13 research outputs found

    Existence and Global Exponential Stability of Periodic Solution to Cohen-Grossberg BAM Neural Networks with Time-Varying Delays

    Get PDF
    We investigate first the existence of periodic solution in general Cohen-Grossberg BAM neural networks with multiple time-varying delays by means of using degree theory. Then using the existence result of periodic solution and constructing a Lyapunov functional, we discuss global exponential stability of periodic solution for the above neural networks. Our result on global exponential stability of periodic solution is different from the existing results. In our result, the hypothesis for monotonicity ineqiality conditions in the works of Xia (2010) Chen and Cao (2007) on the behaved functions is removed and the assumption for boundedness in the works of Zhang et al. (2011) and Li et al. (2009) is also removed. We just require that the behaved functions satisfy sign conditions and activation functions are globally Lipschitz continuous

    Fixed-time control of delayed neural networks with impulsive perturbations

    Get PDF
    This paper is concerned with the fixed-time stability of delayed neural networks with impulsive perturbations. By means of inequality analysis technique and Lyapunov function method, some novel fixed-time stability criteria for the addressed neural networks are derived in terms of linear matrix inequalities (LMIs). The settling time can be estimated without depending on any initial conditions but only on the designed controllers. In addition, two different controllers are designed for the impulsive delayed neural networks. Moreover, each controller involves three parts, in which each part has different role in the stabilization of the addressed neural networks. Finally, two numerical examples are provided to illustrate the effectiveness of the theoretical analysis

    Robust generalized Mittag-Leffler synchronization of fractional order neural networks with discontinuous activation and impulses.

    Get PDF
    Fractional order system is playing an increasingly important role in terms of both theory and applications. In this paper we investigate the global existence of Filippov solutions and the robust generalized Mittag-Leffler synchronization of fractional order neural networks with discontinuous activation and impulses. By means of growth conditions, differential inclusions and generalized Gronwall inequality, a sufficient condition for the existence of Filippov solution is obtained. Then, sufficient criteria are given for the robust generalized Mittag-Leffler synchronization between discontinuous activation function of impulsive fractional order neural network systems with (or without) parameter uncertainties, via a delayed feedback controller and M-Matrix theory. Finally, four numerical simulations demonstrate the effectiveness of our main results.N/

    Mittag-Leffler state estimator design and synchronization analysis for fractional order BAM neural networks with time delays

    Get PDF
    This paper deals with the extended design of Mittag-Leffler state estimator and adaptive synchronization for fractional order BAM neural networks (FBNNs) with time delays. By the aid of Lyapunov direct approach and Razumikhin-type method a suitable fractional order Lyapunov functional is constructed and a new set of novel sufficient condition are derived to estimate the neuron states via available output measurements such that the ensuring estimator error system is globally Mittag-Leffler stable. Then, the adaptive feedback control rule is designed, under which the considered FBNNs can achieve Mittag-Leffler adaptive synchronization by means of some fractional order inequality techniques. Moreover, the adaptive feedback control may be utilized even when there is no ideal information from the system parameters. Finally, two numerical simulations are given to reveal the effectiveness of the theoretical consequences.N/

    Global Synchronization of Complex Networks with Discrete Time Delays on Time Scales

    Get PDF
    This paper studies the global synchronization problem for a class of complex networks with discrete time delays. By using the theory of calculus on time scales, the properties of Kronecker product, and Lyapunov method, some sufficient conditions are obtained to ensure the global synchronization of the complex networks with delays on time scales. These sufficient conditions are formulated in terms of linear matrix inequalities (LMIs). The main contribution of the result is that the global synchronization problems with both discrete time and continuous time are unified under the same framework

    Qualitative Studies of Nonlinear Hybrid Systems

    Get PDF
    A hybrid system is a dynamical system that exhibits both continuous and discrete dynamic behavior. Hybrid systems arise in a wide variety of important applications in diverse areas, ranging from biology to computer science to air traffic dynamics. The interaction of continuous- and discrete-time dynamics in a hybrid system often leads to very rich dynamical behavior and phenomena that are not encountered in purely continuous- or discrete-time systems. Investigating the dynamical behavior of hybrid systems is of great theoretical and practical importance. The objectives of this thesis are to develop the qualitative theory of nonlinear hybrid systems with impulses, time-delay, switching modes, and stochastic disturbances, to develop algorithms and perform analysis for hybrid systems with an emphasis on stability and control, and to apply the theory and methods to real-world application problems. Switched nonlinear systems are formulated as a family of nonlinear differential equations, called subsystems, together with a switching signal that selects the continuous dynamics among the subsystems. Uniform stability is studied emphasizing the situation where both stable and unstable subsystems are present. Uniformity of stability refers to both the initial time and a family of switching signals. Stabilization of nonlinear systems via state-dependent switching signal is investigated. Based on assumptions on a convex linear combination of the nonlinear vector fields, a generalized minimal rule is proposed to generate stabilizing switching signals that are well-defined and do not exhibit chattering or Zeno behavior. Impulsive switched systems are hybrid systems exhibiting both impulse and switching effects, and are mathematically formulated as a switched nonlinear system coupled with a sequence of nonlinear difference equations that act on the switched system at discrete times. Impulsive switching signals integrate both impulsive and switching laws that specify when and how impulses and switching occur. Invariance principles can be used to investigate asymptotic stability in the absence of a strict Lyapunov function. An invariance principle is established for impulsive switched systems under weak dwell-time signals. Applications of this invariance principle provide several asymptotic stability criteria. Input-to-state stability notions are formulated in terms of two different measures, which not only unify various stability notions under the stability theory in two measures, but also bridge this theory with the existent input/output theories for nonlinear systems. Input-to-state stability results are obtained for impulsive switched systems under generalized dwell-time signals. Hybrid time-delay systems are hybrid systems with dependence on the past states of the systems. Switched delay systems and impulsive switched systems are special classes of hybrid time-delay systems. Both invariance property and input-to-state stability are extended to cover hybrid time-delay systems. Stochastic hybrid systems are hybrid systems subject to random disturbances, and are formulated using stochastic differential equations. Focused on stochastic hybrid systems with time-delay, a fundamental theory regarding existence and uniqueness of solutions is established. Stabilization schemes for stochastic delay systems using state-dependent switching and stabilizing impulses are proposed, both emphasizing the situation where all the subsystems are unstable. Concerning general stochastic hybrid systems with time-delay, the Razumikhin technique and multiple Lyapunov functions are combined to obtain several Razumikhin-type theorems on both moment and almost sure stability of stochastic hybrid systems with time-delay. Consensus problems in networked multi-agent systems and global convergence of artificial neural networks are related to qualitative studies of hybrid systems in the sense that dynamic switching, impulsive effects, communication time-delays, and random disturbances are ubiquitous in networked systems. Consensus protocols are proposed for reaching consensus among networked agents despite switching network topologies, communication time-delays, and measurement noises. Focused on neural networks with discontinuous neuron activation functions and mixed time-delays, sufficient conditions for existence and uniqueness of equilibrium and global convergence and stability are derived using both linear matrix inequalities and M-matrix type conditions. Numerical examples and simulations are presented throughout this thesis to illustrate the theoretical results

    Stochastic Processes with Applications

    Get PDF
    Stochastic processes have wide relevance in mathematics both for theoretical aspects and for their numerous real-world applications in various domains. They represent a very active research field which is attracting the growing interest of scientists from a range of disciplines.This Special Issue aims to present a collection of current contributions concerning various topics related to stochastic processes and their applications. In particular, the focus here is on applications of stochastic processes as models of dynamic phenomena in research areas certain to be of interest, such as economics, statistical physics, queuing theory, biology, theoretical neurobiology, and reliability theory. Various contributions dealing with theoretical issues on stochastic processes are also included

    Neuromorphic Engineering Editors' Pick 2021

    Get PDF
    This collection showcases well-received spontaneous articles from the past couple of years, which have been specially handpicked by our Chief Editors, Profs. André van Schaik and Bernabé Linares-Barranco. The work presented here highlights the broad diversity of research performed across the section and aims to put a spotlight on the main areas of interest. All research presented here displays strong advances in theory, experiment, and methodology with applications to compelling problems. This collection aims to further support Frontiers’ strong community by recognizing highly deserving authors
    corecore