4 research outputs found

    New Delay-Range-Dependent Robust Exponential Stability Criteria of Uncertain Impulsive Switched Linear Systems with Mixed Interval Nondifferentiable Time-Varying Delays and Nonlinear Perturbations

    Get PDF
    We investigate the problem of robust exponential stability analysis for uncertain impulsive switched linear systems with time-varying delays and nonlinear perturbations. The time delays are continuous functions belonging to the given interval delays, which mean that the lower and upper bounds for the time-varying delays are available, but the delay functions are not necessary to be differentiable. The uncertainties under consideration are nonlinear time-varying parameter uncertainties and norm-bounded uncertainties, respectively. Based on the combination of mixed model transformation, Halanay inequality, utilization of zero equations, decomposition technique of coefficient matrices, and a common Lyapunov functional, new delay-range-dependent robust exponential stability criteria are established for the systems in terms of linear matrix inequalities (LMIs). A numerical example is presented to illustrate the effectiveness of the proposed method

    Stability interval for time-varying delay systems

    No full text
    Abstract—We investigate the stability analysis of linear timedelay systems. The time-delay is assumed to be a time-varying continuous functionbelonging to an interval (possibly excluding zero) with a bound on its derivative. To this end, we propose to use the quadratic separation framework to assess the intervals on the delay that preserves the stability. Nevertheless, to take the time-varying nature of the delay into account, the quadratic separation principle has to be extended to cope with the general case of time-varying operators. The key idea lies in rewording the delay system as a feedback interconnection consisting of operators that characterize it. The original feature of this contribution is to design a set of additional auxiliary operators that enhance the system modelling and reduce the conservatism of the methodology. Then, separation conditions lead to linear matrix inequality conditions which can beefficiently solved with available semi-definite programming algorithms. The paper concludes with illustrative academic examples. I
    corecore