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Abstract. In a transmission line oscillator (TLO) a linear wave travels along a piece of cable,
the transmission line, and interacts with terminating electrical components. A fixed time delay
arises due to the transmission time through the transmission line. Recent experiments on a TLO
driven by a negative resistor demonstrated rich delay-induced dynamics and high-frequency
chaotic behaviour. Furthermore, good agreement was found with a neutral delay differential
equation (NDDE) model.

In this paper we perform a numerical bifurcation analysis ofthe NDDE model of the
TLO. Our main focus is on homoclinic orbits, which give rise to complicated dynamics and
bifurcations. For small time delay there is a homoclinic orbit to a steady-state. However, past
a codimension-two Shil’nikov-Hopf bifurcation the homoclinic orbit connects to a saddle-type
periodic solution, which exists in a region bounded by homoclinic tangencies. Both types
of homoclinic bifurcations are associated with snaking branches of periodic solutions. We
summarise our results in a two-parameter bifurcation diagram in the plane of resistance against
time delay.

Our study demonstrates that the theory of homoclinic bifurcations in ordinary differential
equations largely carries over to NDDEs. However, we find that the neutral delay nature of the
problem influences some bifurcations, especially convergence rates of homoclinic snaking.

AMS classification scheme numbers: 34K13, 34K18, 34K40, 34K60,
37C29

1. Introduction

Transmission line oscillators (TLOs) are simple electrical circuits that provide a rich source of
delay-induced dynamics. TLOs consist of a transmission line, e.g. a coaxial cable, terminated
by one or more nonlinear electrical components, e.g. Chua’sdiode [1, 2] or a tunnel diode [3].
Voltage waves propagate along the transmission line and arereflected and distorted by the
terminating components. The simplicity of these circuits has made them of practical interest
for many decades [4, 3, 5], and yet many open questions remainregarding the dynamics that
they exhibit.

In this paper we present a systematic study of a TLO as modelled by aneutral delay
differential equation(NDDE). In experiments, this TLO was found to produce chaotic
high-frequency output [6, 7], which is of practical importance for applications such as
communication [8, 9] and random signal radar/ladar [10]. Wefind that the dynamics of
this TLO are organised by homoclinic bifurcations. As the delay time is increased, which
corresponds to lengthening the transmission line, we see a transition from a homoclinic orbit
of a steady-state to a homoclinic orbit of a periodic solution via a Shil’nikov-Hopf bifurcation.
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This is accompanied by a significant increase in the complexity of the dynamics. In particular,
we find the phenomenon of homoclinic snaking, where a stable periodic solution becomes
homoclinic to another periodic solution of saddle-type. Toour knowledge this is the first time
that such dynamics have been found and studied in an NDDE. A better understanding of these
dynamics may in future inform TLO design.

The model we study is given by

Cu̇(t) = −

(

1
Rc

−
1
R

)

u(t)+

(

1
Rc

+
1
R

)

g(u(t− τ))−Cg′(u(t − τ))u̇(t − τ) (1)

whereg(y) is defined implicitly by the unique solution of

−
1
Rc

[g(y)−y] = Is(exp((g(y)+y)/V0)−1). (2)

Equation (1) describes the evolution of the voltage (measured with respect to ground) at one
end of the transmission line, which is terminated by a negative resistor (with resistanceR)
in parallel with a capacitor (with capacitanceC). The opposite end of the transmission line
is terminated by a tunnel diode which is modelled by (2). A circuit diagram is shown in
figure 1. The right-hand-side of (1) depends on the delayed dependent variableu(t − τ), and
consequently (1) is adelay differential equation(DDE). The presence of the ˙u(t − τ) term
means that (1) is in fact aneutral delay differential equation(NDDE). The delay timeτ is the
time taken for a voltage wave to travel along the entire length of the transmission line.

DDEs, that do not depend on the derivative of a delayed dependent variable, and NDDEs,
that do, have many similar properties. To integrate forwardin time an initialfunctionis needed
to specify the dependent variable ont ∈ [−τ,0], whereτ is the largest delay time. This is
in contrast to ordinary differential equations (ODEs) which require a single initial value in
R

n at t = 0. Despite this infinite-dimensional nature, bifurcationsof DDEs are equivalent
to bifurcations of suitable ODEs via centre manifold reduction [11]. This is because DDEs
(with fixed delays) only have a point spectrum. However, thisis not the case for NDDEs. The
solutions of NDDEs possess an essential spectrum as well as apoint spectrum and are able to
undergo ‘infinite dimensional’ bifurcations. These are bifurcations that are not equivalent to
any bifurcation in an ODE because the essential spectrum passes through the imaginary axis.
In [12, 13] it is noted that such a bifurcation can create non-smooth periodic solutions.

Due to the technical difficulties associated with the analysis of NDDEs, only a limited
number of mathematical tools have been used to investigate non-stationary behaviour in
NDDE transmission line models. These tools include perturbation techniques [3], non-
constructive proofs [14] and direct numerical simulation [15]. Other powerful tools that
are widely used in the analysis of ODEs, such as numerical continuation (e.g. AUTO
[16]), have not been exploited as these tools are under-developed for NDDEs. Numerical
continuation enables the solutions of an equation to be followed in parameters to trace out
solution branches. Further, bifurcations on branches can be detected and followed in two
(or more) parameters. Thus, a global picture of the dynamicsof a system can be built up
systematically. Recently, numerical continuation software for DDEs has been developed in
the form of DDE-BIFTOOL [17] and PDDE-CONT [18]. Subsequently, we have extended
DDE-BIFTOOL to cover the case of NDDEs [19, 20]. We make use ofthis new tool to
investigate the complicated behaviour exhibited by the TLO(1).

The paper proceeds as follows. We present the derivation of the model (1) along with
an analysis of its steady-states in section 2. The trivial steady-state is unstable for all relevant
parameter values. We find that there exists a single non-trivial steady-state, which is stable
for high values of the resistanceR. As R is decreased it loses stability at a supercritical
Hopf bifurcation, and we show that in the(R,τ)-plane there exist infinitely many more curves
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Figure 1. Circuit diagram of the TLO implemented by Blakely and Corron[6]. The
transmission line is shown in grey. It is terminated on the left by a tunnel diode and on the
right by a negative resistor in parallel with a capacitor.

of Hopf bifurcations. Section 3 contains some background material on homoclinic orbits
and homoclinic snaking. We also describe in detail the numerical methods that we use to
investigate the homoclinic orbits in one and two parameters. Then, in section 4 we show
the existence of a homoclinic orbit the limitτ → ∞. Through numerical continuation of the
associated snaking branches, we find that the homoclinic orbit is connected to the non-trivial
steady-state of (1). In sections 5 and 6 we consider another homoclinic orbit that exists for
finite τ, which for smallτ is connected to the trivial steady-state of (1). It is in the vicinity of
this homoclinic orbit that chaotic behaviour has been foundexperimentally. Asτ is increased,
the trivial steady-state undergoes a Shil’nikov-Hopf bifurcation and, consequently, the system
develops a robust homoclinic orbit to a periodic solution. In section 6 we illustrate how
the essential spectrum of the NDDE (1) causes slow convergence of the snaking branches
of a homoclinic orbit connected to the trivial steady-state. Additionally, we show that the
structure of snaking branches becomes more complicated asτ is increased; the periodic
solution involved in the robust homoclinic orbit undergoesa period-doubling bifurcation.
Furthermore, the possibility of further homoclinic orbitsand heteroclinic connections arises.
Our results are summarised in a two-parameter bifurcation diagram showing the domain of
existence of the homoclinic orbits in the(R,τ)-plane. We then conclude with a discussion of
some of the remaining open questions.

2. Derivation of the model

Figure 1 shows the circuit diagram of the transmission line oscillator (TLO) that we
investigate. The TLO consists of a coaxial cable terminatedby a diode at one end and by
a negative resistor in parallel with a capacitor at the otherend. Originally, it was modelled
with a continuous time difference equation by Cortiet al [21]. However, experimental results
by Blakely and Corron [6] show that better correspondence between model and experiments
is obtained when using the NDDE model (1).

We follow the model derivation of [6] and assume that the transmission line in figure 1
is lossless and governed by the Telegrapher’s equations

Rc
∂ I
∂ t

(x,t) = −v0
∂V
∂x

(x,t)

∂V
∂ t

(x,t) = −v0Rc
∂ I
∂x

(x,t)
(3)

whereI andV are the current and voltage along the transmission line,Rc is the characteristic
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Figure 2. The functiong(y) and its first derivativeg′(y) as defined by (2).

impedance, andv0 is the transmission speed along the transmission line. The diode, located
at x = 0, provides the boundary condition

−I(0,t) = Is(exp(V(0,t)/V0)−1) (4)

where Is is the saturation current andV0 is the threshold voltage. The second boundary
condition, provided by the negative resistor and capacitorin parallel atx = L, is

C
∂V
∂ t

(L,t) = I(L,t)+
V(L,t)

R
(5)

whereR is the resistance andC is the capacitance. The general solution of the hyperbolic
system (3) is a D’Alembert solution of the form

V(z,t) = ψR(t −x/v0)+ ψL(t +x/v0)

I(z,t) = (ψR(t −x/v0)−ψL(t +x/v0))/Rc
(6)

where ψL and ψR are arbitrary functions. Substituting (6) into the boundary condition
(4) gives the relationψR(t) = g(ψL(t)); cf. (2). The functiong and its first derivativeg′

are plotted in figure 2. We arrive at the final form, the NDDE (1), after substituting (6)
andψR(t) = g(ψL(t)) into the second boundary condition (5) and relabellingψL =: u and
τ := 2L/v0.

Throughout this paper we choose as the principle bifurcation parameters the resistance
R and the time delayτ. These parameters are easily varied experimentally; the resistance is
altered by the use of a variable resistor and the time delay isaltered by the use of different
lengths of coaxial cable. The parameter ranges under consideration are 40Ω ≤ R≤ 120Ω
and 0ns≤ τ ≤ 20ns. For the remaining parameters we use the experimental values from [6],
which areC = 80pF,Rc = 50Ω, v0 = 1.97×108m/s,Is = 8µA, andV0 = 55mV.

Equation (1) has two steady-states in the parameter range ofinterest; the trivial solution
u(t) ≡ u0 := 0, and the non-trivial solutionu(t) ≡ u1 implicitly defined by(R−Rc)/(R+
Rc)u1 = g(u1). The stability of the steady-states is determined by the roots of the associated
characteristic equation [22]

Cλ +

(

1
Rc

−
1
R

)

+g′(u0,1)exp(−λ τ)

(

λ −
1
Rc

−
1
R

)

. (7)

Hopf bifurcations of the steady-states occur at parameter values for which there exists a purely
imaginary root of (7). To find these roots we make the substitution λ = iω whereω ∈ R and
then separate real and imaginary parts to produce

0 = g′(u0,1)

{(

1
Rc

+
1
R

)

cos(τω)−Cω sin(τω)

}

−

(

1
Rc

−
1
R

)

0 = g′(u0,1)

{(

1
Rc

+
1
R

)

sin(τω)+Cω cos(τω)

}

+Cω .
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Figure 3. Curves of Hopf bifurcations of the trivial steady-stateu0 (a) and of the non-trivial
steady-stateu1 (b). All Hopf bifurcations are supercritical; the rightmost Hopf curve in panel
(b) from which a branch of stable periodic solutions emergesis marked in black.

For the trivial steady-stateu0 = 0 there exist infinitely many curves of Hopf bifurcations
in the (R,τ)-plane. These curves, shown in figure 3(a), are parameterised by the Hopf
frequencyω and given by

τ(ω) =

{

(2nπ −sin−1(Cω(1+(g(0))2)/A)−B)/ω

((2n−1)π +sin−1(Cω(1+(g(0))2)/A)−B)/ω

R(ω ,τ) = −
g′(0)sin(ωτ)

Cω +g′(0)sin(ωτ)/Rc +Cg′(0)ω cos(ωτ)

wheren∈ Z and

A = 2(1/R2
c +C2ω2)

1
2 g′(0), B = tan−1(CωRc).

All of the Hopf bifurcations on these curves are supercritical and the resulting branches of
periodic solutions emerge in the direction of increasingτ. In the parameter region of interest,
the trivial steady-stateu0 is always unstable.

Sinceu1 is dependent onR andg(u1) 6= 0, it is only possible to obtain implicit formulae
for the Hopf bifurcation curves of the non-trivial steady-stateu1. The first ten curves of these
Hopf bifurcations are shown in figure 3(b). All the Hopf curves shown in figure 3 (a) and (b)
are found to be supercritical by numerical continuation. For large values ofR the non-trivial
steady-stateu1 is stable. Thus, whenR is decreased,u1 loses stability at the right-most Hopf
curve shown in figure 3(b).

In the remainder of this paper we investigate the periodic solutions emerging at the
Hopf bifurcations; in section 4 we focus on the periodic solutions bifurcating fromu0 and
in sections 5 and 6 we focus on the periodic solutions bifurcating fromu1. The investigation
of these periodic solutions gives key information regarding the homoclinic orbits of (1).

3. Background material on homoclinic orbits and numerical continuation

In many applications the dynamics are organised by homoclinic orbits; examples include the
buckling of struts [23, 24], neuronal activity [25], water waves [26] and nonlinear optics [27].
The theory of homoclinic orbits is well developed for ODE models [28, 29, 30]. By contrast,
homoclinic orbits in DDEs and NDDEs have not been widely studied. As is shown in this
paper, the theory for ODEs to a large degree transfers to NDDEs. Here, we briefly recall
some results regarding homoclinic orbits in generic systems of ODEs and we describe the
associated numerical continuation techniques as used in later sections.
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Figure 4. An illustration of two snaking branches of periodic solutions close to a homoclinic
orbit of a saddle-focus type steady-state (a) and a homoclinic orbit of a periodic solution (b).
Saddle-node bifurcations on the branches are marked by dots.

3.1. Homoclinic orbits

A homoclinic orbit of a system is given by the intersection ofthe stable and unstable manifolds
of a saddle-type invariant set [28]. The stable manifold is defined as the set of all trajectories
that tend to the invariant set in forward time, and the unstable manifold is defined as the set of
all trajectories that tend to the invariant set in backward time. Here, the only invariant sets that
we consider are steady-states and periodic solutions. A homoclinic orbit to a steady-state is
of codimension one — it may be destroyed by small perturbations to the system parameters.
(Throughout, we consider systems without special properties, such as symmetries.) However,
a homoclinic orbit to a periodic solution is of codimension zero — the stable and unstable
manifolds of the periodic solution intersect transversally and, consequently, the intersection
persists underC1 perturbations [28, Sec. 6.1 and 7.2.1]. A homoclinic orbit of a periodic
solution can only be destroyed through a codimension-onehomoclinic tangency. This occurs
when the intersection of the stable and unstable manifolds becomes tangential and, thus, a
small perturbation can separate the manifolds completely.A transition between a homoclinic
orbit of a saddle-focus type steady-state and a homoclinic orbit of a periodic solution occurs
at a codimension-twoShil’nikov-Hopf bifurcation[31]. At the Shil’nikov-Hopf bifurcation
the homoclinic orbit is ‘transfered’ from the steady-stateto the periodic solution. In two-
parameter space this gives a transition from a one-dimensional locus (the codimension-
one homoclinic orbit of a steady-state) to a two-dimensional area (the codimension-zero
homoclinic orbit of a periodic solution); see figure 13.

In the vicinity of either kind of homoclinic orbit there may exist many additional periodic
solutions [28, 32]. These periodic solutions can formsnaking branchesthat undergo an
infinite sequence of saddle-node bifurcations (or folds) asis sketched in figure 4. As a
snaking branch is followed, the period of the periodic solution increases without limit as it
becomes a better approximation to the homoclinic orbit itself. The two types of homoclinic
orbits considered in this paper can be distinguished by the behaviour of the associated snaking
branches as the period of the solutions tends to infinity. Fora homoclinic orbit of a steady-
state, the folds of the snaking branches converge exponentially quickly in parameter space to a
single codimension-one point (see figure 4(a)), namely the homoclinic orbit itself. Conversely,
for a homoclinic orbit of a periodic solution, the folds of the snaking branches converge
(again exponentially quickly) to a pair of codimension-onepoints (see figure 4(b)), namely
the homoclinic tangencies associated with the homoclinic orbit. Consequently, the snaking
branches of a homoclinic orbit of a periodic solution remainof finite width in parameter
space. In addition, a periodic solution of sufficiently large period at a fold of a snaking branch
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can be used to approximate the respective homoclinic tangency.
Close to either type of homoclinic orbit (theprimary homoclinic orbitor 1-homoclinic

orbit) there may existsecondary homoclinic orbitsor n-homoclinic orbits [28, 33]. These
orbits maken global excursions before returning to the invariant set. Like the 1-homoclinic
orbit, associated with each of thesen-homoclinic orbits are snaking branches of periodic
solutions. The snaking branches may not have the same structure as the snaking branches
of the primary homoclinic orbit; instead they can form isolated branches or have a more
complicated snaking structure. We refer to the solutions associated with the secondary
homoclinic orbits asmulti-pulse solutions.

3.2. Numerical continuation

Our principal tool for investigating (1) is numerical continuation, a technique by which
solutions of an equation are followed in parameters to traceout continuous branches. Along
these branches, bifurcations can be detected by monitoringthe eigenvalues (or Floquet
multipliers) of the solutions or by monitoring suitable test functions. General introductions to
numerical continuation can be found in [34, 28, 35, 36].

Numerical continuation is firmly established for ODEs with many general purpose
software packages in existence, e.g. [16, 37]. However, software packages to continue
solutions of DDEs are comparatively new [17, 18] and extensions to deal with NDDEs even
more so [19, 20]. For the continuation of periodic solutionsin one parameter we use DDE-
BIFTOOL [17] with extensions that we have developed for NDDEs [20]. DDE-BIFTOOL
is a Matlab package that is capable of continuing steady-state and periodic solutions in one
parameter as well as steady-state bifurcations in two parameters. Currently, it is unable to
continue the bifurcations of periodic solutions. To continue saddle-node bifurcations we use
LOCA (part of the Trilinos package) [38], again extended by us to deal with NDDEs. LOCA
is a C++ library designed to continue the solutions of large systems of equations and their
bifurcations.

It is common to plot one-parameter continuations against a projection of the solution.
Throughout this paper we use the L2-norm as defined by

‖u‖ =

(

∫ 1

0
u2(t)dt

)
1
2

(8)

where the periodic solutionu has been rescaled to the ranget ∈ [0,1].
For ODEs it is possible to continue homoclinic orbits of steady-state solutions directly

as codimension-one bifurcations using AUTO/HomCont [16].Although there is the added
complication of an infinite-dimensional stable manifold, it is also possible to do this for
DDEs with DDE-BIFTOOL [17, 39]. However, this capability has not yet been extended
to include NDDEs. Also, we are not aware of any software that is capable of continuing
homoclinic tangencies of periodic solutions in ODEs, DDEs or NDDEs. Consequently, we
approximate the location in parameter space of the homoclinic orbits of steady-states and
homoclinic tangencies of periodic solutions by continuingthe folds of the associated snaking
curve. As mentioned in the previous subsection, the convergence of the snaking region is
exponential and so, by choosing a fold associated with a periodic solution whose period is
large, we are able to approximate the homoclinic orbit/tangency accurately. To further ensure
the accuracy of the continuation, we continue two consecutive folds in two parameters and
monitor the discrepancy between them.

In sections 5 and 6 we consider homoclinic orbits where the underlying invariant set has
one unstable eigenvalue/Floquet multiplier. Thus, we can approximate the unstable manifold



Homoclinic snaking in a neutral delay model of a transmission line oscillator 8

0

0.1

0.2

0.3

0.4

‖u‖

0 25 50 75 100 125 150τ

(a)

(c)

(d)

(b)

0.345

0.35

0.355
‖u‖

90 100 110 120 130 τ

(c)

−0.25

0

0.25

0.5

u(t)

0 2.5 5 7.5 10t

(d)

−0.25

0

0.25

0.5

u(t)

0 10 20 30 40t

Figure 5. A one-parameter continuation inτ for fixed R= 49.5 of the unstable periodic orbit
bifurcating from the trivial branch of steady-state solutions (a). Asτ is increased, the series
of fold bifurcations stops as is illustrated by the enlargement in panel (b). Panels (c) and (d)
show time series at the points marked in panel (a). The nontrivial steady-stateu1 is marked on
panels (c) and (d) by a dashed line.

using direct numerical integration. For this we use RADAR5,which is an implicit fourth
order scheme with discontinuity tracking, specifically designed for stiff DDEs and NDDEs
[40, 41, 42]. When the invariant set is a steady-state we integrate from initial points along
its unstable eigenvector to approximate its one-dimensional unstable manifold. When the
invariant set is a periodic solution (and so the unstable manifold is two-dimensional) we take
a Poincaré section and integrate a sequence of points on an (approximate) fundamental domain
of the corresponding return map. The fundamental domain is asmall linear interval between a
point on the unstable eigendirection and its image under thereturn map. Due to the spiralling
nature of the domain, this provides a good representation ofthe two-dimensional unstable
manifold.

4. Periodic solutions bifurcating from the trivial steady-state

In this section we consider the branches of periodic solutions emerging from the Hopf
bifurcations of the trivial steady-stateu0 = 0. These branches are in fact all unstable but
are of interest for building up a picture of the global dynamics of (1). In the limitτ → ∞, the
solutions on these branches approach a homoclinic orbit of the non-trivial steady-stateu1. For
finite (and small)τ, these solutions possess their own homoclinic orbit as willbe discussed in
section 5.

We begin our study of the bifurcating periodic solutions by performing one-parameter
continuations with the time delayτ as the free parameter. Figure 5(a) shows the results of
one such continuation forR= 49.5. The branch starts at the Hopf bifurcation atτ = 1.132
and then, asτ is increased, undergoes two consecutive fold (or saddle-node) bifurcations.
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Figure 6. The time series of a periodic solution forτ = 1800 andR= 49.5 is shown in panel
(a), and its projection into the(u(t),u(t − τ))-plane is shown in panel (b). Panel (c) shows the
spectrum of the non-trivial steady-stateu1; stable eigenvalues (ℜ(λ) < 0) are marked with a
dot and unstable eigenvalues (ℜ(λ) > 0) are marked with a cross.

Whenτ is increased, further pairs of folds occur in a very regular manner; each pair is almost
equidistant inτ. These folds lead to a snake-like appearance that ‘drifts’ with the time delay.
In fact the pairs of folds are not equidistant. Instead, asτ grows larger, the folds that make up
a single pair grow closer until, for sufficiently largeτ, they appear to have coalesced at a cusp
bifurcation nearby in parameter space; see figure 5(b). For largerτ there are no further folds
on the branch.

Panels (c) and (d) of figure 5 show the time series of two periodic solutions on the branch
shown in panel 5(a). The periodic solution in figure 5(c) is close to the Hopf bifurcation
and, consequently, it is centred aroundu0. As the branch is followed, small oscillations
appear in the solution profile as seen in figure 5(d). These oscillations appear to be centred
around the non-trivial steady-stateu1, marked on the figure as a dashed line. Asτ becomes
larger, additional oscillations appear after every pair offolds on the branch. Each additional
oscillation created is smaller than the previous one. Whenτ is sufficiently large so that there
are no further folds on the branch, the process of adding oscillations still continues. The
time series of a solution forτ = 1800 with many small oscillations aroundu1 is shown in
figure 6(a). Although from the scale of the figure it appears that the solution is identical to
u1 for a finite length of time, in reality this is not the case; thesolution always maintains
an oscillatory component. Figure 6(b) shows the solution projected onto the(u(t),u(t − τ))-
plane, which illustrates how it slowly spirals out fromu1 before being re-injected close to
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u1.
The snake-like appearance of the branch of periodic solutions along with the behaviour

of the solutions on it suggests that there exists a homoclinic orbit of u1 in the limit τ → ∞.
Indeed, the period of the solutions grows almost linearly with increasingτ. The eigenvalues
of u1 for τ = 1800 are shown in figure 6(c). There are many complex conjugate pairs of
unstable eigenvalues (crosses) and of stable eigenvalues (dots); these appear to align on a
vertical asymptote in the complex plane. Asτ increases, more pairs of complex conjugate
eigenvalues pass into the right-hand-half of the complex plane.

5. Periodic solutions emerging from the non-trivial steady-state

In this section we investigate the stable periodic solutions that emerge from a Hopf bifurcation
of the non-trivial steady-stateu1. In a similar fashion to the periodic solutions of the previous
section we see snaking behaviour in the solution branch. However, in contrast we demonstrate
the existence of a homoclinic orbit to a periodic solution. The snaking behaviour shown
here occurs for finite and physically realisable values ofτ. Additionally, many multi-pulse
solutions are found and continued. Throughout this sectionwe fix the time delay atτ = 3.5;
we extend the results to other values ofτ in section 6.

Figure 7(a) shows a branch of periodic solutions with varying resistanceR; snaking
behaviour can clearly be seen. The branch is created at a super-critical Hopf bifurcation of
u1 whenR= 72.75. Figure 7(b) shows an enlargement of panel (a) in the vicinity of the first
fold. The solutions on the branch are locally stable until the period-doubling bifurcation PD1.
Continuation of the bifurcating branches of period-doubled solutions shows the existence of
a sequence of period-doubling bifurcations, possibly leading to a period-doubling route to
chaos. The branch regains stability at the period-doublingbifurcation PD2 before losing
stability again at the first fold bifurcation SL1. This interplay between period-doubling
bifurcations and saddle-node bifurcations is typical of homoclinic snaking in general [28].

In figure 8 we plot the same snaking branch in terms of the solution periodT. The branch
has an infinite sequence of folds (as the period increases monotonically) whose locations inR
rapidly converge to one of two distinct values that correspond to homoclinic tangencies. The
left-hand folds converge toR= 48.69 and the right-hand folds toR= 50.52. Between each
of the consecutive left- and right-hand folds there exist two period-doubling bifurcations (not
shown). All of the resulting period-doubled solutions thathave been continued numerically
appear to be qualitatively identical to those shown in figure7. The branch in figure 8 was
continued as far as is computationally tractable; the snake-like behaviour persisted over a near
constant region of parameter space throughout. The behaviour shown in figure 8 is indicative
of the existence of a robust homoclinic orbit of a periodic solution.

Figure 8 (a)–(f) are time series of several periodic solutions along the snaking branch.
Near the base of the branch, i.e. where the period is small, the periodic solutions have a
single local minimum/maximum. As the branch is followed (and the period of the solutions
increases) the solutions gain additional local extrema in the vicinity of the left-hand folds.
These local extrema are added in the form of additional smalloscillations on the tail of the
original large amplitude oscillation. When sufficiently many small oscillations have been
added to the solution (e.g. figure 8(c)) the small oscillations are centred aroundu0. Also, these
small oscillations appear to follow the trajectory of an underlying periodic solution. Thus, as
the snaking branch is followed, the periodic solution on thebranch becomes an increasingly
accurate approximation of a homoclinic orbit of the underlying saddle-type periodic solution.

The snaking behaviour of the branch in figure 8 is further illustrated in figure 9 with a
sequence of periodic solutions along the branch in the(u(t),u(t − τ))-plane. The periodic
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Figure 7. Branch of periodic solutions, for fixedτ = 3.5, emerging from a Hopf bifurcation of
u1 is shown (a) and an enlargement in the vicinity of the first fold is shown (b). We fixτ = 3.5.
The solid curves in panel (b) indicate stable periodic solutions and the dashed curves indicate
unstable periodic solutions. The branch undergoes a sequence of period-doubling bifurcations
marked PDi before encountering the fold at SL1. Some of the bifurcating branches of period-
doubled solutions are shown; panel (c) contains a time series of the labelled period-doubled
solution.

solutions on the snaking branch are labelledΓs and the underlying saddle-type periodic
solution, to which the homoclinic orbit belongs, is labelled Γu. Away from the snaking region,
the period ofΓs is small [figure 9(a)]:Γu encircles the trivial steady-stateu0 andΓs encircles
the non-trivial steady-stateu1. As the snaking region is approached and the period ofΓs

increases,Γs begins to deform and approachΓu [figure 9(b)]. Upon entering the snaking
region, loops appear in the projection ofΓs [figure 9(c)] in the vicinity ofΓu. As the snaking
branch is followed further, more loops are formed [figure 9(d–f)] that encompassΓu. As the
period of the solutions tends to infinity,Γs makes many loops aroundΓu before making a
global excursion aroundu1 and returning toΓu. In other words,Γs approaches a homoclinic
orbit to Γu. In figure 9 we find the periodic solutionΓu by isolating a single loop ofΓs of
sufficiently high period. By performing a Newton iteration we find thatΓu is part of a branch
of periodic solutions that emerge from a Hopf bifurcation ofu0; it is the same branch of
periodic solutions that was described in section 4.

As stated in section 3.1, the homoclinic orbit is defined by the intersection of the stable
and unstable manifolds ofΓu. DDE-BIFTOOL provides the Floquet multipliers ofΓu: it has
one unstable Floquet multiplier and thus a two-dimensionalunstable manifoldWu(Γu). We
use the methods described in section 3.2 to approximateWu(Γu) and so further investigate
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Figure 8. The main panel shows the continuation of the branch shown in figure 7, now
projected into the(R,T)-plane, whereT is the period of the solution. The folds of the branch
rapidly converge to one of two parameter values (the homoclinic tangencies) as shown by the
dotted lines in the figure. The panels (a)–(f) show time series of solutions along this branch at
the labelled points.

the homoclinic orbit. Figure 10 showsWu(Γu) projected onto the(u(t),u(t − τ))-plane for
R= 49.5 (the approximate centre of the snaking curve shown in figure8). Figure 10(a) shows
trajectories onWu(Γu) that make one large excursion away fromΓu, return toΓu and are then
expelled in the opposite direction. In figure 10(b) we show trajectories that stay on the right-
hand branch ofWu(Γu) for at least 180ns; these trajectories make multiple large excursions
away fromΓu and then back toΓu. Note that the ‘gaps’ in one representation ofWu(Γu)
correspond to the orbits in the other representation. In both figures we see that the solution
trajectories stay close to the underlying periodic solution for a short time before spiralling
away. The trajectories then curve around the non-trivial steady-stateu1 and are re-injected
nearbyΓu.

We expect there to exist infinitely manymulti-pulse orbitswhere the orbit makes multiple
global excursions away fromΓu. Evidence for this is provided by trajectories that make
multiple large excursions. We constructed multi-pulse solutions from segments of existing
periodic solutions, which where then corrected with a Newton iteration. These are continued
using DDE-BIFTOOL to trace out whole branches of multi-pulse solutions, as is shown in
figure 11. The branches of multi-pulse solutions form disconnected islands of solutions which,
as the period increases, become increasingly difficult to distinguish. (Indeed, they appear to
be connected but this is an artifact of the projection.) Figure 12 shows the time series and
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Figure 9. Projections onto the(u(t),u(t − τ))-plane of snaking periodic solutionΓs along
the branch shown in figure 8(a). The periodic solution beginsto ‘wrap’ around an underlying
periodic solutionΓu as the snaking branch is followed in the direction of increasing periodT.
The two crosses mark the two steady-state solutionsu0 andu1.
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Figure 10. An approximation ofWu(Γu) for R= 49.5. Panel (a) shows the trajectories along
the unstable manifold that make one global excursion away fromΓu before returning and being
ejected in the opposite direction. Panel (b) shows the trajectories that make multiple global
excursions away from and then back toΓu before being ejected in the opposite direction.
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Figure 11. Branches of two-pulse periodic solutions, each forming disconnected islands. The
points marked (a) and (b) correspond to the periodic solutions shown in figure 12. The dashed
lines denote the locations of the homoclinic tangencies of the primary homoclinic orbit.
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Figure 12. Phase-plane projections and time series of two multi-pulseperiodic solutions,
which are identical in the number of small and large oscillations they possess, but differ in the
location where the trajectories leave the vicinity ofΓu; compare points 1 and 2 in panel (a).
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Figure 13. Two-parameter bifurcation diagram in the(R,τ)-plane. The solid curves are the
folds of the snaking branch shown in figure 8(a), the dashed curve is a branch of period-
doubling bifurcations ofΓu, and the dash-dotted curve is a branch of Hopf bifurcations of
Γu. Panel (b) shows an enlargement of the branches close to the curve of period-doubling
bifurcations; at this point the two folds that have been continued (shown as solid and dotted
curves) diverge, which indicates that the homoclinic tangency is no longer well approximated.

(u(t),u(t − τ))-plane representations of two such multi-pulse solutions at the points marked
(a) and (b) in figure 11. Both periodic solutions have the samenumber of small and large
oscillations; the difference between them is the point at which the solution leaves the vicinity
of the underlying periodic solution to make the global excursion. This difference in phase
is clearly seen by comparing the points marked 1 and 2 in figure12(a). In addition to the
results presented here, we have found many more multi-pulsesolutions, including three- and
four-pulse solutions. All exhibit similar behaviour.

6. Continuation of homoclinic tangencies

In this section we extend the investigation of the homoclinic orbit of a periodic solution,
described in section 5, to the two-parameter(R,τ)-plane. The domain of existence of the
homoclinic orbit toΓu is defined by the associated homoclinic tangencies. As described
in section 3.2, we continue a number of folds of the associated snaking branch of periodic
solutions as an approximation to the homoclinic tangencies. In particular, we use the periodic
solution in figure 8(d) and further solutions at the consecutive folds, shown in figure 8, as
starting data.

Figure 13 shows the resulting bifurcation diagram in the(R,τ)-plane. The solid curves
are the folds of the snaking branch, which bound the domain ofexistence of a robust
homoclinic orbit (grey region). The other curves marked on figure 13 correspond to the
bifurcations of the underlying periodic solutionΓu; the dashed curve is a locus of period-
doubling bifurcations and the dash-dotted curve is a locus of Hopf bifurcations. The one-
parameter continuation shown in figure 8 corresponds to a horizontal slice through figure 13(a)
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Figure 14. Panel (a) shows a branch of snaking periodic solutions forτ = 0.5 in the(R,T)-
plane, whereT is the period of the solution. As the branch is followed in increasingT the range
in R covered by the snaking branch decreases, indicating a homoclinic orbit of a steady-state.
Panel (b) shows a periodic solution forR= 20.495.

at τ = 3.5.
When τ is small, the folds marking the edge of the snaking region (the homoclinic

tangencies) are close together in parameter space and so thedomain of existence of the
homoclinic orbit is small. Atτ = τHopf := 0.854 (labelled by a circle in figure 13) the fold
curves cross the Hopf bifurcation curve ofΓu and, consequently, there can no longer exist a
homoclinic orbit of a periodic solution. Instead, the homoclinic orbit has been ‘transfered’
to the trivial steady-stateu0 at a codimension-two Shil’nikov-Hopf bifurcation. Thus, for
τ < τHopf the fold curves approximate the codimension-one curve of homoclinic orbits ofu0.
For larger values ofτ the fold curves are well separated and the domain of existence of the
homoclinic orbit is quite large. At large values ofτ the fold curves cross the curve of period-
doubling bifurcations ofΓu. After this crossing the fold continuation no longer approximates
the curve of homoclinic tangencies accurately, see figure 13(b). The dotted curve denotes the
continuation of a second fold on the snaking branch shown in figure 8, and it clearly diverges
from the first fold curve in the immediate vicinity of the period-doubling bifurcation. Thus,
after the period-doubling curve has been crossed it is not clear how one can approximate
the homoclinic tangency. We are also left with the question of what the homoclinic orbit is
connected to: the period-one solution, the period-two solution or neither? We are not aware of
any results specifically relating to this situation. However, in the context of robust heteroclinic
orbits in maps it has been proved [43] that after the period-doubling the heteroclinic orbit is
connected to the period-two solution.

The situation for robust homoclinic orbits in NDDEs remainsan interesting open
question. We now present a series of one-parameter continuations and some of the solutions
on these branches that suggests that the situation is quite complicated. Figure 14(a) shows
a branch of snaking periodic solutions forτ = 0.5 < τHopf. It is similar in structure to the
snaking branch in figure 8, with the exception that the snaking region shrinks as the branch
is followed; this is indicative of a homoclinic orbit to a steady-state. The convergence of the
folds to the parameter value at which the homoclinic orbit exists is predicted to be exponential.
However, in figure 14(a) it appears to be very slow. Slow convergence is also seen in the
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Figure 15. Panel (a) shows an approximation to the unstable manifold ofu0 for R= 20.50
andτ = 0.5, which gives the homoclinic orbit. The trajectory leaves the vicinity of u0 before
returning and spiralling in towardsu0. Panel (b) shows the spectrum ofu0; it is of saddle-type
with one unstable eigenvalue.

time series of the periodic solution in figure 14(b); the oscillations approachu0 very slowly.
Figure 15(a) shows the approximated one-dimensional unstable manifold ofu0 (and thus
also the homoclinic orbit) computed by direct integration of (1). The convergence of the
trajectory towardsu0 is so slow that numerical errors accumulate and cause the trajectory to
be ejected away fromu0 before entering its immediate neighbourhood. The cause of this slow
convergence is the fact that a part of the spectrum ofu0 is close to the imaginary axis, as is
shown in figure 15(b). The essential spectrum appears to approach a vertical asymptote in
the complex plane. Consequently, the stable manifold is only weakly stable. This type of
slowness if convergence is not covered by ODE theory, but is afeature of the NDDE aspect
of our problem.

Figure 16 shows a sequence of one-parameter continuations in R for fixed values of
τ = 11, 13, 14 and 16, respectively. The branch forτ = 11 has a similar structure to the
snaking branch shown in figure 8. The main difference is at thebase of the branch (i.e. where
the period is small) where the branch shown in figure 16(a) appears to be less regular. For
τ = 13, close to the period-doubling ofΓu, the snaking branch takes on an alternating structure
which also persists forτ = 14. The snaking branch also appears to be even more complex and
has many additional folds. Forτ = 16 the snaking branch is extremely complicated. In fact,
it is not computationally tractable to continue them further.

Although we are unable to continue the branch shown in figure 16(d) any further, we
are able to compute a solution with a high period forτ = 13 and then continue it inτ until
τ = 16. After further continuation inR, the periodic solutions shown in figure 17 were found.
Figure 17(a) shows a periodic solution forR = 55.7 where the limiting periodic solution
appears to be the period-one solution. Further continuation studies (not presented here) reveals
many more periodic solutions that repeatedly come close to the period-one solution. However,
we have found no periodic solutions that approach the period-two solution. This is a strong
indication that the homoclinic orbit remains connected to the period-one solution through
the period-doubling bifurcation, in contrast to the situation described in [43]. Figure 17(b)
shows a periodic solution, again forR = 55.7, where the underlying periodic solution is



Homoclinic snaking in a neutral delay model of a transmission line oscillator 18

(a)

50

100

150

200

250

300

T

50 60 70 80R

(b)

50

100

150

200

250

300

T

50 60 70 80R

(c)

50

100

150

200

250

300

T

50 60 70 80R

(d)

50

100

150

200

250

300

T

50 60 70 80R

Figure 16. Branches of snaking solutions forτ = 11.0, 13.0, 14.0 and 16.0 respectively. The
continuation of the branch shown in panel (d) stops due to computational limits.
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Figure 17. Periodic solutions forR= 55.7 in panels (a) and (b), and forR= 52.8 in panel
(c); throughoutτ = 16. These solutions indicate the possibility of further homoclinic or
heteroclinic connections.

different; it is neither the period-one nor period-two solution. Instead, it is a periodic solution
on a branch that bifurcates fromu0 at a different Hopf bifurcation. This suggests that there
exists a second homoclinic orbit in the vicinity of the first one. Furthermore, figure 17(c) for
R= 52.8 shows a periodic solution that passes close to both of the limiting periodic orbits.
Thus, there may also exist heteroclinic connections between the different periodic solutions.
These periodic solutions strongly suggest that the complexity seen in the snaking branches
of periodic solutions is not due to the period-doubling bifurcation ofΓu. Instead, it appears
that the complexity arises when other homoclinic orbits and/or heteroclinic connections are
created nearby.

7. Conclusions

We have shown that the transmission line oscillator modelled by NDDE (1) possesses a
wealth of delay-induced dynamics. Specifically, we have used recently developed numerical
continuation routines for NDDEs to demonstrate that the dynamics is organised by homoclinic
orbits. We found snaking branches of periodic solutions that accumulate on these homoclinic
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orbits. For small time delay, there is a homoclinic orbit to asteady-state. However, beyond a
codimension-two Shil’nikov-Hopf bifurcation the homoclinic orbit is connected to a periodic
solution. As the time delay is increased there is a significant increase in the complexity of the
snaking branches. This appears to coincide with a period-doubling bifurcation of the periodic
solution underlying the homoclinic orbit. There is some evidence that the homoclinic orbit
remains connected to the period-one solution. However, we also found evidence of further
homoclinic/heteroclinic connections involving other periodic solutions. The exact structure
of the bifurcations involved remains an interesting topic for future research.

Our case study of the TLO shows that much of the theory of homoclinic orbits in ODEs
transfers directly to NDDEs. However, there are peculiarities that are due to the NDDE
nature of the problem. In particular, we find that some convergence rates of the fold points in
homoclinic snaking are substantially slower than those arising in ODE systems. We attribute
this effect to the essential spectrum, which forms a vertical asymptote in the complex plane
close to the imaginary axis.

More generally, bifurcation analysis tools for NDDEs are now able to reveal a great deal
of useful information about the system in question. Our casestudy of a TLO demonstrates
that these tools allow one to investigate even quite complicated dynamics and bifurcations
of NDDE models arising in applications. In the future we planto study NDDE models of
dynamic substructuring tests [44]. In this hybrid test set-up, where a physical experiment is
bi-directionally coupled to a computer simulation, the delay is due to coupling delays and the
finite response times of actuators. Neutrality of the model arises when velocity information is
used as part of the feedback loop.
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