint robot. Previous results suggest that the implementation of finite-time convergent controllers leads to the arising of chattering. Now, throughout a practical example we show that the design of a controller making the whole system homogeneous avoids the undesired chattering and recovers the ideal finite-time convergence properties. Regrettably, information of the states of the fast dynamics is not commonly available, then the proposed strategy is not applicable at all. Nevertheless, the main interest of our study lays in the expansion of the panorama for a better understanding of the causes of chattering, which contributes to the development of chattering reduction techniques, and has attracted a lot of attention, nowadays

    Indirect adaptive higher-order sliding-mode control using the certainty-equivalence principle

    Get PDF
    Seit den 50er Jahren werden große Anstrengungen unternommen, Algorithmen zu entwickeln, welche in der Lage sind Unsicherheiten und Störungen in Regelkreisen zu kompensieren. Früh wurden hierzu adaptive Verfahren, die eine kontinuierliche Anpassung der Reglerparameter vornehmen, genutzt, um die Stabilisierung zu ermöglichen. Die fortlaufende Modifikation der Parameter sorgt dabei dafür, dass strukturelle Änderungen im Systemmodell sich nicht auf die Regelgüte auswirken. Eine deutlich andere Herangehensweise wird durch strukturvariable Systeme, insbesondere die sogenannte Sliding-Mode Regelung, verfolgt. Hierbei wird ein sehr schnell schaltendes Stellsignal für die Kompensation auftretender Störungen und Modellunsicherheiten so genutzt, dass bereits ohne besonderes Vorwissen über die Störeinflüsse eine beachtliche Regelgüte erreicht werden kann. Die vorliegende Arbeit befasst sich mit dem Thema, diese beiden sehr unterschiedlichen Strategien miteinander zu verbinden und dabei die Vorteile der ursprünglichen Umsetzung zu erhalten. So benötigen Sliding-Mode Verfahren generell nur wenige Informationen über die Störung, zeigen jedoch Defizite bei Unsicherheiten, die vom Systemzustand abhängen. Auf der anderen Seite können adaptive Regelungen sehr gut parametrische Unsicherheiten kompensieren, wohingegen unmodellierte Störungen zu einer verschlechterten Regelgüte führen. Ziel dieser Arbeit ist es daher, eine kombinierte Entwurfsmethodik zu entwickeln, welche die verfügbaren Informationen über die Störeinflüsse bestmöglich ausnutzt. Hierbei wird insbesondere Wert auf einen theoretisch fundierten Stabilitätsnachweis gelegt, welcher erst durch Erkenntnisse der letzten Jahre im Bereich der Lyapunov-Theorie im Zusammenhang mit Sliding-Mode ermöglicht wurde. Anhand der gestellten Anforderungen werden Regelalgorithmen entworfen, die eine Kombination von Sliding-Mode Reglern höherer Ordnung und adaptiven Verfahren darstellen. Neben den theoretischen Betrachtungen werden die Vorteile des Verfahrens auch anhand von Simulationsbeispielen und eines Laborversuchs nachgewiesen. Es zeigt sich hierbei, dass die vorgeschlagenen Algorithmen eine Verbesserung hinsichtlich der Regelgüte als auch der Robustheit gegenüber den konventionellen Verfahren erzielen.Since the late 50s, huge efforts have been made to improve the control algorithms that are capable of compensating for uncertainties and disturbances. Adaptive controllers that adjust their parameters continuously have been used from the beginning to solve this task. This adaptation of the controller allows to maintain a constant performance even under changing conditions. A different idea is proposed by variable structure systems, in particular by the so-called sliding-mode control. The idea is to employ a very fast switching signal to compensate for disturbances or uncertainties. This thesis deals with a combination of these two rather different approaches while preserving the advantages of each method. The design of a sliding-mode controller normally does not demand sophisticated knowledge about the disturbance, while the controller's robustness against state-dependent uncertainties might be poor. On the other hand, adaptive controllers are well suited to compensate for parametric uncertainties while unstructured influence may result in a degraded performance. Hence, the objective of this work is to design sliding-mode controllers that use as much information about the uncertainty as possible and exploit this knowledge in the design. An important point is that the design procedure is based on a rigorous proof of the stability of the combined approach. Only recent results on Lyapunov theory in the field of sliding-mode made this analysis possible. It is shown that the Lyapunov function of the nominal sliding-mode controller has a direct impact on the adaptation law. Therefore, this Lyapunov function has to meet certain conditions in order to allow a proper implementation of the proposed algorithms. The main contributions of this thesis are sliding-mode controllers, extended by an adaptive part using the certainty-equivalence principle. It is shown that the combination of both approaches results in a novel controller design that is able to solve a control task even in the presence of different classes of uncertainties. In addition to the theoretical analysis, the advantages of the proposed method are demonstrated in a selection of simulation examples and on a laboratory test-bench. The experiments show that the proposed control algorithm delivers better performance in regard to chattering and robustness compared to classical sliding-mode controllers

    Improving off-road vehicle lateral stability with integrated chassis control

    Get PDF
    Dissertation (MSc (Engineering))--University of Pretoria, 2022.This study investigates the improvement of off-road vehicle lateral stability by integrated control of active rear steering (ARS) and rear differential braking (RDB) and how the performance of such systems compares on smooth and rough roads. The ARS and RDB controllers each comprise a sliding mode controller (SMC) for which the choice of reference model, SMC gain and integration rule are key design choices. Findings include that the kinematic model reference error is a preferred reference model over the phase plane location error on both terrains, the SMC gain is terrain dependant, and rear axle slip angle is a preferred integration rule over the stability index (SI) on both terrains. The study also found that RDB, and to a lesser degree ARS, tends to improve on the baseline vehicle path following ability for a double lane change (DLC) manoeuvre on both terrains, but RDB has a larger loss of speed compared to ARS. Rear axle slip angle was found to be a terrain dependant tuneable integration rule to combine ARS and RDB, and resulted in a control system that has the good path following ability of RDB but low loss of speed associated with ARS after tuning.Mechanical and Aeronautical EngineeringMEngUnrestricte
    corecore