275 research outputs found

    Neuro-Inspired Speech Recognition Based on Reservoir Computing

    Get PDF

    Comparative evaluation of approaches in T.4.1-4.3 and working definition of adaptive module

    Get PDF
    The goal of this deliverable is two-fold: (1) to present and compare different approaches towards learning and encoding movements us- ing dynamical systems that have been developed by the AMARSi partners (in the past during the first 6 months of the project), and (2) to analyze their suitability to be used as adaptive modules, i.e. as building blocks for the complete architecture that will be devel- oped in the project. The document presents a total of eight approaches, in two groups: modules for discrete movements (i.e. with a clear goal where the movement stops) and for rhythmic movements (i.e. which exhibit periodicity). The basic formulation of each approach is presented together with some illustrative simulation results. Key character- istics such as the type of dynamical behavior, learning algorithm, generalization properties, stability analysis are then discussed for each approach. We then make a comparative analysis of the different approaches by comparing these characteristics and discussing their suitability for the AMARSi project

    Modeling neural plasticity in echo state networks for time series prediction

    Get PDF
    In this paper, we investigate the influence of neural plasticity on the learning performance of echo state networks (ESNs) and supervised learning algorithms in training readout connections for two time series prediction problems including the sunspot time series and the Mackey Glass chaotic system. We implement two different plasticity rules that are expected to improve the prediction performance, namely, anti-Oja learning rule and the Bienenstock-Cooper-Munro (BCM) learning rule combined with both offline and online learning of the readout connections. Our experimental results have demonstrated that the neural plasticity can more significantly enhance the learning in offline learning than in online learning

    Echo state model of non-Markovian reinforcement learning, An

    Get PDF
    Department Head: Dale H. Grit.2008 Spring.Includes bibliographical references (pages 137-142).There exists a growing need for intelligent, autonomous control strategies that operate in real-world domains. Theoretically the state-action space must exhibit the Markov property in order for reinforcement learning to be applicable. Empirical evidence, however, suggests that reinforcement learning also applies to domains where the state-action space is approximately Markovian, a requirement for the overwhelming majority of real-world domains. These domains, termed non-Markovian reinforcement learning domains, raise a unique set of practical challenges. The reconstruction dimension required to approximate a Markovian state-space is unknown a priori and can potentially be large. Further, spatial complexity of local function approximation of the reinforcement learning domain grows exponentially with the reconstruction dimension. Parameterized dynamic systems alleviate both embedding length and state-space dimensionality concerns by reconstructing an approximate Markovian state-space via a compact, recurrent representation. Yet this representation extracts a cost; modeling reinforcement learning domains via adaptive, parameterized dynamic systems is characterized by instability, slow-convergence, and high computational or spatial training complexity. The objectives of this research are to demonstrate a stable, convergent, accurate, and scalable model of non-Markovian reinforcement learning domains. These objectives are fulfilled via fixed point analysis of the dynamics underlying the reinforcement learning domain and the Echo State Network, a class of parameterized dynamic system. Understanding models of non-Markovian reinforcement learning domains requires understanding the interactions between learning domains and their models. Fixed point analysis of the Mountain Car Problem reinforcement learning domain, for both local and nonlocal function approximations, suggests a close relationship between the locality of the approximation and the number and severity of bifurcations of the fixed point structure. This research suggests the likely cause of this relationship: reinforcement learning domains exist within a dynamic feature space in which trajectories are analogous to states. The fixed point structure maps dynamic space onto state-space. This explanation suggests two testable hypotheses. Reinforcement learning is sensitive to state-space locality because states cluster as trajectories in time rather than space. Second, models using trajectory-based features should exhibit good modeling performance and few changes in fixed point structure. Analysis of performance of lookup table, feedforward neural network, and Echo State Network (ESN) on the Mountain Car Problem reinforcement learning domain confirm these hypotheses. The ESN is a large, sparse, randomly-generated, unadapted recurrent neural network, which adapts a linear projection of the target domain onto the hidden layer. ESN modeling results on reinforcement learning domains show it achieves performance comparable to lookup table and neural network architectures on the Mountain Car Problem with minimal changes to fixed point structure. Also, the ESN achieves lookup table caliber performance when modeling Acrobot, a four-dimensional control problem, but is less successful modeling the lower dimensional Modified Mountain Car Problem. These performance discrepancies are attributed to the ESN’s excellent ability to represent complex short term dynamics, and its inability to consolidate long temporal dependencies into a static memory. Without memory consolidation, reinforcement learning domains exhibiting attractors with multiple dynamic scales are unlikely to be well-modeled via ESN. To mediate this problem, a simple ESN memory consolidation method is presented and tested for stationary dynamic systems. These results indicate the potential to improve modeling performance in reinforcement learning domains via memory consolidation
    • …
    corecore