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Homoclinic snaking in a neutral delay model of a
transmission line oscillator
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Bristol Centre for Applied Nonlinear Mathematics, Depagtrhof Engineering Mathematics,
University of Bristol, Queen’s Building, Bristol, BS8 1 TRK

E-mail: david.barton.99@bristol.ac.uk

Abstract. In atransmission line oscillator (TLO) a linear wave travalong a piece of cable,
the transmission line, and interacts with terminatingtelesl components. A fixed time delay
arises due to the transmission time through the transmitis®. Recent experiments ona TLO
driven by a negative resistor demonstrated rich delaydadudynamics and high-frequency
chaotic behaviour. Furthermore, good agreement was fouthdamneutral delay differential
equation (NDDE) model.

In this paper we perform a numerical bifurcation analysishef NDDE model of the
TLO. Our main focus is on homoclinic orbits, which give rigedcomplicated dynamics and
bifurcations. For small time delay there is a homoclinicioi a steady-state. However, past
a codimension-two Shil'nikov-Hopf bifurcation the homioat orbit connects to a saddle-type
periodic solution, which exists in a region bounded by hoinactangencies. Both types
of homoclinic bifurcations are associated with snakingnbhes of periodic solutions. We
summarise our results in a two-parameter bifurcation diagn the plane of resistance against
time delay.

Our study demonstrates that the theory of homoclinic biftions in ordinary differential
equations largely carries over to NDDEs. However, we findttheneutral delay nature of the
problem influences some bifurcations, especially convergeates of homoclinic snaking.

AMS classification scheme numbers: 34K13, 34K18, 34K40, 81K
37C29

1. Introduction

Transmission line oscillators (TLOs) are simple electrog@uits that provide a rich source of
delay-induced dynamics. TLOs consist of a transmissia kng. a coaxial cable, terminated
by one or more nonlinear electrical components, e.g. Chlia&e [1, 2] or a tunnel diode [3].
\oltage waves propagate along the transmission line andeflected and distorted by the
terminating components. The simplicity of these circuds made them of practical interest
for many decades [4, 3, 5], and yet many open questions remganding the dynamics that
they exhibit.

In this paper we present a systematic study of a TLO as matlbileaneutral delay
differential equation(NDDE). In experiments, this TLO was found to produce chaoti
high-frequency output [6, 7], which is of practical impaorta for applications such as
communication [8, 9] and random signal radar/ladar [10]. W that the dynamics of
this TLO are organised by homoclinic bifurcations. As théagidime is increased, which
corresponds to lengthening the transmission line, we seaition from a homoclinic orbit
of a steady-state to a homoclinic orbit of a periodic soluti@ a Shil’nikov-Hopf bifurcation.
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This is accompanied by a significant increase in the comfylexthe dynamics. In particular,
we find the phenomenon of homoclinic snaking, where a stadl®gic solution becomes
homoclinic to another periodic solution of saddle-type.otio knowledge this is the first time
that such dynamics have been found and studied in an NDDEttarhanderstanding of these
dynamics may in future inform TLO design.

The model we study is given by

catt) = - (& - ) u+ (g + &) atut— ) - Cgue - T)a - @
whereg(y) is defined implicitly by the unique solution of
— 10— = Is(expl(gY) +Y) Vo) ~ ). @

Equation (1) describes the evolution of the voltage (mesbwith respect to ground) at one
end of the transmission line, which is terminated by a nggatsistor (with resistandg)

in parallel with a capacitor (with capacitanC® The opposite end of the transmission line
is terminated by a tunnel diode which is modelled by (2). Acair diagram is shown in
figure 1. The right-hand-side of (1) depends on the delayedmf#ent variable(t — 1), and
consequently (1) is delay differential equatiofDDE). The presence of tha(t'— 1) term
means that (1) is in facti@eutral delay differential equatiofNDDE). The delay time is the
time taken for a voltage wave to travel along the entire lerdthe transmission line.

DDEs, that do not depend on the derivative of a delayed dependriable, and NDDES,
that do, have many similar properties. To integrate fonirtine an initialfunctionis needed
to specify the dependent variable be [—1,0], whereT is the largest delay time. This is
in contrast to ordinary differential equations (ODEs) whiequire a single initial value in
R" att = 0. Despite this infinite-dimensional nature, bifurcatiaisDDEs are equivalent
to bifurcations of suitable ODEs via centre manifold redtut{11]. This is because DDEs
(with fixed delays) only have a point spectrum. However, idisot the case for NDDEs. The
solutions of NDDESs possess an essential spectrum as wefl@istsspectrum and are able to
undergo ‘infinite dimensional’ bifurcations. These araubiftions that are not equivalent to
any bifurcation in an ODE because the essential spectrugepaisrough the imaginary axis.
In[12, 13] it is noted that such a bifurcation can create sorooth periodic solutions.

Due to the technical difficulties associated with the arialgé NDDES, only a limited
number of mathematical tools have been used to investigatestationary behaviour in
NDDE transmission line models. These tools include pedtiob techniques [3], non-
constructive proofs [14] and direct numerical simulatid®][ Other powerful tools that
are widely used in the analysis of ODEs, such as numericdiration (e.g. AUTO
[16]), have not been exploited as these tools are undenafee for NDDEs. Numerical
continuation enables the solutions of an equation to bevi@t in parameters to trace out
solution branches. Further, bifurcations on branches eaddtected and followed in two
(or more) parameters. Thus, a global picture of the dynawiies system can be built up
systematically. Recently, numerical continuation sofevr DDEsS has been developed in
the form of DDE-BIFTOOL [17] and PDDE-CONT [18]. Subsequgnive have extended
DDE-BIFTOOL to cover the case of NDDEs [19, 20]. We make usé¢haf new tool to
investigate the complicated behaviour exhibited by the TLD

The paper proceeds as follows. We present the derivatioheofriodel (1) along with
an analysis of its steady-states in section 2. The trivesdy-state is unstable for all relevant
parameter values. We find that there exists a single noialtsteady-state, which is stable
for high values of the resistand® As R is decreased it loses stability at a supercritical
Hopf bifurcation, and we show that in tiR, 7)-plane there exist infinitely many more curves
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Figure 1. Circuit diagram of the TLO implemented by Blakely and Corrf@. The
transmission line is shown in grey. It is terminated on tHelg a tunnel diode and on the
right by a negative resistor in parallel with a capacitor.

of Hopf bifurcations. Section 3 contains some backgrountens on homoclinic orbits
and homoclinic snaking. We also describe in detail the nicabmethods that we use to
investigate the homoclinic orbits in one and two parametéiisen, in section 4 we show
the existence of a homoclinic orbit the lintit— c. Through numerical continuation of the
associated snaking branches, we find that the homoclinitisdmonnected to the non-trivial
steady-state of (1). In sections 5 and 6 we consider anotivaoblinic orbit that exists for
finite T, which for smallt is connected to the trivial steady-state of (1). Itis in tienity of
this homoclinic orbit that chaotic behaviour has been foexykrimentally. Ag is increased,
the trivial steady-state undergoes a Shil'nikov-Hopf biation and, consequently, the system
develops a robust homoclinic orbit to a periodic solutiom. section 6 we illustrate how
the essential spectrum of the NDDE (1) causes slow conveegehthe snaking branches
of a homoclinic orbit connected to the trivial steady-stagelditionally, we show that the
structure of snaking branches becomes more complicatedisisncreased; the periodic
solution involved in the robust homoclinic orbit underg@egperiod-doubling bifurcation.
Furthermore, the possibility of further homoclinic orbétisd heteroclinic connections arises.
Our results are summarised in a two-parameter bifurcatiagrdm showing the domain of
existence of the homoclinic orbits in thiR, 7)-plane. We then conclude with a discussion of
some of the remaining open questions.

2. Derivation of the model

Figure 1 shows the circuit diagram of the transmission liseil@tor (TLO) that we
investigate. The TLO consists of a coaxial cable terminéted diode at one end and by
a negative resistor in parallel with a capacitor at the o#ret. Originally, it was modelled
with a continuous time difference equation by Cettal [21]. However, experimental results
by Blakely and Corron [6] show that better correspondenéwdsen model and experiments
is obtained when using the NDDE model (1).

We follow the model derivation of [6] and assume that thegraission line in figure 1
is lossless and governed by the Telegrapher’s equations

al oV
RCE(KU = _Voa_ (Xat)
X 3)
oV

al
E(X’t) = _VORC(?_X(X’t)

wherel andV are the current and voltage along the transmission Raés the characteristic
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Figure 2. The functiong(y) and its first derivativey (y) as defined by (2).

impedance, anu is the transmission speed along the transmission line. iddedlocated
atx = 0, provides the boundary condition
~1(0,t) = I5(exp(V (0,t) /Vo) — 1) (@)
wherelg is the saturation current and, is the threshold voltage. The second boundary
condition, provided by the negative resistor and capadaitparallel atx =L, is
ov V(L,t)

Cor(L =1L +— (5)

whereR is the resistance and is the capacitance. The general solution of the hyperbolic
system (3) is a D’Alembert solution of the form

V(zt) = PR(t —x/vo) + W (t +x/vo)
I(zt) = (YR (t—x/vo) — Y (t+x/v0))/Re

where - and @R are arbitrary functions. Substituting (6) into the bourydeondition
(4) gives the relationpR(t) = g(¢*t(t)); cf. (2). The functiong and its first derivativey
are plotted in figure 2. We arrive at the final form, the NDDE, (after substituting (6)
and YR(t) = g(y*(t)) into the second boundary condition (5) and relabelijtg=: u and
7:=2L/v.

Throughout this paper we choose as the principle bifurogt@rameters the resistance
R and the time delay. These parameters are easily varied experimentally; gistaace is
altered by the use of a variable resistor and the time delajtésed by the use of different
lengths of coaxial cable. The parameter ranges under amasion are 4Q < R < 120Q
and 0ns< 1 < 20ns. For the remaining parameters we use the experimettegs/from [6],
which areC = 80 pF,R. = 50Q, vo = 1.97 x 10°m/s,ls = 8 uA, andVp = 55mV.

Equation (1) has two steady-states in the parameter rangeeoést; the trivial solution
u(t) = up := 0, and the non-trivial solution(t) = u; implicitly defined by(R—R¢)/(R+
R:)u; = g(up). The stability of the steady-states is determined by thésrobthe associated
characteristic equation [22]

or+ (7 - g) +oden-An (A 2~ &), @

Hopf bifurcations of the steady-states occur at parametees for which there exists a purely
imaginary root of (7). To find these roots we make the suligiitld = iw wherew € R and
then separate real and imaginary parts to produce

0=¢(up1) { (é + %) coqTw) —Cwsin(rw)} - (é - %)
0=g'(up1) { <% + %) sin(Tw) +chos(rw)} +Cw.

(6)
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Figure 3. Curves of Hopf bifurcations of the trivial steady-state(a) and of the non-trivial
steady-state; (b). All Hopf bifurcations are supercritical; the rightmdsopf curve in panel
(b) from which a branch of stable periodic solutions emerig@sarked in black.

For the trivial steady-stat#) = 0 there exist infinitely many curves of Hopf bifurcations
in the (R 7)-plane. These curves, shown in figure 3(a), are paramaiebgethe Hopf
frequencyw and given by

( (2nmt—sin }(Cw(1+ (9(0))%)/A) —B)/w
T(w) =
((2n— 1)+ sin }(Cw(1+ (g(0))?)/A) — B)/w
B g (0)sin(wrt)
Cw+ g (0)sin(wt)/Re+Cg (0)wcoq wr)

Rlw, 1) =

wheren € Z and

A= 2(1/R2+C%w?)2¢(0), B = tan L(CwR).
All of the Hopf bifurcations on these curves are superaltand the resulting branches of
periodic solutions emerge in the direction of increasintn the parameter region of interest,
the trivial steady-statey is always unstable.

Sinceu; is dependent oR andg(u;) # 0, it is only possible to obtain implicit formulae
for the Hopf bifurcation curves of the non-trivial steadgteu;. The first ten curves of these
Hopf bifurcations are shown in figure 3(b). All the Hopf cusv&own in figure 3 (a) and (b)
are found to be supercritical by numerical continuationr. Ieaye values oR the non-trivial
steady-state; is stable. Thus, wheR is decreased); loses stability at the right-most Hopf
curve shown in figure 3(b).

In the remainder of this paper we investigate the periodiat®ms emerging at the
Hopf bifurcations; in section 4 we focus on the periodic sohs bifurcating fromug and
in sections 5 and 6 we focus on the periodic solutions bifimgdromu;. The investigation
of these periodic solutions gives key information regagdhre homoclinic orbits of (1).

3. Background material on homoclinic orbits and numerical continuation

In many applications the dynamics are organised by homodiits; examples include the
buckling of struts [23, 24], neuronal activity [25], wateaves [26] and nonlinear optics [27].
The theory of homoclinic orbits is well developed for ODE retel[28, 29, 30]. By contrast,
homoclinic orbits in DDEs and NDDEs have not been widely &dd As is shown in this
paper, the theory for ODEs to a large degree transfers to NDHere, we briefly recall
some results regarding homoclinic orbits in generic systefODEs and we describe the
associated numerical continuation techniques as usetkinsiections.
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Figure 4. An illustration of two snaking branches of periodic solasicclose to a homoclinic
orbit of a saddle-focus type steady-state (a) and a homodbit of a periodic solution (b).
Saddle-node bifurcations on the branches are marked by dots

3.1. Homoclinic orbits

A homoclinic orbit of a system is given by the intersectiotha stable and unstable manifolds
of a saddle-type invariant set [28]. The stable manifoldafireed as the set of all trajectories
that tend to the invariant set in forward time, and the urstatanifold is defined as the set of
all trajectories that tend to the invariant set in backwargt Here, the only invariant sets that
we consider are steady-states and periodic solutions. Aohtimic orbit to a steady-state is
of codimension one — it may be destroyed by small perturbatio the system parameters.
(Throughout, we consider systems without special propgrsuch as symmetries.) However,
a homoclinic orbit to a periodic solution is of codimensiara — the stable and unstable
manifolds of the periodic solution intersect transvegsatid, consequently, the intersection
persists unde€! perturbations [28, Sec. 6.1 and 7.2.1]. A homoclinic orlfiaeriodic
solution can only be destroyed through a codimensionkhameoclinic tangencyThis occurs
when the intersection of the stable and unstable manifaddsines tangential and, thus, a
small perturbation can separate the manifolds complefetsansition between a homoclinic
orbit of a saddle-focus type steady-state and a homocliit of a periodic solution occurs
at a codimension-tw&hil’nikov-Hopf bifurcation31]. At the Shil'nikov-Hopf bifurcation
the homoclinic orbit is ‘transfered’ from the steady-staiethe periodic solution. In two-
parameter space this gives a transition from a one-dimeakiocus (the codimension-
one homoclinic orbit of a steady-state) to a two-dimendi@rea (the codimension-zero
homoclinic orbit of a periodic solution); see figure 13.

In the vicinity of either kind of homoclinic orbit there mayist many additional periodic
solutions [28, 32]. These periodic solutions can fasnaking brancheshat undergo an
infinite sequence of saddle-node bifurcations (or folds)sasketched in figure 4. As a
snaking branch is followed, the period of the periodic doluincreases without limit as it
becomes a better approximation to the homoclinic orbitfitSehe two types of homoclinic
orbits considered in this paper can be distinguished by¢hetiour of the associated snaking
branches as the period of the solutions tends to infinity. aHeomoclinic orbit of a steady-
state, the folds of the snaking branches converge expatigmfuickly in parameter space to a
single codimension-one point (see figure 4(a)), namely timedtlinic orbit itself. Conversely,
for a homoclinic orbit of a periodic solution, the folds ofetlsnaking branches converge
(again exponentially quickly) to a pair of codimension-quénts (see figure 4(b)), namely
the homoclinic tangencies associated with the homocliriit.o Consequently, the snaking
branches of a homoclinic orbit of a periodic solution remafrfinite width in parameter
space. In addition, a periodic solution of sufficiently kaggeriod at a fold of a snaking branch
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can be used to approximate the respective homoclinic tarygen

Close to either type of homaoclinic orbit (thegimary homoclinic orbitor 1-homoclinic
orbit) there may exissecondary homoclinic orbiter n-homoclinic orbits [28, 33]. These
orbits maken global excursions before returning to the invariant sekelthe 1-homoclinic
orbit, associated with each of thesehomoclinic orbits are snaking branches of periodic
solutions. The snaking branches may not have the samews&uas the snaking branches
of the primary homoclinic orbit; instead they can form igeth branches or have a more
complicated snaking structure. We refer to the solutiorsbeated with the secondary
homoclinic orbits asnulti-pulse solutions

3.2. Numerical continuation

Our principal tool for investigating (1) is numerical camiiation, a technique by which
solutions of an equation are followed in parameters to tcatecontinuous branches. Along
these branches, bifurcations can be detected by monitthegeigenvalues (or Floquet
multipliers) of the solutions or by monitoring suitablettesctions. General introductions to
numerical continuation can be found in [34, 28, 35, 36].

Numerical continuation is firmly established for ODEs wittamy general purpose
software packages in existence, e.g. [16, 37]. Howevetwsoé packages to continue
solutions of DDEs are comparatively new [17, 18] and extamsio deal with NDDESs even
more so [19, 20]. For the continuation of periodic solutiomene parameter we use DDE-
BIFTOOL [17] with extensions that we have developed for NBOEO]. DDE-BIFTOOL
is a Matlab package that is capable of continuing steadg-stad periodic solutions in one
parameter as well as steady-state bifurcations in two petens1 Currently, it is unable to
continue the bifurcations of periodic solutions. To couérsaddle-node bifurcations we use
LOCA (part of the Trilinos package) [38], again extended byadeal with NDDEs. LOCA
is a C++ library designed to continue the solutions of largstesms of equations and their
bifurcations.

It is common to plot one-parameter continuations againgoggtion of the solution.
Throughout this paper we use thg-horm as defined by

= ([ oa) ®

where the periodic solutiomhas been rescaled to the range|0, 1].

For ODEs it is possible to continue homoclinic orbits of sieatate solutions directly
as codimension-one bifurcations using AUTO/HomCont [1Although there is the added
complication of an infinite-dimensional stable manifoltjs also possible to do this for
DDEs with DDE-BIFTOOL [17, 39]. However, this capability imot yet been extended
to include NDDEs. Also, we are not aware of any software teatapable of continuing
homoclinic tangencies of periodic solutions in ODEs, DDESN®DEs. Consequently, we
approximate the location in parameter space of the homodabirbits of steady-states and
homoclinic tangencies of periodic solutions by continuing folds of the associated snaking
curve. As mentioned in the previous subsection, the coeverg of the snaking region is
exponential and so, by choosing a fold associated with a@iersolution whose period is
large, we are able to approximate the homoclinic orbit/anoy accurately. To further ensure
the accuracy of the continuation, we continue two conseedtlds in two parameters and
monitor the discrepancy between them.

In sections 5 and 6 we consider homoclinic orbits where tlietlging invariant set has
one unstable eigenvalue/Floquet multiplier. Thus, we ggr@imate the unstable manifold
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Figure 5. A one-parameter continuation mnfor fixed R = 49.5 of the unstable periodic orbit
bifurcating from the trivial branch of steady-state saus (a). Ast is increased, the series
of fold bifurcations stops as is illustrated by the enlargaimn panel (b). Panels (c) and (d)
show time series at the points marked in panel (a). The madtsteady-state; is marked on
panels (c) and (d) by a dashed line.

using direct numerical integration. For this we use RADARMiich is an implicit fourth
order scheme with discontinuity tracking, specificallyidasd for stiff DDEs and NDDEs
[40, 41, 42]. When the invariant set is a steady-state weiate from initial points along
its unstable eigenvector to approximate its one-dimerdianstable manifold. When the
invariant set is a periodic solution (and so the unstableifolars two-dimensional) we take
a Poincaré section and integrate a sequence of points opaiof@mate) fundamental domain
of the corresponding return map. The fundamental domaisiisall linear interval between a
point on the unstable eigendirection and its image undertuen map. Due to the spiralling
nature of the domain, this provides a good representatidheofwo-dimensional unstable
manifold.

4. Periodic solutions bifurcating from the trivial steady-state

In this section we consider the branches of periodic satgtiemerging from the Hopf
bifurcations of the trivial steady-statey = 0. These branches are in fact all unstable but
are of interest for building up a picture of the global dynesmf (1). In the limitt — o, the
solutions on these branches approach a homoclinic orieaiion-trivial steady-statg. For
finite (and small), these solutions possess their own homoclinic orbit asheililiscussed in
section 5.

We begin our study of the bifurcating periodic solutions leyfprming one-parameter
continuations with the time delay as the free parameter. Figure 5(a) shows the results of
one such continuation fdR = 49.5. The branch starts at the Hopf bifurcationrat 1.132
and then, ag is increased, undergoes two consecutive fold (or saddiienbifurcations.
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Figure 6. The time series of a periodic solution for= 1800 andR = 49.5 is shown in panel
(a), and its projection into theu(t),u(t — 7))-plane is shown in panel (b). Panel (c) shows the
spectrum of the non-trivial steady-statg stable eigenvaluesi(A) < 0) are marked with a
dot and unstable eigenvaluds(@ ) > 0) are marked with a cross.

Whenrt is increased, further pairs of folds occur in a very regulanner; each pair is almost
equidistant int. These folds lead to a snake-like appearance that ‘driftsl the time delay.
In fact the pairs of folds are not equidistant. Instead; geows larger, the folds that make up
a single pair grow closer until, for sufficiently largethey appear to have coalesced at a cusp
bifurcation nearby in parameter space; see figure 5(b).dfgeft there are no further folds
on the branch.

Panels (c) and (d) of figure 5 show the time series of two par®alutions on the branch
shown in panel 5(a). The periodic solution in figure 5(c) issel to the Hopf bifurcation
and, consequently, it is centred aroumgd As the branch is followed, small oscillations
appear in the solution profile as seen in figure 5(d). Thesdaigms appear to be centred
around the non-trivial steady-statg, marked on the figure as a dashed line. Asecomes
larger, additional oscillations appear after every paifotds on the branch. Each additional
oscillation created is smaller than the previous one. Whisrsufficiently large so that there
are no further folds on the branch, the process of addindlatsens still continues. The
time series of a solution for = 1800 with many small oscillations arouns is shown in
figure 6(a). Although from the scale of the figure it appeasd the solution is identical to
up for a finite length of time, in reality this is not the case; #mution always maintains
an oscillatory component. Figure 6(b) shows the solutimjguted onto théu(t),u(t — 1))-
plane, which illustrates how it slowly spirals out from before being re-injected close to
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usz.

The snake-like appearance of the branch of periodic solsi@ong with the behaviour
of the solutions on it suggests that there exists a homaatirbit of u; in the limit T — co.
Indeed, the period of the solutions grows almost linearijhwicreasingr. The eigenvalues
of u; for T = 1800 are shown in figure 6(c). There are many complex corgugairs of
unstable eigenvalues (crosses) and of stable eigenvaloes);(these appear to align on a
vertical asymptote in the complex plane. Asncreases, more pairs of complex conjugate
eigenvalues pass into the right-hand-half of the complarel

5. Periodic solutions emer ging from the non-trivial steady-state

In this section we investigate the stable periodic solugitvat emerge from a Hopf bifurcation
of the non-trivial steady-statg. In a similar fashion to the periodic solutions of the prexso
section we see snaking behaviour in the solution branch.ddewin contrast we demonstrate
the existence of a homoclinic orbit to a periodic solutionheTsnaking behaviour shown
here occurs for finite and physically realisable values.ofAdditionally, many multi-pulse
solutions are found and continued. Throughout this sectieffix the time delay at = 3.5;
we extend the results to other valuesrah section 6.

Figure 7(a) shows a branch of periodic solutions with vagyiasistanceR; snaking
behaviour can clearly be seen. The branch is created at a&atifieal Hopf bifurcation of
u; whenR = 72.75. Figure 7(b) shows an enlargement of panel (a) in the ityoaf the first
fold. The solutions on the branch are locally stable unélpleriod-doubling bifurcation PD
Continuation of the bifurcating branches of period-dodidelutions shows the existence of
a sequence of period-doubling bifurcations, possiblyileado a period-doubling route to
chaos. The branch regains stability at the period-doulifigrcation PD} before losing
stability again at the first fold bifurcation $L This interplay between period-doubling
bifurcations and saddle-node bifurcations is typical ahloalinic snaking in general [28].

In figure 8 we plot the same snaking branch in terms of theisolyieriodT. The branch
has an infinite sequence of folds (as the period increasestmaically) whose locations iR
rapidly converge to one of two distinct values that correspim homoclinic tangencies. The
left-hand folds converge tB = 48.69 and the right-hand folds & = 50.52. Between each
of the consecutive left- and right-hand folds there exist pgriod-doubling bifurcations (not
shown). All of the resulting period-doubled solutions thave been continued numerically
appear to be qualitatively identical to those shown in figreThe branch in figure 8 was
continued as far as is computationally tractable; the sfiaskdehaviour persisted over a near
constant region of parameter space throughout. The balrashown in figure 8 is indicative
of the existence of a robust homoclinic orbit of a periodiigon.

Figure 8 (a)—(f) are time series of several periodic sohgialong the snaking branch.
Near the base of the branch, i.e. where the period is smallpéniodic solutions have a
single local minimum/maximum. As the branch is followeddahe period of the solutions
increases) the solutions gain additional local extremaé@icinity of the left-hand folds.
These local extrema are added in the form of additional soslillations on the tail of the
original large amplitude oscillation. When sufficiently nyasmall oscillations have been
added to the solution (e.g. figure 8(c)) the small oscillziare centred aroung. Also, these
small oscillations appear to follow the trajectory of an eriging periodic solution. Thus, as
the snaking branch is followed, the periodic solution ontirench becomes an increasingly
accurate approximation of a homoclinic orbit of the undiedysaddle-type periodic solution.

The snaking behaviour of the branch in figure 8 is furthesthated in figure 9 with a
sequence of periodic solutions along the branch in(ti{e),u(t — 7))-plane. The periodic



Homoclinic snaking in a neutral delay model of a transmisgine oscillator 11

0.35F T . T — T T T T T

o
w
—T—

o

w

I

4l
T

0.34

0.335

50

Figure 7. Branch of periodic solutions, for fixed= 3.5, emerging from a Hopf bifurcation of
up is shown (a) and an enlargement in the vicinity of the firad fslshown (b). We fix = 3.5.
The solid curves in panel (b) indicate stable periodic smhstand the dashed curves indicate
unstable periodic solutions. The branch undergoes a seguémperiod-doubling bifurcations
marked PDbefore encountering the fold at §LSome of the bifurcating branches of period-
doubled solutions are shown; panel (c) contains a timessefi¢he labelled period-doubled
solution.

solutions on the snaking branch are labelledand the underlying saddle-type periodic
solution, to which the homoclinic orbit belongs, is labdllg,. Away from the snaking region,
the period of s is small [figure 9(a)]T y encircles the trivial steady-statig andl"s encircles
the non-trivial steady-state;. As the snaking region is approached and the periofsof
increases[ s begins to deform and approa€hy [figure 9(b)]. Upon entering the snaking
region, loops appear in the projectionlaf[figure 9(c)] in the vicinity ofl . As the snaking
branch is followed further, more loops are formed [figure-9Jpthat encompask,. As the
period of the solutions tends to infinitys makes many loops arourid, before making a
global excursion around;, and returning td . In other words[ s approaches a homoclinic
orbit to My. In figure 9 we find the periodic solutidn, by isolating a single loop off s of
sufficiently high period. By performing a Newton iteratiomfind that, is part of a branch
of periodic solutions that emerge from a Hopf bifurcationugf it is the same branch of
periodic solutions that was described in section 4.

As stated in section 3.1, the homoclinic orbit is defined lgyitttersection of the stable
and unstable manifolds &%,. DDE-BIFTOOL provides the Floquet multipliers bf;: it has
one unstable Floquet multiplier and thus a two-dimensionatable manifoldW"(I"y). We
use the methods described in section 3.2 to approxiiV&t€ ) and so further investigate
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Figure 8. The main panel shows the continuation of the branch showngurei7, now
projected into théR, T)-plane, wherdl is the period of the solution. The folds of the branch
rapidly converge to one of two parameter values (the homiadangencies) as shown by the
dotted lines in the figure. The panels (a)—(f) show time sesfesolutions along this branch at
the labelled points.

the homoclinic orbit. Figure 10 shows" (") projected onto théu(t),u(t — 7))-plane for
R =495 (the approximate centre of the snaking curve shown in figur€igure 10(a) shows
trajectories oW"(I",) that make one large excursion away frém return tol, and are then
expelled in the opposite direction. In figure 10(b) we shajetctories that stay on the right-
hand branch ofV¥(I"y) for at least 180ns; these trajectories make multiple largesions
away froml"y and then back td,. Note that the ‘gaps’ in one representationVéf ()
correspond to the orbits in the other representation. Ih figures we see that the solution
trajectories stay close to the underlying periodic solufior a short time before spiralling
away. The trajectories then curve around the non-triviedy-statel; and are re-injected
nearbyl .

We expect there to exist infinitely manyulti-pulse orbitsvhere the orbit makes multiple
global excursions away from,. Evidence for this is provided by trajectories that make
multiple large excursions. We constructed multi-pulseisohs from segments of existing
periodic solutions, which where then corrected with a Newteration. These are continued
using DDE-BIFTOOL to trace out whole branches of multi-gus®lutions, as is shown in
figure 11. The branches of multi-pulse solutions form dismmted islands of solutions which,
as the period increases, become increasingly difficultstrdjuish. (Indeed, they appear to
be connected but this is an artifact of the projection.) Fegl? shows the time series and
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Figure 9. Projections onto théu(t),u(t — 7))-plane of snaking periodic solutiofs along
the branch shown in figure 8(a). The periodic solution begira/rap’ around an underlying
periodic solution, as the snaking branch is followed in the direction of incireggeriodT.
The two crosses mark the two steady-state solutigrendu; .
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Figure 10. An approximation ofVY(T"y) for R=49.5. Panel (a) shows the trajectories along
the unstable manifold that make one global excursion aveay fr, before returning and being
ejected in the opposite direction. Panel (b) shows thedi@jies that make multiple global
excursions away from and then backigbefore being ejected in the opposite direction.
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Figure 11. Branches of two-pulse periodic solutions, each formingatimected islands. The
points marked (a) and (b) correspond to the periodic salat&hown in figure 12. The dashed
lines denote the locations of the homoclinic tangenciesi®frimary homoclinic orbit.
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Figure 12. Phase-plane projections and time series of two multi-ppksgodic solutions,
which are identical in the number of small and large osailfet they possess, but differ in the
location where the trajectories leave the vicinityfgf compare points 1 and 2 in panel (a).
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Figure 13. Two-parameter bifurcation diagram in tfig, 7)-plane. The solid curves are the
folds of the snaking branch shown in figure 8(a), the dashedecis a branch of period-
doubling bifurcations of ;, and the dash-dotted curve is a branch of Hopf bifurcatidns o
I'y. Panel (b) shows an enlargement of the branches close tautkie of period-doubling
bifurcations; at this point the two folds that have been icnr@d (shown as solid and dotted
curves) diverge, which indicates that the homoclinic tawoges no longer well approximated.

(u(t),u(t — 1))-plane representations of two such multi-pulse solutidrtee points marked

(a) and (b) in figure 11. Both periodic solutions have the sammaber of small and large
oscillations; the difference between them is the point attvthe solution leaves the vicinity
of the underlying periodic solution to make the global es@m. This difference in phase
is clearly seen by comparing the points marked 1 and 2 in fig@fa). In addition to the

results presented here, we have found many more multi-golséions, including three- and
four-pulse solutions. All exhibit similar behaviour.

6. Continuation of homoclinic tangencies

In this section we extend the investigation of the homoclimibit of a periodic solution,
described in section 5, to the two-parametsr)-plane. The domain of existence of the
homoclinic orbit tol", is defined by the associated homoclinic tangencies. As ithestr
in section 3.2, we continue a number of folds of the assattiatemking branch of periodic
solutions as an approximation to the homoclinic tangendiegarticular, we use the periodic
solution in figure 8(d) and further solutions at the consgeublds, shown in figure 8, as
starting data.

Figure 13 shows the resulting bifurcation diagram in ¢Rer)-plane. The solid curves
are the folds of the snaking branch, which bound the domaiexidtence of a robust
homoclinic orbit (grey region). The other curves marked guré 13 correspond to the
bifurcations of the underlying periodic solutidn,; the dashed curve is a locus of period-
doubling bifurcations and the dash-dotted curve is a lodudapf bifurcations. The one-
parameter continuation shown in figure 8 corresponds toiadrtal slice through figure 13(a)
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Figure 14. Panel (a) shows a branch of snaking periodic solutiong fer0.5 in the (R T)-
plane, wherd is the period of the solution. As the branch is followed irreasingT the range
in R covered by the snaking branch decreases, indicating a Himeaarbit of a steady-state.
Panel (b) shows a periodic solution fler= 20.495.
att = 3.5.

When 1 is small, the folds marking the edge of the snaking regioe ttbmoclinic
tangencies) are close together in parameter space and stomha&n of existence of the
homoclinic orbit is small. Atr = THept := 0.854 (labelled by a circle in figure 13) the fold
curves cross the Hopf bifurcation curvelof and, consequently, there can no longer exist a
homoclinic orbit of a periodic solution. Instead, the ho#itdgc orbit has been ‘transfered’
to the trivial steady-statep at a codimension-two Shil'nikov-Hopf bifurcation. Thugrf
T < THopf the fold curves approximate the codimension-one curve ofdainic orbits ofup.
For larger values of the fold curves are well separated and the domain of existefthe
homoclinic orbit is quite large. At large values pthe fold curves cross the curve of period-
doubling bifurcations of . After this crossing the fold continuation no longer appnetes
the curve of homoclinic tangencies accurately, see figufe)13he dotted curve denotes the
continuation of a second fold on the snaking branch showmyurrdi 8, and it clearly diverges
from the first fold curve in the immediate vicinity of the padidoubling bifurcation. Thus,
after the period-doubling curve has been crossed it is regtrdiow one can approximate
the homoclinic tangency. We are also left with the questibwlrat the homoclinic orbit is
connected to: the period-one solution, the period-twotsmilor neither? We are not aware of
any results specifically relating to this situation. Howeirethe context of robust heteroclinic
orbits in maps it has been proved [43] that after the periodbkiing the heteroclinic orbit is
connected to the period-two solution.

The situation for robust homoclinic orbits in NDDEs remaias interesting open
guestion. We now present a series of one-parameter cotiingand some of the solutions
on these branches that suggests that the situation is aquitplicated. Figure 14(a) shows
a branch of snaking periodic solutions for= 0.5 < Tyept. It is similar in structure to the
snaking branch in figure 8, with the exception that the srakégion shrinks as the branch
is followed; this is indicative of a homoclinic orbit to a aty-state. The convergence of the
folds to the parameter value at which the homoclinic orbgtsxs predicted to be exponential.
However, in figure 14(a) it appears to be very slow. Slow cogwece is also seen in the
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Figure 15. Panel (a) shows an approximation to the unstable manifolah é6r R = 20.50
andt = 0.5, which gives the homoclinic orbit. The trajectory leavies vicinity of up before
returning and spiralling in towards). Panel (b) shows the spectrumwef it is of saddle-type
with one unstable eigenvalue.

time series of the periodic solution in figure 14(b); the battons approachiy very slowly.
Figure 15(a) shows the approximated one-dimensional blestaanifold ofup (and thus
also the homoclinic orbit) computed by direct integratidn(b). The convergence of the
trajectory towardsly is so slow that numerical errors accumulate and cause tjeetivay to
be ejected away fromy before entering its immediate neighbourhood. The caudeo$tow
convergence is the fact that a part of the spectrumya$ close to the imaginary axis, as is
shown in figure 15(b). The essential spectrum appears t@appra vertical asymptote in
the complex plane. Consequently, the stable manifold ig waakly stable. This type of
slowness if convergence is not covered by ODE theory, bufésature of the NDDE aspect
of our problem.

Figure 16 shows a sequence of one-parameter continuatioRsar fixed values of
T =11, 13, 14 and 16, respectively. The branch for 11 has a similar structure to the
snaking branch shown in figure 8. The main difference is ab#tse of the branch (i.e. where
the period is small) where the branch shown in figure 16(apafpto be less regular. For
T =13, close to the period-doubling bf,, the snaking branch takes on an alternating structure
which also persists for = 14. The snaking branch also appears to be even more complex an
has many additional folds. Far= 16 the snaking branch is extremely complicated. In fact,
it is not computationally tractable to continue them furthe

Although we are unable to continue the branch shown in figé(e)lany further, we
are able to compute a solution with a high period fee 13 and then continue it im until
T = 16. After further continuation iR, the periodic solutions shown in figure 17 were found.
Figure 17(a) shows a periodic solution fBr= 55.7 where the limiting periodic solution
appears to be the period-one solution. Further continaatigdies (not presented here) reveals
many more periodic solutions that repeatedly come clogeetpériod-one solution. However,
we have found no periodic solutions that approach the peviedsolution. This is a strong
indication that the homoclinic orbit remains connectedhe period-one solution through
the period-doubling bifurcation, in contrast to the sitoatdescribed in [43]. Figure 17(b)
shows a periodic solution, again f& = 55.7, where the underlying periodic solution is
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Figure 16. Branches of snaking solutions for= 11.0, 130, 140 and 160 respectively. The
continuation of the branch shown in panel (d) stops due tgoedational limits.
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Figure 17. Periodic solutions foR = 55.7 in panels (a) and (b), and f& = 52.8 in panel
(c); throughoutt = 16. These solutions indicate the possibility of further loafimic or
heteroclinic connections.

different; it is neither the period-one nor period-two smno. Instead, it is a periodic solution
on a branch that bifurcates froug at a different Hopf bifurcation. This suggests that there
exists a second homoclinic orbit in the vicinity of the firsteo Furthermore, figure 17(c) for
R = 52.8 shows a periodic solution that passes close to both of hi&irig periodic orbits.
Thus, there may also exist heteroclinic connections betwee different periodic solutions.
These periodic solutions strongly suggest that the contgleren in the snaking branches
of periodic solutions is not due to the period-doubling hiftion of . Instead, it appears
that the complexity arises when other homoclinic orbits/antieteroclinic connections are
created nearby.

7. Conclusions

We have shown that the transmission line oscillator modetlg NDDE (1) possesses a
wealth of delay-induced dynamics. Specifically, we havaluseently developed numerical
continuation routines for NDDESs to demonstrate that theaglyis is organised by homoclinic
orbits. We found snaking branches of periodic solutionsdlcaumulate on these homoclinic
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orbits. For small time delay, there is a homoclinic orbit tst@ady-state. However, beyond a
codimension-two Shil'nikov-Hopf bifurcation the homadlt orbit is connected to a periodic
solution. As the time delay is increased there is a signifizamease in the complexity of the
snaking branches. This appears to coincide with a periadiitg bifurcation of the periodic
solution underlying the homoclinic orbit. There is somedevice that the homoclinic orbit
remains connected to the period-one solution. However, g faund evidence of further
homoclinic/heteroclinic connections involving other ipelic solutions. The exact structure
of the bifurcations involved remains an interesting topicffiture research.

Our case study of the TLO shows that much of the theory of hdimoorbits in ODEs
transfers directly to NDDEs. However, there are peculesithat are due to the NDDE
nature of the problem. In particular, we find that some cogwece rates of the fold points in
homoclinic snaking are substantially slower than thossragiin ODE systems. We attribute
this effect to the essential spectrum, which forms a vdrdsgmptote in the complex plane
close to the imaginary axis.

More generally, bifurcation analysis tools for NDDEs arevrable to reveal a great deal
of useful information about the system in question. Our cisdy of a TLO demonstrates
that these tools allow one to investigate even quite cormaf@it dynamics and bifurcations
of NDDE models arising in applications. In the future we ptarstudy NDDE models of
dynamic substructuring tests [44]. In this hybrid testgetwhere a physical experiment is
bi-directionally coupled to a computer simulation, theaggk due to coupling delays and the
finite response times of actuators. Neutrality of the modska when velocity information is
used as part of the feedback loop.
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