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We investigate the problem of robust exponential stability analysis for uncertain impulsive switched linear systems with time-
varying delays and nonlinear perturbations.The time delays are continuous functions belonging to the given interval delays, which
mean that the lower and upper bounds for the time-varying delays are available, but the delay functions are not necessary to
be differentiable. The uncertainties under consideration are nonlinear time-varying parameter uncertainties and norm-bounded
uncertainties, respectively. Based on the combination of mixed model transformation, Halanay inequality, utilization of zero
equations, decomposition technique of coefficient matrices, and a common Lyapunov functional, new delay-range-dependent
robust exponential stability criteria are established for the systems in terms of linear matrix inequalities (LMIs). A numerical
example is presented to illustrate the effectiveness of the proposed method.

1. Introduction

The problem of stability analysis for dynamical systems with
time delays and uncertainties has been intensively studied
since these systems often occur in many industrial systems
such as chemical processes, biological systems, population
dynamics, neural networks, large-scale systems, and network
control systems. The occurrence of the time delays and
uncertainties may cause frequently the source of instability
or poor performances in various systems. Thus, there has
been growing interest in stability analysis and controller
design for time-delay systems. However, authors investi-
gated the robust synchronization of coupled fuzzy cellular
neural networks with differentiable time-varying delay in
[1, 2]. Stability criteria for time-delay systems are generally
divided into two classes: delay-independent one and delay-
dependent one. Delay-independent stability criteria tend

to be more conservative, especially for small size delay;
such criteria do not give any information on the size of
the delay. On the other hand, delay-dependent stability
criteria are concerned with the size of the delay and usually
provide a maximal delay size. Most of the existing delay-
dependent stability criteria are presented by using Lyapunov-
Krasovskii approach or Lyapunov-Razumikhin approach.
In recent years, much attention has been paid to stability
analysis of the uncertain linear systems with interval time-
varying delay [3–6]. In [5], the authors studied the delay-
dependent stability problem for uncertain linear systemswith
interval time-varying delay. The restriction on the derivative
of the interval time-varying delay was removed. Moreover,
robust stability analysis of uncertain linear systems with
time-varying delays and nonlinear perturbations has received
the attention of a lot of theoreticians and engineers in this
field over the last few decades [7–14]. Furthermore, authors
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studied the delay-dependent robust stability criteria for linear
systems with discrete interval time-varying delay, discrete
constant delay, and nonlinear perturbations in [15]. However,
a descriptor model transformation and a corresponding
Lyapunov-Krasovskii functional have been introduced for
stability analysis of systems with delays in [16]. In [17], the
authors studied the problem of stability for linear switching
system with time-varying delays.

Over the past decades, the problem of stability analysis
for dynamic systems with impulsive effects and switching
has arisen in a wide range of disciplines, such as physics,
chemical engineering, and biology [18–28]. These systems
are usually called impulsive switched systems. In [24], the
authors studied the asymptotic stability problem for a class of
impulsive switched systems with time-invariant delays based
on LMI approach. Stability criteria of uncertain impulsive
switched systems with time-invariant delays are introduced
in [25]. Most of the existing delay-dependent stability criteria
for time-delay systems are obtained as the upper bounds
on the derivative time-varying delays by using Lyapunov-
Krasovskii functional. However, it appears that few results
are available for stability analysis for impulsive switched
systems with time-varying delays. In consequence, it is
important and interesting to study the problem of robust sta-
bility analysis for uncertain impulsive switched systems with
interval nondifferentiable time-varying delays and nonlinear
perturbations by using a common Lyapunov functional and
Halanay lemma.

In this paper, we present the delay-range-dependent
robust exponential stability criteria for uncertain impulsive
switched linear systemswithmixed interval nondifferentiable
time-varying delays and nonlinear perturbations. Based on
Halanay inequality, mixed model transformation, utilization
of zero equations, decomposition technique of coefficient
matrices, and a common Lyapunov functional, some new
delay-range-dependent robust exponential stability criteria
are derived in terms of LMIs for the systems. In order to
reduce the complexity of stability criteria for calculation and
finding solutions, mixed model transformation [13, 16] and
Halanay inequality [29–31] are used. Finally, an illustrative
example is given to show the effectiveness and advantages of
the developed method.

2. Problem Formulation and Preliminaries

The following notations will be used in this paper:𝑁 denotes
the set of all natural numbers; 𝑅+ denotes the set of all
real nonnegative numbers; 𝑅𝑛 denotes the 𝑛-dimensional
Euclidean space equipped with the Euclidean norm ‖ ⋅ ‖; 𝑅𝑛×𝑟

denotes the space of all matrices of (𝑛 × 𝑟)-dimensions; 𝐴𝑇
denotes the transpose of the matrix 𝐴; 𝐴 is symmetric if
𝐴 = 𝐴

𝑇; 𝐼 denotes the identity matrix; 𝜆(𝐴) denotes the set
of all eigenvalues of 𝐴; 𝜆max(𝐴) = max{Re 𝜆 : 𝜆 ∈ 𝜆(𝐴)};
𝜆min(𝐴) = min{Re 𝜆 : 𝜆 ∈ 𝜆(𝐴)}; matrix 𝐴 is called
semipositive definite (𝐴 ≥ 0) if 𝑥𝑇𝐴𝑥 ≥ 0, for all 𝑥 ∈ 𝑅

𝑛;
𝐴 is positive definite (𝐴 > 0) if 𝑥𝑇𝐴𝑥 > 0 for all 𝑥 ∈ 𝑅𝑛 − {0};
matrix 𝐵 is called seminegative definite (𝐵 ≤ 0) if 𝑥𝑇𝐵𝑥 ≤ 0,
for all 𝑥 ∈ 𝑅

𝑛; 𝐵 is negative definite (𝐵 < 0) if 𝑥𝑇𝐵𝑥 < 0 for

all 𝑥 ∈ 𝑅𝑛 − {0}; 𝐴 > 𝐵means 𝐴 − 𝐵 > 0 (𝐵 − 𝐴 < 0); 𝐴 ≥ 𝐵

means 𝐴 − 𝐵 ≥ 0 (𝐵 − 𝐴 ≤ 0); ℎ = max{ℎ
2
, 𝑟
2
}, ℎ
2
, 𝑟
2
∈ 𝑅
+;

𝑥
𝑡
= 𝑥(𝑡 + 𝑠), 𝑠 ∈ [−ℎ, 0].
Consider the following uncertain impulsive switched

linear system with time delays:

�̇� (𝑡) = 𝐴
𝑖𝑘
(𝑡) 𝑥 (𝑡) + 𝐵

𝑖𝑘
(𝑡) 𝑥 (𝑡 − ℎ

𝑖𝑘
(𝑡))

+ 𝐶
𝑖𝑘
(𝑡) 𝑥 (𝑡 − 𝑟

𝑖𝑘
(𝑡)) + 𝑓

𝑖𝑘
(𝑡, 𝑥 (𝑡))

+ 𝑔
𝑖𝑘
(𝑡, 𝑥 (𝑡 − ℎ

𝑖𝑘
(𝑡)))

+ 𝑤
𝑖𝑘
(𝑡, 𝑥 (𝑡 − 𝑟

𝑖𝑘
(𝑡))) , 𝑡 ̸= 𝑡

𝑘
,

Δ𝑥 (𝑡) = 𝑥 (𝑡) − 𝑥 (𝑡
−

) = 𝐺
𝑘
𝑥 (𝑡
−

− ℎ
𝑖𝑘
(𝑡
−

)) ,

𝑡 = 𝑡
𝑘
,

𝑥 (𝑡
0
+ 𝑠) = 𝜙 (𝑠) , ∀𝑠 ∈ [−ℎ, 0] ,

𝐴
𝑖𝑘
(𝑡) = 𝐴

𝑖𝑘
+ Δ𝐴
𝑖𝑘
(𝑡) ,

𝐵
𝑖𝑘
(𝑡) = 𝐵

𝑖𝑘
+ Δ𝐵
𝑖𝑘
(𝑡) ,

𝐶
𝑖𝑘
(𝑡) = 𝐶

𝑖𝑘
+ Δ𝐶
𝑖𝑘
(𝑡) ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛 denotes the state variable and 𝑖

𝑘
∈ {1, 2,

. . . , 𝑚}, 𝑘,𝑚 ∈ 𝑁. 𝐴
𝑖𝑘
, 𝐵
𝑖𝑘
, 𝐶
𝑖𝑘
, and 𝐺

𝑘
are given constant

matrices of appropriate dimensions. The delays ℎ
𝑖𝑘
(𝑡) and

𝑟
𝑖𝑘
(𝑡) are interval time-varying bounded continuous func-

tions satisfying

0 ≤ ℎ
1
≤ ℎ
𝑖𝑘
(𝑡) ≤ ℎ

2
,

0 ≤ 𝑟
1
≤ 𝑟
𝑖𝑘
(𝑡) ≤ 𝑟

2
,

(2)

where ℎ
1
, ℎ
2
, 𝑟
1
, and 𝑟

2
are given positive real constants. The

uncertainties 𝑓
𝑖𝑘
(⋅), 𝑔
𝑖𝑘
(⋅), and 𝑤

𝑖𝑘
(⋅) represent the nonlinear

parameter perturbationswith respect to the current state𝑥(𝑡),
the delayed state 𝑥(𝑡 − ℎ

𝑖𝑘
(𝑡)), and 𝑥(𝑡 − 𝑟

𝑖𝑘
(𝑡)), respectively.

They satisfy that 𝑓
𝑖𝑘
(𝑡, 0) = 0, 𝑔

𝑖𝑘
(𝑡, 0) = 0, 𝑤

𝑖𝑘
(𝑡, 0) = 0, and

𝑓
𝑇

𝑖𝑘
(𝑡, 𝑥 (𝑡)) 𝑓

𝑖𝑘
(𝑡, 𝑥 (𝑡)) ≤ 𝜂

2

𝑥
𝑇

(𝑡) 𝑥 (𝑡) ,

𝑔
𝑇

𝑖𝑘

(𝑡, 𝑥 (𝑡 − ℎ
𝑖𝑘
(𝑡))) 𝑔

𝑖𝑘
(𝑡, 𝑥 (𝑡 − ℎ

𝑖𝑘
(𝑡)))

≤ 𝜌
2

𝑥
𝑇

(𝑡 − ℎ
𝑖𝑘
(𝑡)) 𝑥 (𝑡 − ℎ

𝑖𝑘
(𝑡)) ,

𝑤
𝑇

𝑖𝑘

(𝑡, 𝑥 (𝑡 − 𝑟
𝑖𝑘
(𝑡)))𝑤

𝑖𝑘
(𝑡, 𝑥 (𝑡 − 𝑟

𝑖𝑘
(𝑡)))

≤ 𝜁
2

𝑥
𝑇

(𝑡 − 𝑟
𝑖𝑘
(𝑡)) 𝑥 (𝑡 − 𝑟

𝑖𝑘
(𝑡)) ,

(3)

where 𝜂, 𝜌, and 𝜁 are given positive real constants. The
uncertain matrices Δ𝐴

𝑖𝑘
(𝑡), Δ𝐵

𝑖𝑘
(𝑡), and Δ𝐶

𝑖𝑘
(𝑡) are norm

bounded and can be described as

[Δ𝐴
𝑖𝑘
(𝑡) Δ𝐵

𝑖𝑘
(𝑡) Δ𝐶

𝑖𝑘
(𝑡)]

= 𝐾
𝑖𝑘
Δ
𝑖𝑘
(𝑡) [𝐿
1

𝑖𝑘

𝐿
2

𝑖𝑘

𝐿
3

𝑖𝑘
] ,

(4)
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where 𝐾
𝑖𝑘
, 𝐿1
𝑖𝑘

, 𝐿2
𝑖𝑘

, and 𝐿
3

𝑖𝑘

are given constant matrices of
appropriate dimensions.The class of parametric uncertainties
Δ
𝑖𝑘
(𝑡), which satisfies

Δ
𝑖𝑘
(𝑡) = 𝐹

𝑖𝑘
(𝑡) [𝐼 − 𝐽𝐹

𝑖𝑘
(𝑡)]
−1

, (5)

is said to be admissible where 𝐽 is a known matrix satisfying

𝐼 − 𝐽𝐽
𝑇

> 0 (6)

and 𝐹
𝑖𝑘
(𝑡) is uncertain matrix satisfying

𝐹
𝑇

𝑖𝑘
(𝑡) 𝐹
𝑖𝑘
(𝑡) ≤ 𝐼. (7)

Hence, Δ𝑥(𝑡) = 𝑥(𝑡
+

𝑘
) − 𝑥(𝑡

−

𝑘
), lim]→0+𝑥(𝑡𝑘 + ]) = 𝑥(𝑡

+

𝑘
), and

𝑥(𝑡
−

𝑘
) = lim]→0+𝑥(𝑡 − ]). 𝜙(𝑡) is the initial function with the

norm ‖𝜙‖ = sup
𝜃∈[−ℎ,0]

‖𝜙(𝜃)‖. We assume that the solution
of the impulsive switched system (1) is right continuous; that
is, 𝑥(𝑡+

𝑘
) = 𝑥(𝑡

𝑘
). 𝑡
𝑘
is an impulsive switching time point and

𝑡
0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< ⋅ ⋅ ⋅ , 𝑡

𝑘
→ +∞ as 𝑘 → +∞, and we

introduce the quantity

𝜏 = inf {𝑡
𝑖+1

− 𝑡
𝑖
: 𝑖 = 1, 2, 3, . . .} . (8)

This 𝜏 is called the dwell time of system (1). Under the
switching law of system (1), at the time 𝑡

𝑘
, the system switches

to the 𝑖
𝑘
subsystem from the 𝑖

𝑘−1
subsystem.

Definition 1. Given𝛽 > 0, system (1) is robustly exponentially
stable, if there exist switching function 𝑖

𝑘
and positive real

constant 𝐾 such that any solution 𝑥(𝑡, 𝜙) of the system
satisfies

𝑥 (𝑡, 𝜙)
 ≤ 𝐾

𝜙
 𝑒
−𝛽𝑡

, ∀𝑡 ∈ 𝑅
+

. (9)

Lemma 2 (see [29] (Halanay lemma)). Let 𝑚(𝑡) be a positive
scalar function and assume that the following condition holds:

𝐷
+

𝑚(𝑡) ≤ −𝑎𝑚 (𝑡) + 𝑏𝑚 (𝑡) , 𝑡 ≥ 𝑡
0
, (10)

where 𝐷+𝑚(𝑡) = lim sup
Δ𝑡→0

+((𝑚(𝑡 + Δ𝑡) − 𝑚(𝑡))/Δ𝑡), 0 <

𝑏 < 𝑎.Then, there exists 𝛽 > 0 such that, for all 𝑡 ≥ 𝑡
0
,

𝑚(𝑡) ≤ 𝑚 (𝑡
0
) 𝑒
−𝛽(𝑡−𝑡0). (11)

Here,𝑚(𝑡) = sup
𝑡−ℎ≤𝑠≤𝑡

{𝑚(𝑠)} and 𝛽 satisfies 𝛽− 𝑎 + 𝑏𝑒𝛽ℎ = 0.

Lemma 3 (see [32] (Schur complement lemma)). Given
constant symmetric matrices 𝑋,𝑌, 𝑍 where 𝑌 > 0, then 𝑋 +

𝑍
𝑇
𝑌
−1
𝑍 < 0 if and only if

(
𝑋 𝑍
𝑇

𝑍 −𝑌

) < 0

𝑜𝑟 (

−𝑌 𝑍

𝑍
𝑇
𝑋

) < 0.

(12)

Lemma 4 (see [33]). For given matrices 𝑄 = 𝑄
𝑇
, 𝐻, 𝐸, 𝑅 =

𝑅
𝑇
> 0 of appropriate dimension, then

𝑄 +𝐻𝐹𝐸 + 𝐸
𝑇

𝐹
𝑇

𝐻
𝑇

< 0 (13)

for all 𝐹 satisfies 𝐹𝑇𝐹 ≤ 𝑅, if and only if there exists a positive
number 𝜖 > 0, such that

𝑄 + 𝜖
−1

𝐻𝐻
𝑇

+ 𝜖𝐸
𝑇

𝑅𝐸 < 0. (14)

Lemma 5 (see [34]). Suppose that Δ(𝑡) is given by (5)–(7). Let
𝑀, 𝑆, and 𝑁 be real matrices of appropriate dimensions with
𝑀 = 𝑀

𝑇. Then, the inequality

𝑀+ 𝑆Δ (𝑡)𝑁 + 𝑁
𝑇

Δ
𝑇

(𝑡) 𝑆
𝑇

< 0 (15)

holds if and only if, for any scalar 𝛿 > 0,

(

𝑀 𝑆 𝛿𝑁
𝑇

𝑆
𝑇

−𝛿𝐼 𝛿𝐽
𝑇

𝛿𝑁 𝛿𝐽 −𝛿𝐼

) < 0. (16)

Lemma 6. Let 𝐺
𝑘
be given matrices as in (1). Let 𝑃 be

symmetric positive definite matrix. Then,

(

𝑃 𝑃𝐺
𝑘

𝐺
𝑇

𝑘
𝑃 𝐺
𝑇

𝑘
𝑃𝐺
𝑘

) ≤ 𝛿
𝑘
𝐼 (17)

if and only if

(

−𝛿
𝑘
𝐼 0 𝑃

0 −𝛿
𝑘
𝐼 𝐺
𝑇

𝑘
𝑃

𝑃 𝑃𝐺
𝑘

−𝑃

) ≤ 0 (18)

for 𝛿
𝑘
are positive real constants, 𝑘 ∈ 𝑁.

Proof. Consider inequality (17); we have

(

𝑃 𝑃𝐺
𝑘

𝐺
𝑇

𝑘
𝑃 𝐺
𝑇

𝑘
𝑃𝐺
𝑘

) ≤ 𝛿
𝑘
𝐼. (19)

Equivalently,

(

−𝛿
𝑘
𝐼 0

0 −𝛿
𝑘
𝐼
) + (

𝐼

𝐺
𝑇

𝑘

)𝑃 (𝐼 𝐺
𝑘
) ≤ 0. (20)

By using Lemma 3 (Schur complement lemma) in the above
inequality, we get

(

−𝛿
𝑘
𝐼 0 𝐼

0 −𝛿
𝑘
𝐼 𝐺
𝑇

𝑘

𝐼 𝐺
𝑘

−𝑃
−1

) ≤ 0. (21)

Premultiplying (21) by diag{𝐼, 𝐼, 𝑃} and postmultiplying by
diag{𝐼, 𝐼, 𝑃}, we obtain the result. The proof of the lemma is
complete.
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Remark 7. Conditions (6) and (7) guarantee that 𝐼 − 𝐽𝐹
𝑖𝑘
(𝑡) is

invertible. It is easy to show that when 𝐽 = 0, the parametric
uncertainty of linear fractional form reduces to a norm-
bounded one.

The objectives of this paper are (i) to establish new
delay-range-dependent sufficient conditions for exponential
stability of nominal system (1) and (ii) to establish new delay-
range-dependent sufficient conditions for robust exponential
stability of system (1).

3. Main Results

In this section, we first present the exponential stability
criteria with delays dependence for nominal system (1)
via LMI approach. Rewrite the nominal system (1) in the
following descriptor system:

�̇� (𝑡) = 𝑦 (𝑡) ,

𝑦 (𝑡) = 𝐴
𝑖𝑘
𝑥 (𝑡) + 𝐵

𝑖𝑘
𝑥 (𝑡 − ℎ

𝑖𝑘
(𝑡)) + 𝐶

𝑖𝑘
𝑥 (𝑡 − 𝑟

𝑖𝑘
(𝑡))

+ 𝑓
𝑖𝑘
(𝑡, 𝑥 (𝑡)) + 𝑔

𝑖𝑘
(𝑡, 𝑥 (𝑡 − ℎ

𝑖𝑘
(𝑡)))

+ 𝑤
𝑖𝑘
(𝑡, 𝑥 (𝑡 − 𝑟

𝑖𝑘
(𝑡))) .

(22)

Let us decompose the constant matrices 𝐵
𝑖𝑘
and 𝐶

𝑖𝑘
as

𝐵
𝑖𝑘
= 𝐵
1

𝑖𝑘

+ 𝐵
2

𝑖𝑘

,

𝐶
𝑖𝑘
= 𝐶
1

𝑖𝑘

+ 𝐶
2

𝑖𝑘

,

(23)

where 𝐵1
𝑖𝑘

, 𝐵2
𝑖𝑘

, 𝐶1
𝑖𝑘

, and 𝐶2
𝑖𝑘

are given real constant matrices
with appropriate dimensions. By Leibniz-Newton formula,
we have

0 = 𝑥 (𝑡) − 𝑥 (𝑡 − ℎ
𝑖𝑘
(𝑡)) − ∫

𝑡

𝑡−ℎ𝑖𝑘
(𝑡)

�̇� (𝑠) 𝑑𝑠,

0 = 𝑥 (𝑡) − 𝑥 (𝑡 − 𝑟
𝑖𝑘
(𝑡)) − ∫

𝑡

𝑡−𝑟𝑖𝑘
(𝑡)

�̇� (𝑠) 𝑑𝑠.

(24)

By utilizing the following zero equations, we get

0 = 𝑁
1
𝑥 (𝑡) − 𝑁

1
𝑥 (𝑡 − ℎ

𝑖𝑘
(𝑡)) − 𝑁

1
∫

𝑡

𝑡−ℎ𝑖𝑘
(𝑡)

�̇� (𝑠) 𝑑𝑠,

0 = 𝑁
2
𝑥 (𝑡) − 𝑁

2
𝑥 (𝑡 − 𝑟

𝑖𝑘
(𝑡)) − 𝑁

2
∫

𝑡

𝑡−𝑟𝑖𝑘
(𝑡)

�̇� (𝑠) 𝑑𝑠,

(25)

where𝑁
1
and𝑁

2
are real constant matrices with appropriate

dimensions which will be chosen to guarantee the exponen-
tial stability of the nominal system (1). By (23)–(25), system
(22) can be represented by the form

�̇� (𝑡) = 𝑦 (𝑡) + (𝑁
1
+ 𝑁
2
) 𝑥 (𝑡) − 𝑁

1
𝑥 (𝑡 − ℎ

𝑖𝑘
(𝑡))

− 𝑁
2
𝑥 (𝑡 − 𝑟

𝑖𝑘
(𝑡)) − 𝑁

1
∫

𝑡

𝑡−ℎ𝑖𝑘
(𝑡)

𝑦 (𝑠) 𝑑𝑠

− 𝑁
2
∫

𝑡

𝑡−𝑟𝑖𝑘
(𝑡)

𝑦 (𝑠) 𝑑𝑠,

𝑦 (𝑡) = (𝐴
𝑖𝑘
+ 𝐵
1

𝑖𝑘

+ 𝐶
1

𝑖𝑘

) 𝑥 (𝑡) + 𝐵
2

𝑖𝑘

𝑥 (𝑡 − ℎ
𝑖𝑘
(𝑡))

+ 𝐶
2

𝑖𝑘

𝑥 (𝑡 − 𝑟
𝑖𝑘
(𝑡)) + 𝑓

𝑖𝑘
(𝑡, 𝑥 (𝑡))

+ 𝑔
𝑖𝑘
(𝑡, 𝑥 (𝑡 − ℎ

𝑖𝑘
(𝑡)))

+ 𝑤
𝑖𝑘
(𝑡, 𝑥 (𝑡 − 𝑟

𝑖𝑘
(𝑡)))

− 𝐵
1

𝑖𝑘
∫

𝑡

𝑡−ℎ𝑖𝑘
(𝑡)

𝑦 (𝑠) 𝑑𝑠 − 𝐶
1

𝑖𝑘
∫

𝑡

𝑡−𝑟𝑖𝑘
(𝑡)

𝑦 (𝑠) 𝑑𝑠.

(26)

We now introduce the following notations for later use:

∑

𝑖𝑘

= (Σ
𝑖𝑘

𝑖,𝑗
)
9×9

, (27)

where Σ𝑖𝑘
𝑖,𝑗
= Σ
𝑖𝑘

𝑗,𝑖

𝑇

, 𝑖, 𝑗 = 1, 2, 3, . . . , 9,

𝑈 = 𝑃𝑁
1
,

𝑊 = 𝑃𝑁
2
,

Σ
𝑖𝑘

1,1
= 𝑈 +𝑊 + 𝑈

𝑇

+𝑊
𝑇

+ 𝑄
𝑇

1
(𝐴
𝑖𝑘
+ 𝐵
1

𝑖𝑘

+ 𝐶
1

𝑖𝑘

)

+ (𝐴
𝑖𝑘
+ 𝐵
1

𝑖𝑘

+ 𝐶
1

𝑖𝑘

)
𝑇

𝑄
1
+ 𝜖
1
𝜂
2

𝐼 + 𝑎𝑃,

Σ
𝑖𝑘

1,2
= 𝑃 − 𝑄

𝑇

1
+ (𝐴
𝑖𝑘
+ 𝐵
1

𝑖𝑘

+ 𝐶
1

𝑖𝑘

)
𝑇

𝑄
2
,

Σ
𝑖𝑘

1,3
= −𝑈 + 𝑄

𝑇

1
𝐵
2

𝑖𝑘

+ (ℎ
2
− ℎ
1
) 𝑄
3
,

Σ
𝑖𝑘

1,4
= −𝑊 + 𝑄

𝑇

1
𝐶
2

𝑖𝑘

+ (𝑟
2
− 𝑟
1
) 𝑄
4
,

Σ
𝑖𝑘

1,5
= 𝑄
𝑇

1
,

Σ
𝑖𝑘

1,6
= 𝑄
𝑇

1
,

Σ
𝑖𝑘

1,7
= 𝑄
𝑇

1
,

Σ
𝑖𝑘

1,8
= −𝑈 − 𝑄

𝑇

1
𝐵
1

𝑖𝑘

+ (ℎ
2
− ℎ
1
) 𝑄
5
,
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Σ
𝑖𝑘

1,9
= −𝑊 − 𝑄

𝑇

1
𝐶
1

𝑖𝑘

+ (𝑟
2
− 𝑟
1
) 𝑄
6
,

Σ
𝑖𝑘

2,2
= −𝑄
𝑇

2
− 𝑄
2
,

Σ
𝑖𝑘

2,3
= 𝑄
𝑇

2
𝐵
2

𝑖𝑘

,

Σ
𝑖𝑘

2,4
= 𝑄
𝑇

2
𝐶
2

𝑖𝑘

,

Σ
𝑖𝑘

2,5
= 𝑄
𝑇

2
,

Σ
𝑖𝑘

2,6
= 𝑄
𝑇

2
,

Σ
𝑖𝑘

2,7
= 𝑄
𝑇

2
,

Σ
𝑖𝑘

2,8
= −𝑄
𝑇

2
𝐵
1

𝑖𝑘

,

Σ
𝑖𝑘

2,9
= −𝑄
𝑇

2
𝐶
1

𝑖𝑘

,

Σ
𝑖𝑘

3,3
= − (ℎ

2
− ℎ
1
) 𝑄
3
− (ℎ
2
− ℎ
1
) 𝑄
𝑇

3
+ 𝜖
2
𝜌
2

𝐼 − 𝑏𝑃,

Σ
𝑖𝑘

3,4
= Σ
𝑖𝑘

3,5
= Σ
𝑖𝑘

3,6
= Σ
𝑖𝑘

3,7
= 0,

Σ
𝑖𝑘

3,8
= − (ℎ

2
− ℎ
1
) 𝑄
𝑇

3
− (ℎ
2
− ℎ
1
) 𝑄
5
,

Σ
𝑖𝑘

3,9
= 0,

Σ
𝑖𝑘

4,4
= − (𝑟

2
− 𝑟
1
) 𝑄
4
− (𝑟
2
− 𝑟
1
) 𝑄
𝑇

4
+ 𝜖
3
𝜁
2

𝐼 − 𝑐𝑃,

Σ
𝑖𝑘

4,5
= Σ
𝑖𝑘

4,6
= Σ
𝑖𝑘

4,7
= Σ
𝑖𝑘

4,8
= 0,

Σ
𝑖𝑘

4,9
= − (𝑟

2
− 𝑟
1
) 𝑄
𝑇

4
− (𝑟
2
− 𝑟
1
) 𝑄
6
,

Σ
𝑖𝑘

5,5
= −𝜖
1
𝐼,

Σ
𝑖𝑘

5,6
= Σ
𝑖𝑘

5,7
= Σ
𝑖𝑘

5,8
= Σ
𝑖𝑘

5,9
= 0,

Σ
𝑖𝑘

6,6
= −𝜖
2
𝐼,

Σ
𝑖𝑘

6,7
= Σ
𝑖𝑘

6,8
= Σ
𝑖𝑘

6,9
= 0,

Σ
𝑖𝑘

7,7
= −𝜖
3
𝐼,

Σ
𝑖𝑘

7,8
= Σ
𝑖𝑘

7,9
= 0,

Σ
𝑖𝑘

8,8
= − (ℎ

2
− ℎ
1
) 𝑄
5
− (ℎ
2
− ℎ
1
) 𝑄
𝑇

5
,

Σ
𝑖𝑘

8,9
= 0,

Σ
𝑖𝑘

9,9
= − (𝑟

2
− 𝑟
1
) 𝑄
6
− (𝑟
2
− 𝑟
1
) 𝑄
𝑇

6
.

(28)

Theorem 8. The nominal system (1) is exponentially stable if
there exist symmetric positive definite matrix 𝑃, any appropri-
ate dimensional matrices 𝑁

1
, 𝑁
2
, and 𝑄

𝑖
, 𝑖 = 1, 2, . . . , 6, and

positive real constants 𝜇, 𝜆, 𝜂, 𝜌, 𝜁, 𝜖
1
, 𝜖
2
, 𝜖
3
, 𝑎, 𝑏, and 𝑐 with

𝑎 > 𝑏+ 𝑐 and 𝛿
𝑘
> 0 for all 𝑘 ∈ 𝑁 such that the following LMIs

hold:

∑

𝑖𝑘

< 0, (29)

(

−𝛿
𝑘
𝐼 0 𝑃

0 −𝛿
𝑘
𝐼 𝐺
𝑇

𝑘
𝑃

𝑃 𝑃𝐺
𝑘

−𝑃

) ≤ 0, (30)

𝜇ℎ ≤ inf
𝑘∈𝑁

{𝑡
𝑘
− 𝑡
𝑘−1

} , (31)

max {𝛿
𝑘
+ 𝛿
𝑘
𝑒
𝜆ℎ

} ≤ 𝑀 < 𝑒
𝜆𝜇ℎ

, (32)

where 𝛿
𝑘
= 𝛿
𝑘
/𝜆min(𝑃), 𝑘 ∈ 𝑁, and 𝜆 is the unique positive

root of the equation 𝜆 − 𝑎 + (𝑏 + 𝑐)𝑒𝜆ℎ = 0.

Proof. Consider a common Lyapunov functional

𝑉 (𝑥 (𝑡)) = 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) (33)

for 𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
) and a symmetric positive definite matrix 𝑃.

It is easy to see that

𝜆
1
‖𝑥‖
2

≤ 𝑉 (𝑥 (𝑡)) ≤ 𝜆
2
‖𝑥‖
2

, (34)

where 𝜆
1
= 𝜆min(𝑃) and 𝜆2 = 𝜆max(𝑃). The Dini derivative

of 𝑉(𝑥(𝑡)) along the trajectories of system (26) is given by

𝐷
+

𝑉 (𝑥 (𝑡)) = 2𝑥
𝑇

(𝑡) 𝑃 [𝑦 (𝑡) + (𝑁
1
+ 𝑁
2
) 𝑥 (𝑡)

− 𝑁
1
𝑥 (𝑡 − ℎ

𝑖𝑘
(𝑡)) − 𝑁

2
𝑥 (𝑡 − 𝑟

𝑖𝑘
(𝑡))

− 𝑁
1
∫

𝑡

𝑡−ℎ𝑖𝑘
(𝑡)

𝑦 (𝑠) 𝑑𝑠 − 𝑁
2
∫

𝑡

𝑡−𝑟𝑖𝑘
(𝑡)

𝑦 (𝑠) 𝑑𝑠]

+ 2𝑥
𝑇

(𝑡) 𝑄
𝑇

1
[−𝑦 (𝑡) + (𝐴

𝑖𝑘
+ 𝐵
1

𝑖𝑘

+ 𝐶
1

𝑖𝑘

) 𝑥 (𝑡)

+ 𝐵
2

𝑖𝑘

𝑥 (𝑡 − ℎ
𝑖𝑘
(𝑡)) + 𝐶

2

𝑖𝑘

𝑥 (𝑡 − 𝑟
𝑖𝑘
(𝑡))

+ 𝑓
𝑖𝑘
(𝑡, 𝑥 (𝑡)) + 𝑔

𝑖𝑘
(𝑡, 𝑥 (𝑡 − ℎ

𝑖𝑘
(𝑡)))

+ 𝑤
𝑖𝑘
(𝑡, 𝑥 (𝑡 − 𝑟

𝑖𝑘
(𝑡))) − 𝐵

1

𝑖𝑘
∫

𝑡

𝑡−ℎ𝑖𝑘
(𝑡)

𝑦 (𝑠) 𝑑𝑠
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− 𝐶
1

𝑖𝑘
∫

𝑡

𝑡−𝑟𝑖𝑘
(𝑡)

𝑦 (𝑠) 𝑑𝑠] + 2𝑦
𝑇

(𝑡) 𝑄
𝑇

2
[−𝑦 (𝑡)

+ (𝐴
𝑖𝑘
+ 𝐵
1

𝑖𝑘

+ 𝐶
1

𝑖𝑘

) 𝑥 (𝑡) + 𝐵
2

𝑖𝑘

𝑥 (𝑡 − ℎ
𝑖𝑘
(𝑡))

+ 𝐶
2

𝑖𝑘

𝑥 (𝑡 − 𝑟
𝑖𝑘
(𝑡)) + 𝑓

𝑖𝑘
(𝑡, 𝑥 (𝑡))

+ 𝑔
𝑖𝑘
(𝑡, 𝑥 (𝑡 − ℎ

𝑖𝑘
(𝑡))) + 𝑤

𝑖𝑘
(𝑡, 𝑥 (𝑡 − 𝑟

𝑖𝑘
(𝑡)))

− 𝐵
1

𝑖𝑘
∫

𝑡

𝑡−ℎ𝑖𝑘
(𝑡)

𝑦 (𝑠) 𝑑𝑠 − 𝐶
1

𝑖𝑘
∫

𝑡

𝑡−𝑟𝑖𝑘
(𝑡)

𝑦 (𝑠) 𝑑𝑠] + 2 (ℎ
2

− ℎ
1
) 𝑥
𝑇

(𝑡 − ℎ
𝑖𝑘
(𝑡))𝑄

𝑇

3
[𝑥 (𝑡) − 𝑥 (𝑡 − ℎ

𝑖𝑘
(𝑡))

− ∫

𝑡

𝑡−ℎ𝑖𝑘
(𝑡)

𝑦 (𝑠) 𝑑𝑠] + 2 (𝑟
2
− 𝑟
1
) 𝑥
𝑇

(𝑡 − 𝑟
𝑖𝑘
(𝑡))

⋅ 𝑄
𝑇

4
[𝑥 (𝑡)

− 𝑥 (𝑡 − 𝑟
𝑖𝑘
(𝑡)) − ∫

𝑡

𝑡−𝑟𝑖𝑘
(𝑡)

𝑦 (𝑠) 𝑑𝑠] + 2 (ℎ
2
− ℎ
1
)

⋅ ∫

𝑡

𝑡−ℎ𝑖𝑘
(𝑡)

𝑦
𝑇

(𝑠) 𝑑𝑠𝑄
𝑇

5
[𝑥 (𝑡) − 𝑥 (𝑡 − ℎ

𝑖𝑘
(𝑡))

− ∫

𝑡

𝑡−ℎ𝑖𝑘
(𝑡)

𝑦 (𝑠) 𝑑𝑠] + 2 (𝑟
2
− 𝑟
1
) ∫

𝑡

𝑡−𝑟𝑖𝑘
(𝑡)

𝑦
𝑇

(𝑠) 𝑑𝑠

⋅ 𝑄
𝑇

6
[𝑥 (𝑡)

− 𝑥 (𝑡 − 𝑟
𝑖𝑘
(𝑡)) − ∫

𝑡

𝑡−𝑟𝑖𝑘
(𝑡)

𝑦 (𝑠) 𝑑𝑠] ,

(35)

for any appropriate dimensional matrices 𝑄
𝑖
, 𝑖 = 1, 2, . . . , 6.

Since

0 ≤ 𝜖
1
𝜂
2

𝑥
𝑇

(𝑡) 𝑥 (𝑡) − 𝜖
1
𝑓
𝑇

𝑖𝑘
(⋅) 𝑓
𝑖𝑘
(⋅) ,

0 ≤ 𝜖
2
𝜌
2

𝑥
𝑇

(𝑡 − ℎ
𝑖𝑘
(𝑡)) 𝑥 (𝑡 − ℎ

𝑖𝑘
(𝑡))

− 𝜖
2
𝑔
𝑇

𝑖𝑘
(⋅) 𝑔
𝑖𝑘
(⋅) ,

0 ≤ 𝜖
3
𝜁
2

𝑥
𝑇

(𝑡 − 𝑟
𝑖𝑘
(𝑡)) 𝑥 (𝑡 − 𝑟

𝑖𝑘
(𝑡)) − 𝜖

3
ℎ
𝑇

𝑖𝑘
(⋅) ℎ
𝑖𝑘
(⋅) ,

(36)

for positive real constants 𝜖
1
, 𝜖
2
, and 𝜖

3
, we obtain

𝐷
+

𝑉 (𝑥 (𝑡)) ≤ 𝜔
𝑇

(𝑡)∑

𝑖𝑘

𝜔 (𝑡) − 𝑎𝑉 (𝑥 (𝑡))

+ (𝑏 + 𝑐) 𝑉 (𝑥 (𝑡)) ,

(37)

where

𝜔
𝑇

(𝑡) = [𝑥
𝑇

(𝑡) , 𝑦
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − ℎ
𝑖𝑘
(𝑡)) ,

𝑥
𝑇

(𝑡 − 𝑟
𝑖𝑘
(𝑡)) , 𝑓

𝑇

𝑖𝑘
(𝑡, 𝑥 (𝑡)) , 𝑔

𝑇

𝑖𝑘

(𝑡, 𝑥 (𝑡 − ℎ
𝑖𝑘
(𝑡))) ,

𝑤
𝑇

𝑖𝑘

(𝑡, 𝑥 (𝑡 − 𝑟
𝑖𝑘
(𝑡))) , ∫

𝑡

𝑡−ℎ𝑖𝑘
(𝑡)

𝑦
𝑇

(𝑠) 𝑑𝑠,

∫

𝑡

𝑡−𝑟𝑖𝑘
(𝑡)

𝑦
𝑇

(𝑠) 𝑑𝑠] ,

𝑉 (𝑥 (𝑡)) = sup
𝑡−ℎ≤𝑠≤𝑡

{𝑉 (𝑥 (𝑠))} .

(38)

From (29) and (37), we obtain

𝐷
+

𝑉 (𝑥 (𝑡)) ≤ −𝑎𝑉 (𝑥 (𝑡)) + (𝑏 + 𝑐) 𝑉 (𝑥 (𝑡)) . (39)

By (39) and Lemma 2 with 𝑎 > 𝑏+𝑐 for 𝑎, 𝑏, 𝑐 ∈ 𝑅+, we obtain
that there exists 𝜆 > 0 such that, for all 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
), 𝑘 ∈ 𝑁,

𝑉 (𝑥 (𝑡)) ≤ 𝑉 (𝑥 (𝑡
𝑘−1

)) 𝑒
−𝜆(𝑡−𝑡𝑘−1), (40)

where 𝑉(𝑥(𝑡
𝑘−1

)) = sup
𝑡𝑘−1−ℎ≤𝑠≤𝑡𝑘−1

{𝑉(𝑥(𝑠))}. Consider the
case when 𝑡 = 𝑡

𝑘
. In this case, we have

𝑉 (𝑥 (𝑡
𝑘
)) = 𝑥

𝑇

(𝑡
𝑘
) 𝑃𝑥 (𝑡

𝑘
)

= [𝑥 (𝑡
−

𝑘
) + 𝐺
𝑘
𝑥 (𝑡
−

𝑘
− ℎ
𝑖𝑘
(𝑡
−

𝑘
))]
𝑇

⋅ 𝑃 [𝑥 (𝑡
−

𝑘
) + 𝐺
𝑘
𝑥 (𝑡
−

𝑘
− ℎ
𝑖𝑘
(𝑡
−

𝑘
))] = 𝑥

𝑇

(𝑡
−

𝑘
) 𝑃𝑥 (𝑡

−

𝑘
)

+ 2𝑥
𝑇

(𝑡
−

𝑘
) 𝑃𝐺
𝑘
𝑥 (𝑡
−

𝑘
− ℎ
𝑖𝑘
(𝑡
−

𝑘
))

+ 𝑥
𝑇

(𝑡
−

𝑘
− ℎ
𝑖𝑘
(𝑡
−

𝑘
)) 𝐺
𝑇

𝑘
𝑃𝐺
𝑘
𝑥 (𝑡
−

𝑘
− ℎ
𝑖𝑘
(𝑡
−

𝑘
))

= (

𝑥 (𝑡
−

𝑘
)

𝑥 (𝑡
−

𝑘
− ℎ
𝑖𝑘
(𝑡
−

𝑘
))

)

𝑇

⋅ (

𝑃 𝑃𝐺
𝑘

𝐺
𝑇

𝑘
𝑃 𝐺
𝑇

𝑘
𝑃𝐺
𝑘

)(

𝑥 (𝑡
−

𝑘
)

𝑥 (𝑡
−

𝑘
− ℎ
𝑖𝑘
(𝑡
−

𝑘
))

) .

(41)

By (30) and (34) and Lemma 6, we get

𝑉 (𝑥 (𝑡
𝑘
)) ≤ 𝛿

𝑘
𝑉 (𝑥 (𝑡

−

𝑘
)) + 𝛿

𝑘
𝑉(𝑥 (𝑡

−

𝑘
− ℎ
𝑖𝑘
(𝑡
−

𝑘
))) , (42)

where 𝛿
𝑘
= 𝛿
𝑘
/𝜆
1
. For 𝑥(𝑡) = 𝜙(𝑡), with 𝑡 ∈ [𝑡

0
− ℎ, 𝑡
0
], we

will show that

𝑉 (𝑥 (𝑡)) ≤ 𝜆
2
𝑀
𝑘−1 𝜙



2

𝑒
−𝜆(𝑡−𝑡0),

𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
) , 𝑘 ∈ 𝑁,

(43)

where ‖𝜙‖ = sup
𝑡0−ℎ≤𝑡≤𝑡0

‖𝜙(𝑡)‖.We can prove inequality (43)
by mathematical induction. Indeed, when 𝑘 = 1, we have

𝑉 (𝑥 (𝑡)) ≤ 𝜆
2
‖𝑥 (𝑡)‖

2

= 𝜆
2

𝜙 (𝑡)


2

,

𝑡 ∈ [𝑡
0
− ℎ, 𝑡
0
] .

(44)



Discrete Dynamics in Nature and Society 7

Since ‖𝜙‖2 = sup
𝑡0−ℎ≤𝑡≤𝑡0

‖𝜙(𝑡)‖
2, we have

𝑉 (𝑥 (𝑡
0
)) ≤ 𝜆

2

𝜙


2

. (45)

From (40) and (45), we obtain

𝑉 (𝑥 (𝑡)) ≤ 𝑉 (𝑥 (𝑡
0
)) 𝑒
−𝜆(𝑡−𝑡0) ≤ 𝜆

2

𝜙


2

𝑒
−𝜆(𝑡−𝑡0)

≤ 𝜆
2
𝑀
0 𝜙



2

𝑒
−𝜆(𝑡−𝑡0), 𝑡 ∈ [𝑡

0
, 𝑡
1
) .

(46)

Therefore, (43) holds for 𝑘 = 1.
Next, we assume that (43) holds for 𝑘 ≤ 𝑚, 𝑚 ≥ 1. Then,

we need to show that (43) holds when 𝑘 = 𝑚+1. By the above
induction assumption, (32), (40), and (43), we have

𝑉 (𝑥 (𝑡
𝑚
)) ≤ 𝛿

𝑚
𝑉 (𝑥 (𝑡

−

𝑚
)) + 𝛿

𝑚
𝑉 (𝑥 (𝑡

−

𝑚
− ℎ (𝑡
−

𝑚
)))

≤ 𝜆
2
𝑀
𝑚−1

𝛿
𝑚

𝜙


2

𝑒
−𝜆(𝑡𝑚−𝑡0)

+ 𝜆
2
𝑀
𝑚−1

𝛿
𝑚

𝜙


2

𝑒
−𝜆(𝑡𝑚−ℎ(𝑡𝑚)−𝑡0)

≤ 𝜆
2
𝑀
𝑚−1

(𝛿
𝑚
+ 𝛿
𝑚
𝑒
𝜆ℎ

)
𝜙


2

𝑒
−𝜆(𝑡𝑚−𝑡0)

≤ 𝜆
2
𝑀
𝑚 𝜙



2

𝑒
−𝜆(𝑡𝑚−𝑡0).

(47)

Hence, it follows from (40) and (47) that

𝑉 (𝑥 (𝑡)) ≤ 𝑉 (𝑥 (𝑡
𝑚
)) 𝑒
−𝜆(𝑡−𝑡𝑚) = max

𝑡𝑚−ℎ≤𝑡≤𝑡𝑚

{𝑉 (𝑥 (𝑡))}

⋅ 𝑒
−𝜆(𝑡−𝑡𝑚)

= max
{

{

{

sup
𝑡𝑚−1−ℎ≤𝑠<𝑡𝑚

{𝑉 (𝑥 (𝑡))} , {𝑉 (𝑥 (𝑡
𝑚
))}

}

}

}

⋅ 𝑒
−𝜆(𝑡−𝑡𝑚) ≤ max {𝜆

2
𝑀
𝑚−1 𝜙



2

⋅𝑒
−𝜆(𝑡𝑚−ℎ−𝑡0), 𝜆

2
𝑀
𝑚 𝜙



2

𝑒
−𝜆(𝑡𝑚−𝑡0)} 𝑒

−𝜆(𝑡−𝑡𝑚)

= max {𝜆
2
𝑀
𝑚−1

𝑒
𝜆ℎ

, 𝜆
2
𝑀
𝑚

}
𝜙


2

⋅ 𝑒
−𝜆(𝑡𝑚−𝑡0)𝑒

−𝜆(𝑡−𝑡𝑚) ≤ 𝜆
2
𝑀
𝑚 𝜙



2

𝑒
−𝜆(𝑡−𝑡0).

(48)

Therefore, (43) holds for all 𝑘 ∈ 𝑁. By (31), we get that 𝑘−1 ≤
(𝑡
𝑘−1

− 𝑡
0
)/𝜇ℎ, which implies

𝑀
𝑘−1

≤ 𝑒
((𝑡𝑘−1−𝑡0) ln𝑀)/𝜇ℎ ≤ 𝑒

((𝑡−𝑡0) ln𝑀)/𝜇ℎ, (49)

for 𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
). We get

‖𝑥 (𝑡)‖
2

≤
𝑉 (𝑥 (𝑡))

𝜆
1

≤
𝜆
2

𝜆
1

𝜙


2

(𝑀)
𝑘−1

𝑒
−𝜆(𝑡−𝑡0)

≤
𝜆
2

𝜆
1

𝜙


2

𝑒
(−𝜆+(ln𝑀)/𝜇ℎ)(𝑡−𝑡0).

(50)

Finally, we conclude that

‖𝑥 (𝑡)‖ ≤ 𝐾
𝜙
 𝑒
−𝛽(𝑡−𝑡0), 𝑡 ≥ 𝑡

0
, (51)

where 𝛽 = (1/2)[𝜆 − (ln𝑀)/𝜇ℎ] > 0, 𝐾 = √𝜆
2
/𝜆
1
> 0.This

means that the nominal system (1) is exponentially stable.The
proof of the theorem is complete.

Next, we now present the new delay-range-dependent
robust exponential stability criteria for system (1). We intro-
duce the following notations for later use:

Γ
𝑇

𝑖𝑘

= [𝐾
𝑇

𝑖𝑘

𝑄
1
𝐾
𝑇

𝑖𝑘

𝑄
2
0 0 0 0 0 0 (V

2
− V
1
)𝐾
𝑇

𝑖𝑘

𝑄
3
] ,

Υ
𝑖𝑘
= [𝐿
1

𝑖𝑘

0 𝐿
2

𝑖𝑘

𝐿
3

𝑖𝑘

0 0 0 0 𝐿
4

𝑖𝑘
] ,

̃
∑

𝑖𝑘

= (

∑

𝑖𝑘

Γ
𝑖𝑘

𝜎Υ
𝑇

𝑖𝑘

Γ
𝑇

𝑖𝑘

−𝜎𝐼 𝜎𝐽
𝑇

𝜎Υ
𝑖𝑘

𝜎𝐽 −𝜎𝐼

) .

(52)

Theorem 9. System (1) is robustly exponentially stable if there
exist symmetric positive definite matrix 𝑃, any appropriate
dimensional matrices 𝑁

1
, 𝑁
2
, and 𝑄

𝑖
, 𝑖 = 1, 2, . . . , 6, and

positive real constants 𝜎, 𝜇, 𝜆, 𝜂, 𝜌, 𝜁, 𝜖
1
, 𝜖
2
, 𝜖
3
, 𝑎, 𝑏, and 𝑐

with 𝑎 > 𝑏 + 𝑐 and 𝛿
𝑘
> 0 for all 𝑘 ∈ 𝑁 such that the following

LMIs hold:

̃
∑

𝑖𝑘

< 0, (53)

(

−𝛿
𝑘
𝐼 0 𝑃

0 −𝛿
𝑘
𝐼 𝐺
𝑇

𝑘
𝑃

𝑃 𝑃𝐺
𝑘

−𝑃

) ≤ 0, (54)

𝜇ℎ ≤ inf
𝑘∈𝑁

{𝑡
𝑘
− 𝑡
𝑘−1

} , (55)

max {𝛿
𝑘
+ 𝛿
𝑘
𝑒
𝜆ℎ

} ≤ 𝑀 < 𝑒
𝜆𝜇ℎ

, (56)

where 𝛿
𝑘
= 𝛿
𝑘
/𝜆min(𝑃), 𝑘 ∈ 𝑁, and 𝜆 is the unique positive

root of the equation 𝜆 − 𝑎 + (𝑏 + 𝑐)𝑒𝜆ℎ = 0.

Proof. Replacing 𝐴
𝑖𝑘
, 𝐵2
𝑖𝑘

, and 𝐶2
𝑖𝑘

in (29) with 𝐴
𝑖𝑘
(𝑡) = 𝐴

𝑖𝑘
+

𝐾
𝑖𝑘
Δ
𝑖𝑘
(𝑡)𝐿
1

𝑖𝑘

, 𝐵2
𝑖𝑘

(𝑡) = 𝐵
2

𝑖𝑘

+ 𝐾
𝑖𝑘
Δ
𝑖𝑘
(𝑡)𝐿
2

𝑖𝑘

, and 𝐶2
𝑖𝑘

(𝑡) = 𝐶
2

𝑖𝑘

+

𝐾
𝑖𝑘
Δ
𝑖𝑘
(𝑡)𝐿
3

𝑖𝑘

, respectively, we find that

∑

𝑖𝑘

+ Γ
𝑖𝑘
Δ
𝑖𝑘
(𝑡) Υ
𝑖𝑘
+ Υ
𝑇

𝑖𝑘

Δ
𝑖𝑘
(𝑡)
𝑇

Γ
𝑇

𝑖𝑘

< 0. (57)

By Lemma 5, we can find that (53) is equivalent to (57)
where 𝜎 is positive real constant. The proof of the theorem
is complete.

4. Numerical Example

Example 1. Consider the following uncertain impulsive
switched linear system with mixed interval time-varying
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delays and nonlinear perturbations (1) under a given switch-
ing law. That is, the switching status alternates as 𝑖

1
→ 𝑖
2
→

𝑖
1
→ 𝑖
2
→ ⋅ ⋅ ⋅ . We consider robust exponential stability

performance of system (1) by using Theorem 9. System (1) is
specified as follows:

𝐴
1
= (

−4 0

−1 −3
) ,

𝐴
2
= (

−3 1

0 −2
) ,

𝐵
1
= (

−1 0

−1 −1
) ,

𝐵
2
= (

−1 0

−1 −1
) ,

𝐶
1
= (

−1 0

−1 −1
) ,

𝐶
2
= (

−1 0

−1 −1
) ,

𝐾
1
= (

0.3 −0.1

0.2 0.5
) ,

𝐾
2
= (

0.2 0.2

−0.1 0.4
) ,

𝐿
1

1
= (

0.4 0.1

−0.2 −0.2
) ,

𝐿
1

2
= (

0.3 −0.1

−0.1 −0.2
) ,

𝐿
2

1
= (

−0.1 0.2

0 −0.2
) ,

𝐿
2

2
= (

0.2 0.1

0 −0.2
) ,

𝐿
3

1
= (

−0.2 0

−0.3 0.3
) ,

𝐿
3

2
= (

−0.3 0

−0.3 0.3
) ,

𝐺
𝑘
= (

−0.5 0

0 −0.5
) ,

𝐽 = (

0.1 0

0 0.1
) ,

𝑓
1
(𝑡, 𝑥 (𝑡)) = (

0.1 cos (𝑡) 𝑥
1
(𝑡)

0.1 cos (𝑡) 𝑥
2
(𝑡)
) ,

𝑓
2
(𝑡, 𝑥 (𝑡)) = (

0.1 sin (𝑡) 𝑥
1
(𝑡)

0.1 cos (𝑡) 𝑥
2
(𝑡)
) ,

𝑔
1
(𝑡, 𝑥 (𝑡 − ℎ

1
(𝑡))) = (

0.1 sin (𝑡) 𝑥
1
(𝑡 − ℎ

1
(𝑡))

0.1 sin (𝑡) 𝑥
2
(𝑡 − ℎ

1
(𝑡))

) ,

𝑔
2
(𝑡, 𝑥 (𝑡 − ℎ

2
(𝑡))) = (

0.1 cos (𝑡) 𝑥
1
(𝑡 − ℎ

2
(𝑡))

0.1 sin (𝑡) 𝑥
2
(𝑡 − ℎ

2
(𝑡))

) ,

ℎ
1
(𝑡, 𝑥 (𝑡 − 𝑟

1
(𝑡))) = (

0.1 sin (𝑡) 𝑥
1
(𝑡 − 𝑟
1
(𝑡))

0.1 sin (𝑡) 𝑥
2
(𝑡 − 𝑟
1
(𝑡))

) ,

ℎ
2
(𝑡, 𝑥 (𝑡 − 𝑟

2
(𝑡))) = (

0.1 cos (𝑡) 𝑥
1
(𝑡 − 𝑟
2
(𝑡))

0.1 cos (𝑡) 𝑥
2
(𝑡 − 𝑟
2
(𝑡))

) .

(58)

Decompose the matrices 𝐵
1
= 𝐵
1

1
+ 𝐵
2

1
, 𝐵
2
= 𝐵
1

2
+ 𝐵
2

2
, 𝐶
1
=

𝐶
1

1
+ 𝐶
2

1
, and 𝐶

2
= 𝐶
1

2
+ 𝐶
2

2
, where

𝐵
1

1
= (

−0.8 0

−0.5 −0.7
) ,

𝐵
2

1
= (

−0.2 0

−0.5 −0.3
) ,

𝐵
1

2
= (

−0.7 0

−0.4 −0.8
) ,

𝐵
2

2
= (

−0.3 0

−0.6 −0.2
) ,

𝐶
1

1
= (

−0.6 0

−0.5 −0.8
) ,

𝐶
2

1
= (

−0.4 0

−0.5 −0.2
) ,

𝐶
1

2
= (

−0.5 0

−0.5 −0.5
) ,

𝐶
2

2
= (

−0.5 0

−0.5 −0.5
) ,

ℎ
1
(𝑡) = 0.5 + |sin (𝑡)| ,

ℎ
2
(𝑡) = 0.6 + 0.8 |cos (𝑡)| ,

𝑟
1
(𝑡) = 0.1 + |cos (𝑡)| ,

𝑟
2
(𝑡) = 0.1 + 1.2 |sin (𝑡)| ,

𝑎 = 2.3,

𝑏 = 1,

𝑐 = 1.

(59)
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Figure 1: The numerical solutions 𝑥
1
(𝑡) and 𝑥

2
(𝑡) are presented for

system (1) in Example 1.

It is easy to see that 𝜂 = 0.1, 𝜌 = 0.1, 𝜁 = 0.1, ℎ
1
= 0.5,

ℎ
2
= 1.5, 𝑟

1
= 0.1, and 𝑟

2
= 1.3. By using LMI Toolbox

in MATLAB, we use (29)–(32) in Theorem 9. This example
shows that the solutions of LMIs are given as follows:

𝑃 = (

2.52 −0.17

−0.17 0.64
) ,

𝑄1 = (

1.40 −0.12

−0.12 0.56
) ,

𝑄2 = (

0.41 −0.10

−0.10 0.16
) ,

𝑄3 = (

0.24 0.01

0.01 0.45
) ,

𝑄4 = (

0.24 0.04

0.04 0.43
) ,

𝑄5 = (

0.70 −0.002

−0.002 0.56
) ,

𝑄6 = (

0.57 0.01

0.01 0.46
) ,

𝑁
1
= (

0.33 −0.01

0.13 −0.33
) ,

𝑁
2
= (

0.23 0.003

0.14 −0.24
) ,

(60)

𝛿
𝑘
= 4.62, 𝜇 = 4, 𝜖

1
= 4.62, 𝜖

2
= 4.46, 𝜖

3
= 4.36, and 𝜎 =

1.53. The numerical solutions 𝑥
1
(𝑡) and 𝑥

2
(𝑡) of system (1)

with 𝜙𝑇(𝑡) = [−3 5], −3 ≤ 𝑡 ≤ 0, are plotted in Figure 1. This
shows that those solutions converge to zero.

5. Conclusions

Wehave presented the problemof robust exponential stability
criteria for uncertain impulsive switched linear systems with
mixed interval nondifferentiable time-varying delays and
nonlinear perturbations. By using a common Lyapunov
functional, mixed model transformation, Halanay inequality,
utilization of zero equations, and LMI approach, new delay-
range-dependent robust exponential stability criteria for
the systems are established in terms of LMIs. Finally, the
theoretical result is illustratedwell with a simulation example.
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