8,930 research outputs found

    Estimation of Solutions of Differential Systems with Delayed Argument of Neutral Type

    Get PDF
    Tato disertační práce pojednává o řešení diferenciálních rovnic a systémů diferenciálních rovnic. Hlavní pozornost je věnována asymptotickým vlastnostem rovnic se zpožděním a systémů rovnic se zpožděním. V první kapitole jsou uvedeny fyzikální a technické příklady popsané pomocí diferenciálních rovnic se zpožděním a jejich systémů. Je uvedena klasifikace rovnic se zpožděním a jsou zformulovány základní pojmy stability s důrazem na druhou metodu Ljapunova. Ve druhé kapitole jsou studovány odhady řešení rovnic neutrálního typu. Třetí kapitola se zabývá systémy diferenciálních rovnic neutrálního typu. Jsou odvozeny asymptotické odhady pro řešení i pro derivace řešení. V závěru kapitoly jsou uvedeny příklady a srovnání výsledků s pracemi jiných autorů. Výpočty byly prováděny pomocí programu MATLAB. Poslední, čtvrtá kapitola, se zabývá asymptotickými vlastnostmi systémů se speciálním typem nelinearity, tzv. sektorové nelinearity. Jsou odvozeny vlastnosti řešení a derivace řešení. Základní metodou pro důkazy je v celé práci druhá Ljapunovova metoda a použití funkcionálů Ljapunova-Krasovského.This dissertation discusses the solutions to the differential equation and to systems of differential equations. The main attention is paid to study of asymptotical properties of equations with delay and systems of equations with delay. In the first chapter are given physical and technical examples described by differential equations with delay and their systems. The classification of equations with delay is given and basic notions of theory of stability are formulated (mainly with the emphasis on the Lyapunov second method). In the second chapter estimates of solutions of equations of neutral type are studied. The third chapter deals with systems of differential equations of neutral type. Asymptotic estimates for solutions and their derivatives are proved. At the end of the chapter examples and comparisons of our results and of other authors are given. The calculation were performed with the MATLAB software. Last, the fourth chapter deals with asymptotical properties of systems having a special type of nonlinearities, so called ``sector nonlinearities''. Properties and estimations of solutions and derivatives are derived. The basic tools used in the dissertation are the Lyapunov second method and functionals of Lyapunov-Krasovskii type.

    Delay-induced patterns in a two-dimensional lattice of coupled oscillators

    Get PDF
    We show how a variety of stable spatio-temporal periodic patterns can be created in 2D-lattices of coupled oscillators with non-homogeneous coupling delays. A "hybrid dispersion relation" is introduced, which allows studying the stability of time-periodic patterns analytically in the limit of large delay. The results are illustrated using the FitzHugh-Nagumo coupled neurons as well as coupled limit cycle (Stuart-Landau) oscillators

    Delay-dependent exponential stability of neutral stochastic delay systems (vol 54, pg 147, 2009)

    Get PDF
    In the above titled paper originally published in vol. 54, no. 1, pp. 147-152) of IEEE Transactions on Automatic Control, there were some typographical errors in inequalities. Corrections are presented here

    Feedback Control of Traveling Wave Solutions of the Complex Ginzburg Landau Equation

    Full text link
    Through a linear stability analysis, we investigate the effectiveness of a noninvasive feedback control scheme aimed at stabilizing traveling wave solutions of the one-dimensional complex Ginzburg Landau equation (CGLE) in the Benjamin-Feir unstable regime. The feedback control is a generalization of the time-delay method of Pyragas, which was proposed by Lu, Yu and Harrison in the setting of nonlinear optics. It involves both spatial shifts, by the wavelength of the targeted traveling wave, and a time delay that coincides with the temporal period of the traveling wave. We derive a single necessary and sufficient stability criterion which determines whether a traveling wave is stable to all perturbation wavenumbers. This criterion has the benefit that it determines an optimal value for the time-delay feedback parameter. For various coefficients in the CGLE we use this algebraic stability criterion to numerically determine stable regions in the (K,rho) parameter plane, where rho is the feedback parameter associated with the spatial translation and K is the wavenumber of the traveling wave. We find that the combination of the two feedbacks greatly enlarges the parameter regime where stabilization is possible, and that the stability regions take the form of stability tongues in the (K,rho)--plane. We discuss possible resonance mechanisms that could account for the spacing with K of the stability tongues.Comment: 33 pages, 12 figure
    corecore